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ABSTRACT
It is well-known that, nano-mechanics should take into account not only physical phenomena occuring within the bulk but, first
of all, the physical phenomena appropriate for a surface of two materials contact. The huge volume density of internal surfaces as
well countours lines located within the nanomaterial results in our interest in, apart from classical form of mass, momentum and
entropy transport, those modes of transportation where a carrier of physical property follows a free path having of a dimension
greater than nanostructure characteristic dimension. The mode of transport dominated by mechanical, thermal and electrical slip
of carried bounding off walls (a surface of separation) is called usually in physics ”a ballistic mode”. In the paper the appropriate
Newtonian surface vis impressa responsible for the ballistic mode of transport is defined, classified and explained. We postulate
that generally surface vis impressa can be additivelly splited onto friction and mobility forces.

MOVING SHELL-LIKE CONTACT

We assume that the fluid-solid contact layer (denoted as
M+M−) can be treated as thin domain moving in a space with
a geometrical, migration velocity w. This shell-like domain di-
vides the continuum into a continuum A - that is a fluid under
consideration, and a continuum B which can be a free surface,
solid body or second fluid, as in Fig. 1. If both A and B are flu-
ids then it is the fluid-solid contact layer represents the moving
interfacial region, where physical properties change in a radical
manner. For instance in a thin transition layer between liquid
and vapor, the change of density is so noticeable, that it looks
like a jump throughout the layer thickness. Therefore, we as-
sume that in the layer we observe so-called ,,apparent” mate-
rial properties, quite different than in bulk continuum A and B.
Thus we define an excess of layer density ρs [kg m−2], the layer
particle velocity vs [m s−1], an excess of layer momentum den-
sity ρsvs, and a surface excess of momentum flux ps, [1; 6; 7;
20].

In general, this layer moves with the geometrical velocity w
that differs from material velocity vA in A, velocity vB in B,
and velocity vs inM+M−. In particular case, the velocity w
denotes the rate of changing a phase transition surface within
the fluid being at rest. Usually, the component wn normal to
moving middle surfaceM, differs from normal components of
vA, vB and vs. It practically means that there is also a mass
transport across the layer. Indeed, the geometrical velocity field
is not a priori known, and can be determined from a special evo-
lution equation, [1; 19]. If w = vs then the moving layer is ma-
terial, if w = vsIs +wnn the surface is semi-coherent (Fig. 1).
Navier and Stokes have assumed, that the surface layer den-
sity is equal to zero. Apparently, we want to determine the slip
velocity vs from an independent balance of the layer momen-
tum. In special cases however, it simplifies to the well-known
Cauchy balance of the boundary traction forces. For immiscible
liquids being in contact, the tangential components vsIs can be
approximately described to be 1

2 (vA + vB) Is. Quite similarly,

Figure 1. Outline of the fluid-soild contact layer

only in a special case is ρs = 1
2 (ρA + ρB)h, where h is a finite

thickness of the layer1.
We introduce a new concept of an ,,excess of momentum

flux” within the fluid-solid contact layer, which is described by
a surface symmetrical diade ps. It governs the momentum trans-
port within the layer, and therefore it has a tangential and nor-
mal components. We postulate the surface momentum flux in a
following form:

ps (ξ) = pαβaα ⊗ aβ + pnαn⊗ aα
+pαnaα ⊗ n + pnnn⊗ n , (1)

where ξα, α = 1,2 are a local surface curvilinear coordinates

1We are based on a general surface kinematics elaborated by [20]. The gen-
eral form of the surface balances of mass, momentum, angular momentum, en-
ergy, entropy, etc. is given by [16; 9; 21].
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on M, and aα, n (α = 1,2) are the base vectors on the mid-
dle surface of the layerM. Since the physical properties of the
layer are unknown a priori, they depend on the resulting appar-
ent properties in both continua A and B. For example, elastic
recoverable properties of ps depend on an actual shape of the
surfaceM. Many authors postulate, that due to strong induced
elasticity of the fluid layer, it changes from the elastic fluid (only
recoverable spherical deformations) into an elastic fluid with re-
coverable shape deformations [7]. Similarly, owing to induced
strong anisotropy, the internal viscosity of the fluid layer can be
described by four apparent viscosity coefficients, [3; 11].

Let us now recall a few mathematical relations required for
establishing of balance of the layer mass and momentum. At
first the Weatherburn surface fundamental diades can be intro-
duced, [17]:

Is = I− n⊗ n = gradsxs = aαβaα ⊗ aβ , (2)

IIs = −gradsn = bαβaα ⊗ aβ , (3)

which are called the first and second fundamental form of the
surfaceM. As far as the surface gradient acts also on the coor-
dinate dependent base aα, n, then the surface gradient of veloc-
ity is calculated to be:

gradsvs = (vαaα + vnn)⊗∇βaβ

=
(
vα|β − vnbαβ

)
aα ⊗ aβ

+(vαbαβ + vn,β)n⊗ aβ , (4)

and the surface divergence of velocity vector is based on the
contraction C1,2:

divsvs =C1,2gradsvs=(vα|β−vnbαβ)aαβ

= vα|α − vnbαα = divs
(
vs‖

)
− vnIb. (5)

where the invariants of the second fundamental form of the cur-
vature diade are: Ib = trIIs = bαα = b11 + b22 =

(
1
r1

+ 1
r2

)
,

IIb = detIIs = det (bαβ) and C1,2 denotes contraction of first
and second base. In analogy to the three-dimensional case, the
rate of surface deformation is defined as a symmetric part of the
surface gradient of velocity:

ds =
1

2

(
gradsvs + gradTs vs

)
=

[
1

2

(
vα|β + vβ|α

)
− vnbαβ

]
aα ⊗ aβ

+
1

2
(vαbαβ + vn,β)

(
n⊗ aβ + aβ ⊗ n

)
. (6)

The first invariant of ds is in analogy to 3D:

Ids = trds =C1,2ds=vα|α−vnIb . (7)

Similarly, the surface gradient of the flux of momentum is:

gradsps = ps ⊗ (∇γaγ) = pαβ |γaα ⊗ aβ ⊗ aγ

+pαβbαγn⊗ aβ ⊗ aγ + pαβbβγaα ⊗ n⊗ aγ

+pnα|γ (n⊗ aα ⊗ aγ + aα ⊗ n⊗ aγ)

+
(
2pnαbαγ + pnn|γ

)
n⊗ n⊗ aγ

−pnαbεγ (aε ⊗ aα ⊗ aγ + aα ⊗ aε ⊗ aγ)
−pnnbεγ (aε ⊗ n⊗ aγ + n⊗ aε ⊗ aγ) , (8)

and its divergence:

divsps =C2,3gradsps
=

(
pαβ |β − pnβbαβ − Ibpαn

)
aα

+
(
pαβbαβ + pnα|α − Ibpnn

)
n. (9)

where C2,3 means scalar multiplication second & third vector of
base (operation of contraction C2,3).

MOMENTUM BALANCES WITHIN A CONTACT THIN
LAYER

The local form of the momentum balance can be finally writ-
ten as2 [2]:

∂t (ρv) + div (ρv⊗ v + p) = ρb for A∪B , (10)

∂t (ρsvs) + divs
(
ρsvs ⊗ vs‖

)
−wnIbρsvs + divsps

+∂n (psn) + [pAnA + pBnB + fSA + fSB ] = ρsbs
+ṁA (vA − vs) + ṁB (vB − vs) on M. (11)

Repeating now the reasoning of d’Alembert and Euler, we can
define a surface d’Alembert-Euler acceleration vector to be:

as =
ds
dt

vs = ∂tvs + (gradsvs)vs‖ . (12)

Employing the surface identity, instead of divergence of the
convective flux of surface momentum we obtain:

ρsas = ∂t (ρsvs) + divs
(
ρsvs ⊗ vs‖

)
(13)

The fluid-solid contact layer in generalized form is descri-
bied now by the layer balances of mass and momentum. These
are two additional nonlinear differential equations for two addi-
tional fields of unknowns, i.e. the surface mass density ρs and
the layer slip velocity vs. These equations are both geometri-
cally and physically nonlinear, and should be solved using any
discretization method (FEM, FVM), under assumption that the
surface M possesses an independent from the bulk space dis-
cretization. In the case whenM− is a fixed solid surface, the
geometrical velocity w = 0, and then discretization mesh could
be fixed in the marching time of numerical solution. Apparently,
if w 6= 0, then a moving, self deforming mesh should be re-
solved together with surface mass and surface momentum equa-
tions, and the appropriate set of equations for bulk. There are

2An example how to define pBfor the deformable wall is given in the paper
by dell’Isola et al. [8], eq.(40)
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different cases of using the Navier-Stokes layer balances in the
literature. For instance, when A and B are ideal, non-viscous
Euler fluids, and the surface density is equal to zero ρs = 0, and
the layer momentum flux is omitted ps = 0, then the surface
mass and momentum equations reduce to the generalized form
of the Rankine-Hugoniot jump conditions:

{
ṁA = ṁB

ṁAvA + pAnA = ṁBvB + pBnB
, (14)

where pA, pB are thermodynamic pressure in the Euler fluids
A and B, respectively. If, additionally w = 0, and there is
an additional contribution to the surface diade ps = γIs, then
the layer momentum balance leads to the generalized Young-
Laplace equation:

divs (γIs) + pAnA + pBnB

=

[
γ

(
1

r1
+

1

r2

)
+ pA − pB

]
n = 0 . (15)

If an interfacial density is omitted i.e. ρs = 0, the difference be-
tween the external friction forces fSA and fSB simply vanishes
then, and a single layer friction force exists:

fAB = fSA + fSB = ν (vA − vB) , (16)

where ν is an external viscosity coefficient. It is an exact form
of an external friction force proposed by Navier (vB = 0) and
Stokes (vB = vwall). Assuming, that the continuum A is an in-
compressible viscous fluid: pA = pI− 2µd, and the continuum
B is a rigid, fixed solid body: pB = 0, vB = 0, we obtain the
Navier slip boundary condition:

fAB + pAnA = νvA + (pI− 2µd)n = 0 on M , (17)

where vs = vA|M is identified with the slip velocity.
Let note that the layer flux of momentum is responsible for re-
coverable and viscous transport: ps = ps(c) + ps(ν). The first
most important part of the elastic recoverable diade p(c)

s , that is
known as the capillarity diade, can be described by the surface
tension γ. This quantity was introduced to the process of math-
ematical modeling by Young, Laplace and Poisson. The second
contribution comes from the recoverable stresses called the sur-
face bending C1, C2, introduced by Gibbs. There is also a layer
,,normal pressure” $, introduced by Stokes. These altogether
lead to the following definition of the capillarity diade:

ps
(c) = $n⊗ n + γIs +CIIs, ∂n (psn) = $n , (18)

where 2C = C1 +C2, and divsps(c) = γIbn +C
(
I2b − 2IIb

)
n.

A quite general form of the capillarity diade has been proposed
recently [1] as:

ps
(c) = γ0 − IIsγ1 + n⊗ Isdivs (γ1 − IIsγ2) , (19)

where the surface capillary measures can be defined to be spher-
ical:

γ0 = γIs, γ1 = CIIs, γ2 =KIIIs . (20)

These capillary measures are expressed in terms of the first, sec-
ond and third fundamental surface forms, and γ, C, K are the
surface tension, bending and torque, respectively.

The viscous properties of the Navier-Stokes layer depend on
the so-called ,,apparent viscosity” which, in general, possesses a
transversal anisotropy, [11]. One can define the viscous surface
stresses by using the surface diade of the rate of deformation
and a normal change vn,n:

ps
(ν) = λ′ (trds) Is + λ′′vn,nn⊗ n

+2µ′IsdsIs + 2µ′′ (ds − IsdsIs) . (21)

This diade does not undergo the classical 3D de Saint-Venant
condition, saying that the viscous stresses must be traceless. For
a special case when λ′′ = µ′′ = 0, this constitutive relation was
proposed by B.M.J. Boussinesq (1913), [4; 19]:

ps
(ν) = (λ′ − µ′) (trds) Is + 2µ′IsdsIs . (22)

The formula for surface viscosity coefficients λ′, µ′ needs ex-
tended investigations.

SURFACE FRICTION VIS IMPRESSA CLASSIFICA-
TION

Let us consider now a more consistent velocity slip boundary
conditions that should be consistent with the Newton postulate
stating, that a friction phenomenon depends on three compo-
nents: the pressure dependent part, the relative velocity part,
and the square velocity dependent part. Let the Newton postu-
late be true for a fluid in the bulk as well as for the thin layer
on a boundary surface realizing a contact with a solid surface.
Then taking into account, we have more consistent definition of
the surface friction force:

ffAB = fSS′N
v− vwall
|v− vwall|

+ ν (v− vwall)

+fκ (v− vwall)
2 v− vwall
|v− vwall|

. (23)

where fSS′ , ν, fκ are cohesive, external friction and kinematic
friction coefficients and N = n · (pA − pB)n is contact normal
force. Some consistencies of this condition can be simply
recognized if we compare the internal and external coefficients
that appear in the model. This consistency can even be extended
on reversible properties of the model i.e. the internal (Euler)
and the external (Stokes) pressures p and $, respectively. In
the Table1 the comparison of these properties is shown .

The better consistency of the above model results from the
fact that it needs three coefficients of internal friction (kvis, µ1,
µ2) and three coefficients of external friction (fSS′ , ν, fk), re-
spectively. Therefore, we can define a ratio between the internal
and external friction by a dimensionless coefficient λvis, and
two lengths of velocity slip: l1ν and l2ν (see: table 1). Having
a measure of internal properties of friction, one can connect the
external properties of friction at the fluid-solid contact layer by
appropriate closures written for λvis , l1ν and l2ν , respectively.

583



Table 1. Comparison of a concise model of internal and external friction, according to Newton’s postulate. The model (†) of a viscous bulk pressure
has been proposed by Natanson [15].

Internal (bulk) External (boundary) Characteristic ratio

Elastic pressure p [Nm−2] $ [Nm−2] λpress = p/$

frictional pressure pvis = kvisJ
† [Pa] fSS′ λvis = kvis/fSS′N

linear slip velocity µ1 [Nsm−2] ν [Nsm−3] l1ν = µ1/ν

square slip velocity µ2 [Ns2m−2] fk [Ns2m−3] l2ν = µ2/fk

SURFACE MOBILITY VIS IMPRESSA CLASSIFICA-
TION

Here, we must note that the previous literature statements of
the phenomena of surface mobility, called transpiration, should
be taken into account to the proper definition of surface fric-
tion. Yet another mobility force, other than the difference of
pressure or temperature, was discovered by Graham in 1849.
He found a new kind of transpiration called ,,atomisis”[18; 14].
This phenomena is nowadays called ,,diffusional transpiration”
or ,,diffusionphoresis”. It is quite different kind of flow than the
classical transpiration flow induced by difference of the normal
surface pressures, i.e. ,,pressure transpiration”. The diffusion
transpiration deals with a flow of gas mixture by a long capil-
lary pipe, where there is another interaction of every mixture
component with a surface. It leads to the mixture separation.
In this case the most important is a coefficient of diffusion mo-
bility cvN . Another type of induced motion is due to the differ-
ence of an electric potential φ on a surface. This phenomenon is
called ,,electrophoresis” and is governed by an electro-mobility
coefficient3 cvφ. Other mobility mechanism is connected with
the phase transition change, [2] and the surface gradient of the
phase order parameter x.

Let us note that these all types of mobility, i.e., pressure, ther-
mal, diffusional, phase, and electrical define only an external
mobility force in the fluid-solid contact layer. This force, par-
tially given by Reynolds [18] and Maxwell [14], can be gener-
alized to:

fmAB = −cv$grads$− cvθgradsθ
−cvNgradsN − cvφgradsφ− cvxgradsx , (24)

where cvθ - the thermo-mobility coefficient, cvN - the
concentration-mobility coefficient, cvφ - electro-mobility coef-
ficient, cv$ - the pressure-mobility coefficient, cvx - the phase
mobility coefficient.

In a special case, when gas is at rest, we can observe a motion
of the particle induced by different surface vis impressa. This
kind of motion is called in the literature the ,,phoretic motion”
[5]. In general, any nano-particle immersed in the fluid may
undergo simultaneously five types of motions which are shown
in Table 24.

3Electrophoresis was discovered by von Smoluchowski in 1916 [22]. See
also: H.J. Keh, J.L. Anderson, Boundary effects on electrophoretic motion of
colloidal sphere, J. Fluid Mech. 153,417-439(1985)

4These phenomena must be distinguished from the motion-less phenomena
like: ,,temperature jump”, ,,concentration jump”, ,,potential jump” related with
the external heat conductivity, external mass diffusivity, and external electric

Table 2. Five kinds of motions connected with the surface mobility of
a particle immersed in a fluid at rest. Here: cvθ - the thermo-mobility
coefficient, cvN - the concentration-mobility coefficient, cvφ - electro-
mobility coefficient, cv$ - the pressure-mobility coefficient, cvx - the
phase mobility coefficient.

Phenomena Corresponding velocity Driving potential

thermophoresis vwall = cvθgradsθ temperature θ

diffusionphoresis vwall = cvNgradsN concentration N

electrophoresis vwall = cvφgradsφ electric potential φ

pressurephoresis vwall = cv$grads$ pressure $

phasephoresis vwall = cvxgradsx order parameter x

COMBINED SURFACE FRICTION AND MOBILITY

Let postulate surface vis impressa to be:

fAB = ν (v− vwall − cvθgradsθ) . (25)

The thermo-mobility coefficient cvθ should be formulated,
according to Maxwell’s slip formula [14], as a coefficient that
is not dependent on the property of the solid surface:

cvθ =
3

4

µ

ρθ
. (26)

Equation (25) is called the ,,Maxwell slip boundary layer”. Let
us note that in this equation very particular role plays the gradi-
ent of temperature θ. It is a completely external surface effect
which is not connected with any form of stress tensor. It means
that the motion of the gas close to a solid surface, in general is
governed by two kinds of forces. The first is a mechanical one,
which is connected with the external viscosity, and the second
one is a temperature gradient which drives of gas particle close
to the surface from colder to hotter part. Therefore the coeffi-
cient of thermal mobility cvθ is independent from mechanical
layer properties and should be experimentally verified5.

Finally, let us recall Maxwell solution for a flow of a gas in
a long capillary tube having inner radius a, which occurs under

conductivity coefficients, respectively. Recently the phenomenon of jump con-
centration of salt in a gel mixture has been discovered by [12].

5There are numerous modern papers that mention about the proper exper-
iments. The impressive electrokinetic properties predicted for a carbon nano-
tube channels have not yet been measured in careful experiments, [10].

584



two kind of driving forces. These forces are a bulk pressure
transpiration due to difference of pressure at the ends of the
tube, and the surface thermal transpiration due to difference of
temperature at the same ends of the tube. Since the gas is flow-
ing from higher to lower pressure and, simultaneously, from the
colder to the hotter end, then these effects can be summarized.
In a particular case, where the driving forces are opposite and
equal themselves, there is no net outflow of gas from the cap-
illary. Then an enhancement of mass flux due to the Maxwell
slip is6:

QMaxwell

QPoiseuille
=

(
1 + 4

ls
a

)
− 8

π
cvθ

µ

ρa4
dθ

dz

(
dp

dz

)−1
. (27)

This enhancement is essential only if the inner radius a is small
in comparison with the slip length ls and thermal mobility cvθ
is small. Thermal contribution to the slip is important when the
gas is rarefied. Both driving forces (per unit of length of the
pipe): dp and dθ, can be in opposition. In a particular case there
is no flow in the pipe Q = 0. Then we have7:

dp

dθ
= 6

µ2

ρθ

1

a2 + 4lsa
. (28)

For given temperature difference dθ = 100 K, under the pres-
sure of 40 mm of mercury, and assuming ls = 0.00016 cm, this
formula leads to the resulting pressure at the hot end which ex-
ceed that at the cold end by about 1.2 millionth of the atmo-
sphere. Modern numerical techniques allowed us to reconstruct
this experiment by means of Finite Volume Method. Obtained
results are however slightly different - see Fig. 2, b) for which
ṁ = 0.

CONCLUSION

In the paper the applications of the extended solid-fluid
contact equations, including the different surface mobility
mechanisms are presented in order to explain the enhanced
flow in micro-channels.
Boundary force is a sum of friction and mobility force: f∂V =
v (v− vwall) + (−cs,ωgrads$− cs,θgradsθ− cs,cgradsc)
where cs,ω - pressure transpiration; cs,θ - thermal transpiration;
cs,c - concentration transpiration.
Generalization of the fluid-solid contact boundary slip layer,
formulated in the present paper, supplements the original
Navier-Stokes model by additional surface quantities like the
surface mass and the surface momentum flux. In the present
case the slip velocity vs is determined from the solution of the
complete balance of momentum (11) written within the layer.
Since the stress tensors pA, pB are determined in the bulk and
cannot be arbitrarily changed at the boundary, such an approach
leads to the separation for those constitutive relations which

6Another objective for analytical study lies in exploring the underlying
physics of the so called Knudsen paradox. Explanations of this paradox can-
not be given by model of Navier slip layer, and needs more advanced method
of modeling, [1; 13]. Let recall, that the Knudsen paradox relates to the pres-
ence of a minimum of mass flow rate in a function of the Knudsen number.
Thus, the exploration of Knudsen paradox and its full understanding also re-
quire a considerations on the limit of continuum approaches. It is fact, that
the Knudsen-Gaede flow should be a fundamental benchmark for nano-flows of
rarefied gases like the Pouiselle or Couette flow at macro-scale.

7See: ([14],Appendix,eq.(81))

Figure 2. The calculated mass flow rate and relevant velocity profiles
in the Maxwell capillary tube for given constant temperature difference
dθ = 100 K, and for different dp : a) 0 Pa, b) 1.1 Pa and c) 10 Pa. The
case a) describes pure thermal transpiration (no pressure driven flow),
where slip velocity vs = 0.0077m/s drives the bulk flow of a gas.

can be imposed to fulfill the surface balance of momentum.
There is still an open place for the modeling of the surface
momentum diade ps and the surface friction force fAB , where
indeed a second gradient of surface velocity can be postulated.
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cielle, dans le mince couche de transition separant un liq-
uide d’une autre fluide contigu. Ann. Chim. Phys., 29:349
– 357, 1913.

[5] H. Brenner. Navier-stokes revisited. Physica, A349:60 –

585



132, 2005.
[6] P. Cermelli, E. Fried, and M.E. Gurtin. Transport relations

for surface integrals arising in the formulation of balance
laws for evolving fluid interfaces. J. Fluid Mech., 544:339
– 351, 2005.

[7] F. dell’Isola and W. Kosiński. Deduction of thermo-
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