
12th Joint European Thermodynamics Conference
Brescia, July 1-5, 2013

ELASTICITY, PLASTICITY, RHEOLOGY AND THERMAL STRESS — AN

IRREVERSIBLE THERMODYNAMICAL THEORY
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ABSTRACT

We present a thermodynamical formulation of elastic, plastic, rheological and thermal stress phenomena of solids that is based

on two pillars. One of them is a recent novel definition of kinematic quantities that enables the description of finite deformation

elastic, plastic and thermal expansion changes in an automatically objective way. In parallel, the other pillar is irreversible

thermodynamics. We show how naturally the well-known aspects of plasticity, as well as the inclusion of rheology, meet the

requirement of positive definite entropy production. The general framework is illustrated via a simulation example and an

experimental example.

INTRODUCTION

In nonquantitative/heuristic terms, objectivity may be formu-

lated as the requirement that the physical content of a theory

must be independent from the description used for the formu-

lation of the theory. It might be expected that it is nontrivial

to ensure objectivity for a theory, and paradoxes, controversies

and errors indicate that indeed this is the case.

Motivated by the need for a safely objective formulation of

continuum physics, in a recent work, we have introduced a

novel definition of kinematic quantities [1; 2]. By working on

Galilean spacetime directly, it was possible to avoid the use of

any auxiliary element—reference frame, reference time, refer-

ence configuration etc.—, which are sources of possible viola-

tion of objectivity in the conventional approaches. In our frame-

work, all kinematic quantities and equations are automatically

objective.

The logical continuation of this program is to reformulate

the mechanical and thermodynamical theories in terms of these

quantities, as well as to look for possible improvements and

possibly emerging new opportunities for theory building. The

present work reports on results obtained in this direction. We

show here a small deformation thermodynamical framework for

elastic, plastic, thermal expansion and rheological phenomena

of solids. Our original aim was an illustration of that, with

the spacetime-based quantities, one can express anything that

is needed in continuum physics. In parallel, it has gradually

turned out that these quantities enable and suggest some such

improvements and possibilities in continuum physics that have

not been apparent before.

To see how our thermodynamical theory performs in prac-

tice, we provide here two illustrations, a numerical calculation

of a concrete example process and an experiment, where the

results demonstrate the features of the theoretical framework.

KINEMATIC QUANTITIES

Based on Matolcsi’s reference frame free approach to theo-

retical physics [3; 4; 5], the problems of objectivity and material

frame indifference [6; 7; 8; 9; 10] have been investigated in a

series of papers [11; 12; 13; 14; 1]. In particular, in [1], the

kinematic quantities for elastic and plastic processes of solids

have been presented in a way that is free from any auxiliary el-

ements like reference frame, reference time and reference con-

figuration. During the birth of [1], it has been realized that this

new approach incorporates thermal expansion also in a natural

way and reveals some nontrivial kinematic and dynamical con-

sequences of thermal expansion [2].

This kinematic background of the subsequent thermodynam-

ical framework can be summarized as follows.

The motion of the continuum

The continuum is considered as a three dimensional smooth

manifold. Each material point of it moves along a smooth world

line in spacetime—which we will take here as a Galilean (“non-

relativistic”) spacetime—, at time t, the spacetime location of P

is rt(P). Its material gradient ∇̃, i.e., the derivative with respect

to the variable P,

Jt(P) := (rt ⊗ ∇̃)(P) , (1)

is the world line gradient (and is the spacetime compatible

generalization of the traditional deformation gradient) [spatial

derivatives will act to the left or to the right according to the

context, always to indicate the correct tensorial order]. This ten-

sor maps tangent vectors of the material manifold to spacelike

spacetime vectors, which form a three dimensional Euclidean

vector space with Euclidean scalar product h. At any instant

t, the current spatial distance of two material points P,Q is the
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distance of rt(P) and rt(Q) with respect to the spatial Euclidean

metric h,

dt(P,Q) = ‖rt(Q)− rt(P)‖h . (2)

This induces a current metric

h̃t := JTt hJt (3)

on the material manifold ( T standing for transpose) , a scalar

product for the tangent vectors at each material point.

The spacetime velocity of material point P at t is the

time derivative ṙt(P) = vt(P). If we change from the La-

grangian/material/comoving variable to the Eulerian/spacetime

variable then the material gradient ∇̃ is mapped to the spatial

spacetime derivative ∇ via Jt , and we find

Lt = J̇tJ
−1
t (4)

for the velocity gradient

Lt(P) := (vt ⊗ ∇̃)(P). (5)

(Naturally, the substantial/comoving time derivative coincides

with the partial time derivative in the Lagrangian picture.)

Elasticity

So far, our continuum could have been a solid as well as a

liquid (and even a laminarly flowing gas). What could be the

mathematical formulation of the distinction between a solid and

a liquid? Expressing that ‘a solid has a structure’, we can say

that a solid possesses a self-metric (natural metric) structure,

with which its current metric coincides when the solid is under

no external influence. Namely, we assign to a solid a certain

metric g̃ on the material manifold. This metric tells the distances

of material points—i.e., coincides with the current metric h̃t—

when the solid is relaxed.

Our intention with an elastic kinematic quantity is to be the

variable on which elastic stress depends, which, under classical

mechanical experience, may be expected to depend on the dis-

tances between nearby material points. Taking into account that

g̃ describes the distances in unstressed state, the elastic kine-

matic quantity could measure the deviation of the current metric

h̃t from the self-metric g̃. To this end, we can define

Ãt := g̃−1h̃t (6)

(elastic shape tensor), which proves to be the spacetime com-

patible generalization of the ‘right’ Cauchy-Green tensor, and

D̃t := ln

√
Ãt =

1
2

ln Ãt (7)

(elastic deformedness tensor), which is the generalization of the

‘right’ Hencky strain.

These tensors have been defined on the material manifold—

acting on material tangent vectors—but can be transported to

spacetime via J. For the spacetime version (the ‘left’ version),

we can derive the evolution equation

Ȧ = LA+ALT. (8)

Thermal expansion

As far as elasticity is concerned, the relaxed metric can be

regarded as a constant tensor. However, we are aware of phys-

ical phenomena where the structure of a solid changes, where

its relaxed distances change. One such phenomenon is thermal

expansion. Restricting ourselves to isotropic solids, if l(T ) de-

notes a characteristic length (edge length of a cube, or radius

of a sphere) of a unit amount (mass, or molar number) of the

material at temperature T then, for the temperature dependence

of the relaxed metric, we have

g̃(T2) =

(
l(T2)

l(T1)

)2

g̃(T1) (9)

[in accord with that the metric expresses squared distances].

The usual definition of the linear thermal expansion coefficient

is

α(T ) :=
dl(T )/dT

l(T )
. (10)

When temperature changes in time at a material point, we have

g̃̇ =

(
d

dT
g̃

)
Ṫ = 2α(T )Ṫ g̃ (11)

following from Eq. (9), implying

Ȧ = LA+ALT−2αA. (12)

Let us note that, in a theory, l(T ), and thus α(T ), must be

given constitutively.

Plasticity

Another phenomenon where the structure of a solid changes

is plasticity. Therefore, plasticity is another source of g̃̇ 6= 0.

Putting elasticity, thermal expansion and plasticity together, we

have

Ȧ = LA+ALT−2αA−2Z, (13)

where Z, the plastic change rate tensor is responsible for the

additional change rate of g̃, and is also to be given constitutively.

Remarks

We can see that, actually, g̃ is not purely a kinematic quantity.

Still, since elastic, plastic and thermal expansion deformations

are traditionally considered as kinematic, we must speak about

it here, where these kinematic definitions are given. Also, g̃ is

not purely dynamical, either.

As another remark, useful for the applications, strain can be

defined only with respect to a reference time t0, as

Et0→t :=
∫ t

t0

LS d̃t, (14)
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where S denotes symmetric part and d̃t indicates comoving inte-

gration. In parallel, the conventional deformation gradient can

be expressed in the present formalism as

Ft0→t = JtJ
−1
t0

, (15)

and satisfies

At = Ft0→tAt0
FT

t0→t . (16)

Small deformation

From now on, we restrict our treatment to the small defor-

mation regime, where (i) A is near to I, thus also satisfying

A ≈ I+2D, (ii) J does not change considerably during the time

scale on which we consider a process, and (iii) α can also be re-

garded as a constant. Then Eq. (13) simplifies, in leading order,

to

Ȧ = L+LT−2αI−2Z, (17)

rearrangable as

LS = Ḋ+αṪ 1+Z. (18)

A consequence of the small deformation approximation is

that we do not have to pay attention to the difference between

‘right’ and ‘left’, i.e., material and spacetime tensorial quanti-

ties.

MECHANICS AND THERMODYNAMICS

Stress

Let us start building the dynamical theory by choosing what

we expect on the mechanical side: let our elastic constitutive

equation be the simple linear one:

σσσσσσ =UdDd +U sDs (19)

with

Ds = 1
3
(trD)1, Dd = D−Ds, Us = 3K, Ud = 2G. (20)

Actually, a nonlinear choice could also be incorporated, but let

us now pursue a simple, yet interesting, setting.

At this point, we can already observe that the classic

Duhamel-Neumann formula for thermoelasticity [15] is recov-

ered as a special case. To see this, we must assume what are

assumed there: that, at an initial time t0, the temperature is T0

and elastic deformedness is considered zero (Dt0 = 0, At0 = I),

that is, we start with an unstressed, relaxed, natural initial state.

We also stay in the small deformation regime, and neglect plas-

tic changes. Then, at time t, in the leading order approximation,

Dt =
1
2
(At − I) = 1

2

(
Ft0→tF

T

t0→t − I
)

= Et0→t −α(T −T0)I. (21)

Inserting this into Eq. (19) yields

σσσσσσt ≈ 2GEt0→t +
(
K − 2

3
G
)
(trEt0→t)I−3Kα(T −T0)I, (22)

which is precisely the Duhamel-Neumann expression.

Thermodynamical quantities for elasticity, thermal expan-

sion and plasticity

Our first step towards thermodynamics is that we expect the

first law to be satisfied:

ρu̇ =−ju ·∇+σσσσσσ : LS (23)

for the specific internal energy u and its current ju, both to be

specified constitutively later (and the density ρ being constant

in the small deformation regime) [: denotes trace]. Let us then

construct the rest of the thermodynamical build-up as follows:

our aim is to rewrite Eq. (23) assuming js = ju/T for the entropy

current js, and with an appropriate specific entropy s(D,T ), as

T ρṡ = T (−js ·∇+σs) , (24)

where the positive definiteness of the entropy production, σs ≥ 0

is also to be ensured constitutively.

If we choose again a simple internal energy function, i.e.,

consisting of an elastic energy part and a thermal term corre-

sponding to a constant specific heat c,

u = cT +
Ud

2ρ
Dd : Dd +

U s

2ρ
Ds : Ds +

U s

ρ
T αtrDs, (25)

then, omitting the straightforward details, that appropriate en-

tropy function proves to be

s = c ln
T

T0
+

U s

ρ
αtrDs + s0 (26)

with any temperature value T0 and constant s0, and the corre-

sponding entropy production is found to be

σs =∇
1

T
·ju+

1

T
σσσσσσ : Z=∇

1

T
·ju+

Ud

T
Dd : Z+

U s

T
Ds : Z. (27)

Our remaining task is to ensure the positive definiteness of the

latter.

One simple choice guaranteeing this is when we take the

standard constitutive formula for heat conduction,

ju = λ∇
1

T
(28)

(with, say, a constant positive λ), and prescribe the plastic con-

stitutive equation as

Z = ΓḊd with Γ = γH
(

Dd : Dd −B
)

H
(

Dd : Ḋd
)
, (29)
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where γ and B are positive constants, and H is the Heaviside

function.

The choice Eq. (29) is fairly plausible from the plasticity

point of view: the plastic change rate is deviatoric and is pro-

portional to the elastic change rate, the first Heaviside term de-

scribes a von Mises yield criterion (recall that stress is in a linear

relationship with D), and the second Heaviside term expresses

the natural expectation that plastic change is switched off during

unloading.

On the other, thermodynamical, side, the second Heaviside

term ensures that entropy production is positive definite. One

may actually dare to put this reversely: plasticity must be

switched off during unloading, as otherwise positive definite-

ness of entropy production would be violated.

We remark that it poses no difficulty to incorporate tempera-

ture dependent coefficients U s, Ud, α, c.

Adding rheology

The thermodynamical formulation of rheological models is

possible with the aid of internal variables (dynamical degrees

of freedom [16]). The details [17] of this derivation cannot be

given here, but the outline is similar to what happens in [18].

Namely, we assume the presence of an additional internal

variable, a symmetric tensor ξξξξξξ, and extend our previous entropy

function as

s = sprevious −
1

2
ξξξξξξ : ξξξξξξ. (30)

If plasticity and thermal expansion are neglected then the pos-

itive definiteness of entropy production leads to, in the linear

Onsagerian setting, after eliminating the internal variable, a lin-

ear rheological model with σσσσσσ, σ̇σσσσσ, D, Ḋ, D̈ terms. Therefore, we

arrive at a common generalization of the Poynting–Thomson–

Zener and the Jeffreys models, which we may call the inertial

Poynting–Thomson–Zener model.

A SIMULATION

The evolution equations Eq. (18), Eq. (23), together with the

approximate mechanical equation of motion

σσσσσσ ·∇ = 0 (31)

and the constitutive prescriptions Eq. (19), Eq. (25), Eq. (28),

Eq. (29), form a closed set of equations, thus being capable to

calculate a concrete process. To demonstrate this, we have per-

formed a numerical calculation for a cylindrical rod uniaxially

stretched by an increasing force, linear in time.

Figure 1. shows the strains and the temperature as the func-

tion of time. Plastic change (blue line) begins only above the

critical stress. Below this, temperature decreases, similarly to

what happens for an adiabatically expanded gas. Therefore,

the total strain (black line) runs a bit below the elastic strain

(green line), the difference caused by the nonzero thermal ex-

pansion coefficient. When the plastic change also appears, the

total strain increases faster, and, due to the dissipative power

term σσσσσσ : Z, temperature also starts to increase.

Figure 2. shows the modification of the setup, where the

rod has slightly nonconstant cross section: then plasticity (blue

0

 

0.2

15

0.1

105
0

Figure 1. Uniaxially stretched rod. The temperature (red line) first de-

creases and then increases, the elastic strain (green line) increases fol-

lowing the increased stress, the plastic strain (blue line) appears only

above the critical stress, causing that the total strain (black line) starts to

increase faster.

❵❵❵❵❵❵
②

③
rod

❵❵❵②stretching

❵❵❵ ③ stretching

�
��✒
time

✻
stress

Figure 2. Stretching a rod with slightly nonconstant cross section. Plas-

tic change (blue region) starts where the rod is the thinnest, and failure

(red region) also occurs there, the remaining part of the rod has only

elastic and thermal expansion deformations (green region).

region) appears first at the location where the sample is thin-

ner, and failure (red region) would also appear there, if a simple

stress failure criterion is added for illustration and for the sake

of the following Section.

AN EXPERIMENT

We have carried out the above stretching example not only in

simulation but also as an experiment on a plastic (“Docamid 6G-

H” polyamide) sample. In addition to measuring the extensions,

a thermal camera has measured the surface temperature of the

sample during the process. We can observe on the snapshots in

Fig. 3 the initial decrease of temperature and then its increase,

observable where plastic change has already started.
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Figure 3. Stretching a rod with slightly nonconstant cross section —

experiment. The outline (upper left figure) displays the two spots whose

temperature was not only recorded by the thermal camera but also nu-

merically displayed, together with the maximal temperature in the rect-

angle area. The subsequent five figures are snapshots taken by thermal

camera. The first shows the initial state, then the quasi-adiabatic cooling

is observable, then heat dissipation appears due to plastic change, then

the plastic change reaches the whole thinner part of the sample, and

finally failure occurs.

CONCLUSION

We intended to illustrate that our recent kinematic formu-

lation can be incorporated in mechanical and thermodynami-

cal theories, with thermal expansion and plastic processes de-

scribed naturally and realistically, even when considering only

simple constitutive choices and small deformations. Rheology

can also be added—when plasticity and thermal expansion are

also kept then interesting cross effects are expected to emerge,

offering new theoretical possibilities for explaining experimen-

tal observations.

The finite deformation version of the presented theory is also

possible, though some formulae become nontrivial due to the

fact that the multiplication of tensors is not commutative. This

work is in progress currently. Finally, we wish to strengthen the

connection between theory and experiment, evaluating quanti-

tatively the already performed experiments and to devise new

ones.
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[1] T. Fülöp and P. Ván, Kinematic Quantities of Finite Elastic

and Plastic Deformation, Math. Meth. Appl. Sci., vol. 35,

pp. 1825–1841, 2012.
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