
12th Joint European Thermodynamics Conference 
Brescia, July 1-5, 2013 

 

INTRODUCTION 

There are many previous works on Finite Time 

Thermodynamics (FTT), several of them focus on the steady-

state energetic properties of the systems. Nevertheless, it is 

worthwhile to consider the local stability of the system. 

Santillán et al [1] first studied the local stability of a Curzon-

Ahlborn-Novikov (CAN) engine working in a maximum-

power-like regime considering the heat resistance and the 

equal high and low temperature heat transfer coefficients with 

Newton’s heat transfer law. Chimal-Eguia et al. [2] analyzed 

the local stability of an endoreversible heat engine working in 

a maximum-power-like regime with Stefan-Boltzman law. 

Guzman-Vargas et al. [3] studied the effect of heat transfer 

law and heat transfer coefficients on the local stability of an 

endoreversible heat engine operating in a maximum-power-

like regime. Barranco-Jimenez et al [4] investigated the local 

stability of a thermo-economic model of a Novikov-Curzon-

Ahlborn heat engine. Páez-Hernandez et al. [5] studied the 

dynamic properties in an endoreversible Curzon-Ahlborn 

(CA) engine using a Van der Waals gas working substance at 

maximum power regime. Páez-Hernandez et al. [6] studied 

the Local stability analysis of a Curzon-Ahlborn engine 

considering the Van der Waals equation state in the maximum 

ecological regime. Chimal-Eguia et al. [7] analyzed the local 

stability of an endoreversible heat engine working in an 

ecological regime. Páez-Hernández et al [8] studied the 

dynamic robustness of a non-endoreversible engine working 

at maximum power output.  Sanchez-Salas et al. [9] studied 

the dynamic robustness of a non-endoreversible engine 

working in an ecological regime. Huang et al [10] studied the 

local analysis of an endoreversible heat pump operating at 

minimum input power for a given heating load with Newton’s 

heat transfer law. Huang [11] analyzed the local 

asymptotically stability of an irreversible heat pump subject to 

total thermal conductance constraint. Wu et al [12] studied the  

 

local stability of an endoreversible heat pump with Newton’s 

heat transfer law working at the maximum ecological 

function. 

TIME DELAYS 

 In real life situations when the value of a variable is 

modified, the effect in the dynamic response of the system is 

not observed immediately. A certain time must elapse until 

the system begins to respond or "feel" the effect of the 

changes made. Suppose we modify the concentration of a 

reactor feed. Our experience and common sense tell us that 

time passes until the variables that characterize the dynamic 

behavior of the reactor (e.g. concentration) begin to modify its 

value relative to their pre-change. These systems are known 

as dynamical systems. Delayed systems appear naturally in 

Medicine, Biology and Engineering. These systems have been 

studied before the last century. Studies in Medicine and 

Biology begin with Ross’ epidemiology models (1911) and 

others in the early twentieth century, which were studied by 

Lotka, Volterra and Kostitzin [13]. A distinctive feature of 

these systems is that their rate of evolution is described by 

differential equations that include information about the 

history of the system. The effects of delays are of great 

interest, since their presence may include complex behavior 

(oscillations, instability, bad system performance).  Páez-

Hernández et al [14] studied the effect time delays produced 

in a mathematical model for the stretch reflex regulatory 

pathway. Guzmán-Vargas et al [15] studied time-delay effects 

on dynamics of a two-actor conflict model. 

FIXED POINT AND LINEARIZED SYSTEM WITH 

DELAYS 

Consider a dynamic system which has a single variable 

with time delays  , 
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ABSTRACT 
In this work we analyze engine implicit time delays of an endoreversible Curzon-Ahlborn engine using a van der Waals gas 

working at maximum power regime, we obtain relaxation times, and system phase portrait. When comparing the phase portrait 

with an endoreversible Curzon-Ahlborn engine using a van de Waals gas working at maximum ecological regime, we observe 

that eigenvectors have a counter clockwise rotation, as can be seen in the corresponding phase portrait. We find that the total 

time delay does not destabilize the system steady-state, regardless of this length, and thus it does not seem to play a role in the 

dynamic-thermodynamic properties trade-off. This result is in accordance with previous studies of endoreversible and non-

endoreversible Curzon-Ahlborn engines. Finally we can conclude that it is a fact that the engine dynamic properties are 

different when the work regimes and working substance change.  
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where subscript   is a time delay variable. Following step by 

step Strogatz [16] to obtain a linear system,  

 ̇   (          ),  ̇   (       
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where   and   represent a small perturbation of the system 

and         is a fixed point, now we do a Taylor series 

expansion to Eq. (2) and we consider negligible the terms of 

two onward, and evaluate the steady-state and we obtain 
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Now we assume that   and   are of the form  
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where   is a complex number,    and    are constant. 

Substituting (5)-(8) in (3) and (4) leads to the following set 

of homogeneous linear system for   and   : 

            
                                          (9) 

   
       (    )    .                              (10) 

This system of equations has non-trivial solutions only if 

the determinant of the matrix of coefficients equals zero, i.e. 

      (    )     
   

       .                  (11)  

This equation is also called the transcendental 

characteristic equation, and can be written as 

               ,                                      (12) 

with z an eigenvalue, and      and      are polynomials of 

second and zero order, respectively. 

The solutions to this equation are not obvious because has 

an infinite number of roots [13]. One way to overcome this 

situation is to consider the fact a common effect of time 

delays to destabilize stable fixed points or to stabilize unstable 

fixed points by sustained oscillations. If we assume that 

(    ), and substitute in (12), we obtain a complex variable 

equation. 

                                                      (13) 

 

where      and      are second and first order polynomials, 

respectively. We observe that the right hand side of this 

equation represents the unitary circle whereas the left hand 

side describes a parabola. The intersection of these two curves 

could represent a change in the stability of the system. The 

analysis of intersection between the parabola and the unitary 

circle leads to the following classification: 

a. If the parabola does not intersect the unitary circle, and 

the system is stable to    , then the system is stable 

and independent of delay. 

b. If the system is stable for     and the parabola 

intersects the unit circle, then the system can be 

affected by delays. 

THE STEADY-STATE CURZON-AHLBORN ENGINE 

USING A VAN DER WAALS GAS AS WORKING 

SUBSTANCE  

   Consider the endoreversible CA heat engine (Figure 1). This 

engine works between the heat reservoirs T1 and T2 (T1  2). 

The working temperatures at steady state are  ̅  and  ̅(T1  ̅  
 ̅  T2). Heat flows from T1 to  ̅ and from  ̅ to T2 through 

thermal resistances, with a thermal conductance denoted by .  

 

Figure 1: Schematic representation of a CA engine which consists of 

a Carnot engine (Ca) and the heat reservoirs T1 and T2. The heat 

exchanges J1 and J2 take place through both thermal conductors with 

the same conductance. 

 

   Using the endoreversibility hypothesis, an engine working 

between the reservoir  ̅ and  ̅ acts like a Carnot engine, 

although it works in finite time cycles, i.e. 

 

  ̅  
 ̅

 ̅  ̅
 ̅                                                                (14)          (11) 

and 

  ̅  
 ̅

 ̅  ̅
 ̅                                                                (15)          (12) 

  ̅ and   ̅ are the steady-state heat flows from  ̅ to the engine, 

and from the engine to  ̅ respectively.  ̅ is the engine power 

output.  

   The CA engine works usually in steady state, so that the 

heat flux from    to  ̅ is   ̅, and the heat flux from  ̅ to T2 is 

  ̅, 

 

  ̅        ̅                                                          (16)         (13) 

and 

  ̅     ̅     .                                                         (17)         (14) 

From equations (14)–(17), and from the definition of 

efficiency given as, 
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it follows that 
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   The efficiency of a Curzon-Ahlborn engine working at 

maximum power output using a van der Waals gas as working 

substance    , was found by Ladino-Luna [17] and it is given 

as, 
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with:       ⁄ , and 
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where b is a constant which depends on the gas,   is the ratio 

of the constant-pressure and constant-volume heat capacities 

      ⁄ ,      and      are the subtended volumes 

maximum and minimum respectively by the gas in a cycle.              

Now if we consider  that b is smaller than       and     , 

table 13.1 [18], then the ratio                 ⁄  is 

approximately         ⁄ , this ratio is called volumetric 

compression ratio   , for Diesel cycle the typical values are 

12-15, table 10.1 [19], so we do the calculus using (22)  and 

obtain            , which shows that we can use for 

calculus purposes      , equation (22) gives more values 

to     , but do not have  physical meaning , in accordance 

with [20]. 

    So we use only the linear approximations of (21), and 

supposing a value      ,  and we obtain the approximate 

expression, 
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   In this approximation we observe a relation between 

Carnot’s efficiency (  ) and van der Waals’s efficiency (   ) 

at maximum power, which is        ⁄ . It is reasonable 

because     is smaller than   , so the efficiency of a CA 

engine working in the maximum power regime using a van 

der Waals gas working substance is given by (21), with 

      ⁄ . Now, substituting this efficiency (23), into 

equations (19) and (20) renders 
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and 
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   From (14), and (18)-(20) we can write the power output of 

the steady- state in terms of    and       and    and it 

becomes 

 ̅  
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   Solving   and   , from equations (19) and (20) results in 
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   Finally substituting (27) and (28) in (26) we obtain the 

power output in steady-state  ̅ as function of  ̅ and  ̅, 

 ̅   
   ̅  ̅ 

 ̅   ̅
.                                                           (29) 

 

LOCAL STABILITY OF AN ENDOREVERSIBLE 

CURZON-AHLBORN ENGINE 

 

   Following Santillán et al [1], a system of differential 

equations is constructed, which provides information about of 

the stability engine. Santillán et al. developed a system of 

coupled differential equations to model the rate of change of 

intermediate temperature.  

   Assuming that the temperatures x and y correspond to 

macroscopic objects with heat capacity C, the differential 

equations for x and y are given by [1] 
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[          ],                                            (31)        (28) 

   Both derivatives cancel when x, y, J1 and J2 take their steady 

state values. Under the endoreversibility assumption, the heat 

flux from x to the working fluid is J1 and the heat flux from 

the Carnot engine to y is J2, so J1 and J2 are given in terms of 

x and y, and the power output P as,  
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and 
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   It seems reasonable to assume that the power output 

produced by the CA engine is related to temperature x and y 

in the same way that the power output at steady state  ̅ 

depends on   ̅ and  ̅ in the maximum power regime (see 

equation (26)), i.e., 

  
       

    
.                                                              (34)          (31) 

   The substitution (32)-(34) in (30) and (31) leads to the 

following set of differential equations for temperatures x and 

y of a CA engine performing in maximum-power regime and 

using a van der Waals gas as working substance. 
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and 
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   To analyze the system stability near to the steady state, we 

proceed by following the steps described in section stability 

with  = 0. First we define 
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   The matrix   (
    
    

), A is called the jacobian matrix. 

Now using Eqs. (37) and (38), we obtain 
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with       ⁄ . 

 

   By substitution of (39)-(42) in Eq. (11) with    , we find 

that both eigenvalues     and     have real parts, then we can 

conclude that any perturbation decays exponentially with time 

and thus that steady-state is stable for every value of  , C and 

      ⁄   . The above permit us establish the relaxation 

times, in [5] was studied the dynamic properties for this 

engine and is shown that energetic properties of an 

endoreversible Curzon-Ahlborn engine using a Van der Waals 

gas working at maximum power output regime (MP) worsens 

as   decrease to zero, and there is an interval for the Curzon-

Ahlborn engine which has efficiency and power output 

subject to compromise with  , as it has been shown in [1,3,8]. 

In [6] was studied the dynamic properties for this engine and 

is shown that energetic properties of an endoreversible 

Curzon-Ahlborn engine using a van der Waals gas working at 

maximum ecological regime (ME). This engine has the same 

characteristic as the maximum power output regime, now our 

interest is show the behavior for both regimes; in Fig. 2 we 

compare the relaxation times for both regimes, we observe 

that relaxation times exhibit approximately the same stability 

interval. 

 

 

Fig. 2 Plots of relaxation times t1 and t2, in units of C/α, vs. τ 

   However when we compare the portrait phase for both 

maximum power output and maximum ecological regimes, 

there is a small difference between the eigenvectors, i.e., there 

is a rotation for both eigenvectors, this can see in the Fig.3. 

 

 

DYNAMIC EFFECTS OF TIME DELAYS 

 

   Consider again the systems of delay differential equations 

given by Eqs. (1) and (2), but now   
 

 
. They can rewritten 

as 
  

  
  (     ⁄ ) 

  

  
  (   ⁄   ) 

 

Figure 3. Phase portrait of a Curzon-Ahlborn engine working at two 

different regimes 

with   and   as defined in Eqs. (30) and (31). From the fixed 

points theory  with time delays, the time course of small 

perturbations from the steady state is determined; we can 

write Eq. (11) as 

      (    )       
     .                        (43) 

   The stability analysis of a dynamic system involving time 

delays can be quite complicated due to the fact that, in 

general, the characteristic equation has an infinite number of 

solutions. On the other hand, it is known that a common effect 

of time delays is to destabilize formerly stable steady states by 

inducing sustained oscillations. To test whether this happens, 

assume that   is imaginary        and substitute into the 

characteristic equation to obtain 

                    ,                             (44) 

with 

  
 

    
 ,     
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. 

   It follows form Eqs. (39)-(42) that        , while  

       . This further implies that constants A, B, and D are 

all positive. 

   The left-hand side of Eq. (44) determines the lower branch 

of a horizontal parabola in the complex plane. This parabola 

opens to the to the left and its vertex is located in the point 

     . On the other hand, the right-hand side of Eq. (44) 

determines a unitary circle in the complex plane. The points 

where these curves cross correspond to values of   and   at 

which sustained oscillations appear due to a destabilization of 

the steady state, or vice versa. If both curves never cross, the 

steady state cannot be destabilized by the total delay  , no 

matter how long it is. Let   and   real variables along the real 
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and the imaginary axes of the complex plane, respectively. In 

terms of these variables, the equation for the parabola can be 

written as 

    
 

   
                                                        (45) 

While the equation for the circle is 

       .                                                           (46) 

To find the points where both curves cross, solve for   in Eq. 

(45) and substitute into Eq. (46) to obtain 

   
  

 
  

     

 
  .                                          (47) 

   The solutions to this last equation give the real coordinates 

of the crossing points. The corresponding imaginary 

coordinates can then calculated as    √    . The 

solutions of Eq. (47) are 
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√      ,                                            (49) 

with      ⁄  and           ⁄ . From its definition 

and the fact that A and D are positive, L is also positive and so 

     . In Fig. 4, the plot of   ,    and  is shown. Notice 

that    and    there are no common points. Therefore, the 

parabola of Eq. (41) never crosses the unitary circle given by 

Eq. (45), because   ,   >  implies that  takes imaginary 

values  and the endoreversible Curzon-Ahlborn engine using a 

Van der Waals gas working at maximum power output regime 

cannot be destabilized by any time delay. In Fig.4 is shown 

this result, it is important to remark that there are no common 

points on both surfaces. 

 

 
Figure 4. Plot of (  1,  2), as given by Eqs. (48) and (49), vs. α 

and   , for an endoreversible Curzon-Ahlborn engine using a Van der 

Waals working at maximum power output regime. 

 

Analogously we can do the same calculus for an 

endoreversible Curzon-Ahlborn engine using a Van der Waals 

gas working at maximum ecological regime, and we find a 

similar behavior and this is shown in Fig. 5. 

NON-ENDOREVERSIBLE CURZON-AHLBORN 

ENGINE 

   Following Páez-Hernández et al. [8], we obtain the 

relaxation times, the phase portrait diagram and also 

investigate the effect of delays in time, for reasons of space, 

here we only show in Fig. 6 the behavior of the effects of 

delays for a non-endoreversible Curzon-Ahlborn engine using 

a Van der Waals gas working at maximum power output 

regime 

 
Figure 5. Plot of (  1,  2), as given by Eqs. (48) and (49), vs. α 

and   , for an endoreversible Curzon-Ahlborn engine using a Van der 

Waals working at maximum ecological regime. 

 

 

Figure 6. Plot of (  1,  2), as given by Eqs. (48) and (49), vs. α 

and   , for a non-endoreversible Curzon-Ahlborn engine using a Van 

der Waals working at maximum power output regime. 

 

CONCLUDING REMARKS 

 

   In this paper we have extended a previous work by R. Páez-

Hernández et al. [5,6] in which the local stability of an 

endoreversible Curzon-Ahlborn engine working in both 

maximum power output and maximum ecological regimes. 

Here, we have considered a Curzon-Ahlborn engine using a 

Van der Waals gas working at maximum power output 

regime, also we present the analysis to a non-endoreversible 

Curzon-Ahlborn in the maximum power regime, taking into 

account the engine inherent time delays.  

   Our results indicate that the only effect of different regimes 

is a rotation in the corresponding eigenvectors in the phase 

portrait. 

   Time delays are present in many systems subject to dynamic 

regulation. In the endoreversible and non-endoreversible 

Curzon-Ahlborn engine, the inherent time delays are not 

capable of destabilizing the steady state; thus, they not to play 

a role in the trade-off between energetic and dynamic 

properties. This does not have to be true for all energetic-

converting systems, though. For instance, time delays are 

essential to understand the origin of clonus (sustained 

oscillations in muscle contraction). 
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NOMENCLATURE  

Symbol Quantity              SI Unit 

b    constant which depend on the gas      (m
3
/kg mol) 

C          Heat capacity                                                (J/K)                             
 ̅         steady-state power output                         (W)                                           
t           time                                                                     (s)                                                      
 ̅          steady-state working hot temperature  
            of the Carnot cycle                                          (K)     

 ̅        steady-state working cool temperature  

      of the Carnot cycle                                      (K) 

α       thermal conductance                            (W/K·m) 

       small disturbances from the corresponding  

         fixed point values                                         (m) 

       small disturbances from the corresponding  

     fixed point values                                         (m) 

        eigenvalue 1                                                (Hz)                                                                            

        eigenvalue 2                                                (Hz) 

         time delays                                                    (s)                                                                                                                

  ̅       steady-state heat flow from hot  

          to the engine                                                (W) 

  ̅       steady-state heat flow from   

     the engine to cold                                         (W) 

        relaxation time 1                                            (s)                                                            

        relaxation time 2                                            (s)                                                         

        reservoir at temperature hot                          (K)                                                    

        reservoir at temperature cold                        (K)                                                

 ⃗       eigenvector corresponding to eigenvalue    (m) 

 ⃗       eigenvector corresponding to eigenvalue    (m) 

                      

      maximum subtended volume by  

          the gas in a cycle                             (m
3
/kg mol)           

      minimum subtended volumes by  

          the gas in a cycle                             (m
3
/kg mol) 

 

Dimensionless Quantities 

 

    the ratio of the constant-pressure and constant-volume 

 heat capacities 

 ̅    steady-state efficiency 

τ     ratio of the hot and cold temperatures 

    efficiency of a Curzon-Ahlborn engine working at     

   maximum power output using a van der Waals gas 

   as working substance     

A1   arbitrary constant 1 

A2   arbitrary constant 2 

B1   arbitrary constant 3 

B2   arbitrary constant 4 

rC   volumetric compression ratio 
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