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ABSTRACT
Free-energy calculation is one of the main topics in thermodynamics. However, biomolecules such as proteins have complicated
free energy surfaces with many local minima. Conventional molecular dynamics (MD) and Monte Carlo (MC) simulations in
physical ensembles, such as the canonical and isobaric-isothermal ensemble, tend to get trapped in these local-minimum states
and cannot give the correct free-energy difference between different-conformational states. In order to avoid this difficulty,
generalized-ensemble algorithms such as the multicanonical algorithm are frequently employed. However, because the multi-
canonical simulation is performed in a fixed volume, neither the pressure dependence nor temperature dependence at certain
pressure can be investigated as in experiments. To overcome this difficulty, the author recently proposed multibaric-multithermal
MD and MC algorithms. In this ensemble, two-dimensional random walks in the potential-energy space and in the volume space
are realized. In this paper, the multibaric-multithermal molecular dynamics algorithm is reviewed and application to a 10-residue
protein, chignolin is presented.

INTRODUCTION

Molecular dynamics (MD) simulation is a standard tool to
calculate free-energy landscape and to investigate the confor-
mational changes for biomolecules such as proteins at atomic
level. However, biomolecules have complicated free energy sur-
faces with many local minima. Thus, conventional MD simula-
tions in physical ensembles, such as the canonical [1; 2; 3] and
isobaric-isothermal [4] ensemble, tend to get trapped in these
local-minimum states. One of the powerful techniques to avoid
this difficulty is generalized-ensemble algorithms [5; 6; 7; 8; 9]
such as the multicanonical algorithm [10; 11; 12; 13]. In the
multicanonical ensemble, a free one-dimensional random walk
is realized in the potential-energy space and a simulation does
not get trapped in free-energy-minimum states.

However, because the multicanonical simulation is per-
formed in a fixed volume, neither the pressure dependence nor
temperature dependence at certain pressure can be investigated
as in experiments. To overcome this difficulty, the author have
proposed the multibaric-multithermal algorithm [14; 15; 16; 17;
18; 19; 20]. In this algorithm, two-dimensional random walks
are realized both in the potential-energy space and in the volume
space, so that the temperature and pressure dependence can be
discussed. This algorithm can be also used for Monte Carlo
(MC) simulations. In this paper, the multibaric-multithermal al-
gorithm is reviewed and applications of this algorithm to chig-
nolin in explicit water is presented.

METHOD

In the isobaric-isothermal ensemble [4], the distribution
PNPT(E,V) of potential energyE and volumeV is given by

PNPT(E,V) = n(E,V)e−β0H , (1)

wheren(E,V) is the density of states as a function ofE andV
andH is the “enthalpy” (without the kinetic energy contribu-
tions): H = E+P0V . Here,P0 is the pressure at which simu-
lations are performed. This ensemble has bell-shaped distribu-
tions both in the potential-energy space and in the volume space,
as shown in Fig. 1(a). In order to obtain the isobaric-isothermal
ensemble, the combination of the Nosé thermostat [1; 2] and the
Andersen barostat [4] is frequently employed.

In the multibaric-multithermal ensemble [14; 15; 16; 17;
18], every state is sampled with a weight factorWmbt(E,V) ≡
exp{−β0Hmbt(E,V)} so that a uniform distribution of bothE
andV, as shown in Fig. 1(b), may be obtained:

Pmbt(E,V) = n(E,V)Wmbt(E,V) = constant. (2)

Here,Wmbt(E,V) and Hmbt are referred to as the multibaric-
multithermal weight factor and the multibaric-multithermal en-
thalpy, respectively. The difference betweenHmbt and H is
written asδH(E,V): Hmbt(E,V) = H + δH(E,V) . The dif-
ferenceδH(E,V) is therefore characteristic of the multibaric-
multithermal simulation. The case ofδH(E,V) = 0 gives the
regular isobaric-isothermal ensemble.

The equations of motion in the multibaric-multithermal en-
semble based on the Nosé thermostat [1; 2] and the Andersen
barostat [4] are given by

ṙ i =
pi

mi
+

V̇
3V

r i , (3)

ṗi =

(
1+

∂δH
∂E

)
F i −

(
V̇
3V

+
ṡ
s

)
pi , (4)

V̇ = s
PV

W
, (5)
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Figure 1. Distributions P (E,V) of potential energy E and volume V of

an chignolin in explicit water (a) by the isobaric-isothermal MD simulation

at T = 298K and P= 0.1 MPa and (b) by the multibaric-multithermal

MD simulation.

ṖV = s

[
1

3V

{
N

∑
i=1

p2
i

mi
+

(
1+

∂δH
∂E

) N

∑
i=1

F i · r i

}

−
(

P0+
∂δH
∂V

)]
, (6)

ṡ= s
Ps

Q
, (7)

Ṗs =
N+M

∑
i=1

p2
i

mi
−gkBT0 , (8)

wherer i is the coordinate,pi is the momentum,s is the addi-
tional degree of freedom for the Nosé thermostat, the dot ( ˙ )
stands for the real time derivatived/dt, andF i stands for the
force acting on atomi. The variablesPV andPs are the conju-
gate momenta forV ands, respectively. The constantmi is the
mass of atomi. The constantsW andQ are the artificial “mass”
related toV ands, respectively. Performing the MD simulation
by the equations of motion, the multibaric-multithermal distri-
butionPmbt(E,V) in Eq. (2) is obtained.

After an optimal weight factorWmbt(E,V) is determined, for
example, by the iterations of short simulations [21; 22] or by
the Wang-Landau techniques [23], a long production run is per-
formed for data collection. The reweighting techniques [24]
are used for the results of the production run to calculate the
isobaric-isothermal-ensemble averages. The expectation value
of a physical quantityA at the desired temperatureT and pres-
sureP is given by

⟨A⟩NPT =
⟨A(r,V)W−1

mbt(E(r,V),V)e−β{E(r ,V)+PV}⟩mbt

⟨W−1
mbt(E(r,V),V)e−β{E(r ,V)+PV}⟩mbt

, (9)

where⟨· · ·⟩mbt is the multibaric-multithermal ensemble average.
Because of the random walks both in the potential-energy space
and in the volume space, physical quantities can be calculated
in wide ranges ofT andP.

In order to calculate free-energy landscape, we should cal-
culate first an unnormalized histogram as a function of reaction
coordinates(ξ1,ξ2, · · ·) by the reweighting techniques. In the
case of two reaction coordinates(ξ1,ξ2), it is given by

⟨N(ξ1,ξ2)⟩NVT

=
⟨N(ξ1(r),ξ2(r))W

−1
mbt(E(r,V),V)e−β{E(r ,V)+PV}⟩mbt

⟨W−1
mbt(E(r,V),V)e−β{E(r ,V)+PV}⟩mbt

.

(10)

Probability distributionP(ξ1,ξ2) is calculated by normalizing
⟨N(ξ1,ξ2)⟩NVT :

P(ξ1,ξ2) =
⟨N(ξ1,ξ2)⟩NVT∫

dξ1dξ2⟨N(ξ1,ξ2)⟩NVT
(11)

The free-energy landscape then can be calculated by

F(ξ1,ξ2) =−kBT logP(ξ1,ξ2) . (12)

APPLICATION TO CHIGNOLIN

Application to chignolin in explicit water solvent [25] is now
presented. Chignolin is a 10 residue protein (GYDPETGTWG)
of which the native state is aβ-hairpin structure [26]. The N and
C termini of the protein were left uncapped as in the experiment
by Honda et al. [26]. That is, the N terminus and C termi-
nus have a positive and negative electric charge, respectively.
The system is consisting of one chignolin molecule, 902 wa-
ter molecules, and two sodium ions Na+ as counter ions. The
initial values of the chignolin backbone dihedral angles were
φ = ψ = 180◦ except for proline. The initial dihedral-angle val-
ues of PRO4 were set toφ =−60◦ andψ = 180◦.

AMBER parm99SB force field [27] was used for the chig-
nolin molecule and the TIP3P [28] rigid-body model was used
for the water molecules. A cubic unit cell was employed with
periodic boundary conditions. The electrostatic potential was
calculated by the Ewald method. Cutoff distance wasrc = 12Å
for both electrostatic and Lennard-Jone potential. The combi-
nation [29] of the Nośe-Hoover thermostat [1; 2; 3], the Ander-
sen barostat [4], and the symplectic quaternion scheme [30; 31]
was used for the rigid-body water molecules. Reversible mul-
tiple time scale molecular dynamics techniques [32] were also
applied. The time step was taken to be∆t = 0.5 fs for the protein
atoms and∆t = 4.0 fs for the water molecules. Because the sym-
plectic rigid-body algorithm was used for the water molecules
here,∆t was able to be taken as long as 4.0 fs [29].

During this MD simulation, the root mean square deviation
(RMSD) decreased and increased repeatedly. It mean that fold-
ing and unfolding events occurred. the unfolding events oc-
curred four times.

Temperature and pressure dependences of the fraction of the
folded chignolin ffold are shown in Fig. 2. The fraction of the
folded protein ffold decreases as temperature and /or pressure
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Figure 2. (a) Temperature dependence of fraction of the folded protein

ffold at P= 0.1, 200, 400, and 600 MPa and (b) pressure dependence

of ffold at T = 300, 400, and 500 K obtained by the reweighting tech-

niques from the results of the multibaric-multithermal MD simulation.

increases. The partial molar enthalpy change∆H and the partial
molar volume change∆V on unfolding is calculated by

∆H = R

[
∂ log{ ffold/(1− ffold)}

∂(1/T)

]
P
, (13)

∆V = RT

[
∂ log{ ffold/(1− ffold)}

∂P

]
T
. (14)

Interpolatingor extrapolating the temperature dependence of
ffold, the derivatives in Eqs. (13) and (14) were calculated.
The partial molar enthalpy change∆H was determined that
∆H = 24.1±4.9 kJ/mol atP = 0.1 MPa, as listed in Table 1.
Honda et al. determined∆H by the CD spectroscopy and
NMR experiments and their data distribute between 25.9 kJ/mol
and 32.2 kJ/mol. The partial molar enthalpy change∆H by
the present multibaric-multithermal MD simulation is slightly
lower than the experimental data, but shows a reasonably good
agreement.

The partial molar volume change∆V was determined that
∆V = −5.6± 1.5 cm3/mol at T = 298 K, as listed in Ta-
ble 1. Imamura and Kato obtained∆V = −8.8 cm3/mol by
their Fourier transform infraredspectrometer (FT-IR) experi-
ments [33]. The absolute value of the present multibaric-
multithermal MD result is slightly lower than their experimental
data, but still agrees well.

The lower absolute values of∆H and∆V mean that chignolin

Table 1. Difference in the Gibbs free energy ∆G between the unfolded

state and the folded state, difference in the partial molar enthalpy ∆H
at P = 0.1 MPa, and difference in the partial molar volume ∆V at

T = 298 K calculated by the multibaric-multithermal (MUBATH) MD

simulation. Experimental data are taken from Refs. [26; 33].

Method ∆G/(kJ/mol) ∆H/(kJ/mol) ∆V/(cm3/mol)

MUBATH 3.5± 0.5 24.1± 4.9 -5.6± 1.5

Exp. 1.07 – 1.87 25.9 – 32.2 -8.8

(a) T=300K P=0.1MPa
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Figure 3. Potential of mean force (PMF) as a function of

r(ASP3O−GLY7N) and r(GLU5O−THR8N) (a) at T = 300K

and P= 0.1 MPa and (b) at T = 500K and P= 600MPa obtained by

the reweighting techniques from the results of the multibaric-multithermal

MD simulation.

does not unfold with the increasing temperature or pressure in
the MD simulation as fast as in the experiment. A possible rea-
son is that the Coulomb potential parameter or the electrostatic
charge in the classical force field is too large. Reducing the ab-
solute value of the electrostatic charge may evaluate the hydro-
gen bonds weaker so that the simulational temperature/pressure
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dependenceof ffold and∆G may agree better with the experi-
ment.

The present multibaric-multithermal MD simulation sam-
pled not only theβ-hairpin structure but also a 310-helix struc-
ture. Figure 3 shows potential of mean force as a function
of r(ASP3O−GLY7N) and r(GLU5O−THR8N), which are
the distance between ASP3O and GLY7N atoms and that be-
tween GLU5O and THR8N atoms, respectively. ASP3O and
GLY7N atoms make a hydrogen bond at theβ-hairpin struc-
ture and GLU5O and THR8N atoms make a hydrogen bond
at the 310-helix structure. The potential of mean force has
a global minimum state atr(ASP3O−GLY7N) = 3.0 Å and
r(GLU5O−THR8N) =7.8 Å at T = 300 K andP= 0.1 MPa,
as shown in Fig. 3(a). This state is the native state, at which
the chignolin folds into theβ-hairpin structure. There also ex-
ists other states, which correspond to unfolded states. We can
see blue and green distribution in a wide area atT = 500 K and
P = 600 MPa, which means that the unfolded states increase,
as shown in Fig. 3(b). There are several local-minimum free-
energy states besides the global-minimum state. The state E is
not a local-minimum states but a transition state between the
states B and F or the states D and C.

Typical conformations obtained by the multibaric-
multithermal MD simulation at these states are illustrated
in Fig. 4. At the global-minimum state A, chignolin forms
the nativeβ-hairpin structure. The local-minimum state B is
obtained from the state A by bending the C terminus of the
β-hairpin structure. The local-minimum state C is obtained
from either state A or state B by bending both N and C terminus
of theβ-hairpin structure. This conformation looks like a Greek
letter “Ω”. If the N terminus of the state B does not bent like
the state C, but make a turn, anα-helix structure is obtained at
the state D. The transition sate E is obtained by breaking some
of the hydrogen bonds of theα-helix structure at the state D. It
can be obtained also from the state B or C. The local-minimum
state F, a 310-helix structure, is obtained from the state E by
forming hydrogen bonds in a different way from theα-helix
structure at the state D. This 310-helix structure can also be
attained from theΩ-like structure at the state C by making
turn structures. Finally an extended structure is obtained at the
state G if all hydrogen bonds are broken from the state C or F.
Following these pathways, the nativeβ-hairpin structure at the
state A unfolds to the extended structure at the state G. When
chignolin folds, it follows the reverse process to the native
structure.

CONCLUSION

The multibaric-multithermal ensemble algorithm is re-
viewed. The multibaric-multithermal MD or MC simulation
performs a two-dimensional random walk both in the potential-
energy space and in the volume space so that one can obtain
various isobaric-isothermal ensemble averages at different tem-
peratures and pressures from only one simulation run. The
multibaric-multithermal algorithm will thus be a powerful sim-
ulation technique to study the temperature and pressure depen-
dences of biomolecules like proteins.
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