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ABSTRACT
The formation of nanoscale droplets/bubbles from a metastable bulk phase is still connected to many unresolved scientific ques-
tions. In this work, we analyze the stability of multicomponent liquid droplets and bubbles in closed Ntot,i, Vtot, T systems (total
mass of components, total volume and temperature). To investigate this problem, square gradient theory combined with an accu-
rate equation of state is used. To give further insight into how the state of the fluid affects the formation of droplets and bubbles,
we compare the results from the square gradient model to a modified bubble/drop model which gives a macroscopic capillary
description of the system. We discuss under which conditions the square gradient model or the modified bubble models predict
a finite threshold size for bubbles and their stability in terms of the reversible work of bubble formation. The work reveals a
metastable region close to the minimal bubble radius. We find that the liquid compressibility is crucial for the existence of this
minimum threshold size for bubble formation in Ntot,i, Vtot, T systems.

INTRODUCTION

Small systems receive now increasing attention, not only in
academia, but also in industry. Fabrication of novel nano mate-
rials for instance, requires insight into phase transitions such as
condensation, evaporation and crystallization at the nanoscale
[1; 2]. The first and important step in a typical phase transi-
tion is the formation of a nucleus from a metastable bulk phase.
Recent experimental developments have made it possible to ob-
serve formation of tiny droplets and crystals consisting of only a
few molecules. The experiments have evidenced the limitations
of current theories, including classical nucleation theory, to de-
scribe some of the observations [3]. These systems challenge
our current understanding and they motivate the development
and use of new tools. In this work, we will give insight into the
stability of multicomponent bubbles/droplets in systems with
constant Ntot,i, Vtot, T (total mass of components, total volume
and temperature). Special attention will be given to the con-
ditions under which very small stable or critical-sized bubbles
cannot be formed [4].

For nanoscale bubbles or droplets, the thickness of their in-
terfaces can be of the same order of magnitude as their size.
Models which do not specifically take into account surface gra-
dients, such as classical nucleation theory and discontinuous
excess formulations, might then be insufficient. We will thus
use a square gradient theory for curved systems coupled with a
qualitatively accurate cubic equation of state [5; 6] to investi-
gate the system. In the square gradient theory, the Helmholtz
energy density has contributions up to second order in the gra-
dients of the densities. The functional minimization of the total
Helmholtz energy keeping Ntot,i and T constant, gives the equi-
librium density and concentration distributions in the canonical
ensemble [7]. The advantage of this approach is that continu-
ous profiles across the interface can be found. Square gradient
theory combined with an accurate equation of state and suitable
models for the pure components has been able to reproduce ex-

perimental results for the surface tension of planar interfaces of
multicomponent mixtures [8]. We will use it here to describe the
formation of bubbles and liquid droplets. To give further insight
into how the size of the system and the composition of the fluid
affect the formation of small bubbles and drops, we will com-
pare the results from the square gradient model to a modified
bubble model which gives a macroscopic capillary description
for different models of the bulk phases [9]. While previous work
on this topic has focused on single-component systems [4], we
formulate our problem for several components. In addition, we
show that a thermodynamic stability analysis is crucial to cap-
ture the behavior of the system near the threshold size, an asset
which was not discussed in detail earlier [4].

The paper is structured as follows. First, the theoretical
framework used will be presented. A short introduction will
be given to the use of a quantitatively accurate cubic equation of
state coupled with either the square gradient theory (mesoscopic
approach), or the capillary approach (macroscopic approach) to
describe the formation of bubbles and liquid droplets of inter-
est for nucleation processes. We will then show that the capil-
lary approach is able to reproduce results from the square gradi-
ent theory remarkably well for a binary mixture, using hexane-
cyclohexane as an example. This observation is used to explain
the behavior of very small bubbles, based on a thermodynamic
stability analysis. Both approaches will be used to analyze the
stability of small bubbles and the existence of a threshold size
below which no stable or critical-sized bubbles can be formed.
Finally, some concluding remarks are provided.

THEORY

We consider a spherical container with volume, Vtot, temper-
ature T and a fixed number of molecules of each component i,
Ntot,i. We assume that a perfectly spherical bubble or droplet is
placed at the center of the container. At equilibrium, we know
that the state of this system should be at a global minimum in the
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total Helmholtz energy. Both the square gradient model and the
capillary approach rely on an equation of state which is capable
of capturing the thermodynamic behavior of both the liquid and
the vapor at different compositions. In this work, we will use
the cubic equation of state, Peng Robinson, which has proven
to give accurate predictions of the density in both gas and liq-
uid regions for non-polar mixtures. In addition, it captures the
vapor-liquid equilibrium behavior of multicomponent mixtures,
if proper interaction parameters are used, as demonstrated for
CO2-rich fluids by several authors [5; 6]. In general, most two-
parameter cubic equation of state may be represented as:

P =
RgT
v−b

+
aα(T )

(v−bm1)(v−bm2)
(1)

Here, P is the pressure, Rg the universal gas constant, v the mo-
lar volume, and a, α, and b are parameters of the equation of
state. The constants m1 and m2 represent the biggest difference
between the various two-parameter cubic equations of state. For
the Peng-Robinson equation of state, m = −1±

√
2. Provided

that m1 6= m2, Eq. 1 can be integrated with respect to the vol-
ume to give the residual Helmholtz energy (i.e. the difference
between the Helmholtz energy of the homogeneous phase and
that of an ideal gas) :

Feos,res

RgT
= N ln

(
v

v−b

)
− aα(T )

(m1−m2)bRgT
ln
(

v−m2b
v−m1b

)
(2)

This expression can be differentiated to give the first and sec-
ond order derivatives of the Helmholtz energy, which are the
building blocks for residuals of the other thermodynamic vari-
ables such as the chemical potentials, the entropy, the enthalpy
and the internal energy. To obtain a complete thermodynamic
description of the system, the residual values must be linked
to the ideal gas state. Accurate heat capacity polynomials
for each component, standard values for enthalpy of formation
and entropy have been used to create a thermodynamic frame-
work which gives values for the state functions that follow SI-
standards. To verify that the framework is indeed thermody-
namically consistent and correctly implemented, a comprehen-
sive consistency check as described by Michelsen and Mollerup
was applied [10].

The square gradient model

A rigorous introduction to the square gradient model both
at equilibrium and outside equilibrium has been given by
Glavatskiy [7]. The functional minimization of the total
Helmholtz energy of the square gradient model keeping the total
mass of each component constant gives the equilibrium molar
concentration distributions, ci, in the canonical ensemble. The
local specific Helmholtz energy is given by:

Fsgm = Feos +
Nc

∑
i, j

κi j

ci
∇ci ·∇c j (3)

Where the subscript "sgm" refers to the square gradient model.
Assuming that the square gradient parameters κi j are constant
and symmetrical, the chemical potentials of the multicomponent

square gradient model are:

µsgm,k = µeos,k−
Nc

∑
i=1

κik∇ ·∇ci

= µeos,k−
Nc

∑
i=1

κik

(
2
r

∂ci

∂r
+

∂2ci

∂r2

) (4)

Here, the second line is a simplified expression valid for a sys-
tem with spherical symmetry around the center, Nc is the num-
ber of components and r is the distance from the center. This
can be rewritten in matrix form:

Mκ∇ ·∇c = µµµeos−µµµsgm,k (5)

The matrix Mκ is such that each index (i, j) equals κi j. Bold face
variables refer to tensors of rank > 0. If the mixing rule for the
square gradient constants is defined according to the most com-
mon expression κi j =

√
κiκ j, the matrix is singular with row

rank 1, since row i equals row j times
√

κi/κ j. This allows us
to define the variables from the multicomponent square gradi-
ent model using the structure parameters κ, εi and q. We then
define the following variables:

κ = κs (6)

εi =

√
κi

κ
(7)

q =
Nc

∑
i=1

εici (8)

We choose the component with subscript s, as the one with the
largest Ntot,i. Moreover, by introducing the definitions of κ, ε

and q in Eq. 5 one obtains the following system of partial dif-
ferential equations:

µeos,k−µsgm,k = κεk ∇ ·∇q (9)

Since the coefficient matrix Mκ has row rank 1, the system of
differential equations above can be reduced to one second order
differential equations and (Nc-1) algebraic equations:

(
µµµeos−µµµsgm

)
− εεε
(
µeos,s−µsgm,s

)
= 0 (10)

In terms of the new order parameter, q, the state functions and
pressures can be represented as follows:

Fsgm = Feos +
κ

2c
(∇q)2 (11)

Usgm =Ueos +
κ

2c
(∇q)2 (12)

Ssgm = Seos (13)

Hsgm = Heos−
κq
c

∇
2q (14)

Gsgm = Geos−
κq
c

∇
2q (15)

Psgm = Psgm,‖ = Peos−
1
2

κ(∇q)2−κq∇
2q (16)

Psgm,⊥ = Peos +
1
2

κ(∇q)2−κq∇
2q (17)
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Details in derivations of the state functions will not be pro-
vided in this paper. A more detailed discussion of for instance
the parallel and perpendicular pressures can be found in [7]. In
addition to the second order partial differential equation, Eq. 9,
which can be represented as two first order differential equa-
tions, the cumulative mass, Ntot,i (r)=4π

∫ r
0 r2cidr, is used as ad-

ditional variable, satisfying:

∂Ntot,i

∂r
= 4πr2ci (18)

The combined system of differential and algebraic equations
was solved using the "bvp4c" solver in Matlab, coupled with a
multidimensional Newton-Raphson approach to solve the sys-
tem of algebraic equations at each iteration. The Jacobian ma-
trix of the Newton-Raphson approach was constructed based on
the Hessian matrix of the Helmholtz energy. In addition to the
temperature and the total volume, the following (2+Nc) bound-
ary conditions are necessary to fully specify the boundary value
problem:

∂q
∂r

∣∣∣∣
r=Rtot

=
∂q
∂r

∣∣∣∣
r=0

= 0 (19)

Ntot,i
∣∣
r=Rtot

= Ntot,i (20)

The capillary model

Based on previous work on small bubbles and droplets de-
scribed in Refs. [9; 11] we define a modified bubble/droplet
model, also called the capillary model, to be able to compare
the square gradient model to a macroscopic approach. Assum-
ing that the bubble/droplet and the exterior both have homoge-
neous thermodynamic properties separated by a discontinuous
interface at the radius, R, the changes in the Helmholtz energies
of the gas and the liquid phases are:

dFg = −PgdVg +
Nc

∑
i=1

µg,idNg,i (21)

dFl = −PldVl +
Nc

∑
i=1

µl,idNl,i +σdΩ (22)

Here, the surface has been assigned to the liquid phase. In ad-
dition, the total number of moles of each component and the
total volume are constant. This means that dVl =−dVg and that
dNg,i = −dNl,i. We will use the subscript "n" to denote both a
liquid droplet and a bubble at the center of the container, and
"e" for the exterior. Assuming that the bubbles/droplets are per-
fectly spherical, dΩ = 2dVn/R, is the link between the surface
area, Ω and their radius. The change in the Helmholtz energy
valid for both the liquid droplet and the bubble is then:

dFsys =−
(

Pn−Pe−
2σ

R

)
dVn +

Nc

∑
i=1

(µn,i−µe,i)dNn,i (23)

Equilibrium at constant mole numbers and volume is character-
ized by a global minimum in the Helmholtz energy, at which
a necessary condition is dFsys = 0. This leads to equality of

the chemical potentials of both phases and the famous Laplace
relation:

Pn−Pe =
2σ

R
(24)

The Laplace relation and equality of the chemical potentials are
necessary conditions for a minimum, but maxima and saddle
points satisfy the same conditions, since they are also extrema
of the Helmholtz energy of the system. We have to investi-
gate the second derivative matrix, H, namely the Hessian of the
Helmholtz energy to resolve whether the solution is thermody-
namically stable, i.e. a minimum. A minimum is characterized
by a positive definite Hessian matrix (positive eigenvalues), a
maximum by a negative definite matrix (negative eigenvalues)
and a saddle point is characterized by a non-singular Hessian
matrix which is neither positive nor negative definite. A singular
Hessian means that higher derivatives have to be investigated.
The component mass balances for the system give additional
algebraic equations to be satisfied:

4π

3
(
cn,iR3 + ce,i(R3

tot −R3))
)
= Ntot,i (25)

Equality of the chemical potential for each component
through the system, together with the mass balances and the
Laplace equation gives a total of 2Nc+1 equations, which fully
specify the composition in the interior and exterior of the bub-
ble/droplet together with the unknown radius. We will investi-
gate two different models in the capillary approach:

Capillary Model 1: Here, we assume that the liquid is com-
pressible and its pressure and volume are given by the cubic
equation of state.

Capillary Model 2: In this approach, we assume that the liquid
is incompressible and behaves as an ideal mixture. The gas
is ideal.

For an incompressible ideal mixture, the chemical potential
of component i is given by:

µi(T,P) = µi(T,Pi,sat)+RT lnxi + vi,sat (P−Pi,sat) (26)

Here, subscript "sat" refers to a saturated quantity, xi is the mole
fraction, and vi is the partial molar volume. The two different
capillary models will be used to investigate the role of com-
pressibility of the liquid in the stability of bubbles in a multi-
component system.

RESULTS AND DISCUSSION

Results are presented for the binary system, hexane-
cyclohexane, since it has been a popular mixture in the litera-
ture [7; 12]. Parameters used in the models can be found in Tab.
1. Here, the square gradient parameters, κ1 and κ2, were chosen
such that they reproduce exactly the surface tension reported for
the single-component systems hexane and cyclohexane at 300 K
[13]. The surface tension used in the capillary models, reported
in Tab. 1, is the one predicted by the square gradient model for
a planar surface. The overall composition for the simulations
was constant, and close to the liquid phase composition. It was
thus not necessary to consider a composition dependent surface
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tension in the capillary models. We will first show how the cap-
illary models compare with the square gradient model in terms
of quantitative results for key-parameters, such as composition
and pressure. Given that the surface tension is calculated by the
excess of the parallel pressure in the square gradient model, both
capillary models reproduce well results from the square gradient
model for small bubbles and droplets (Fig. 1. and 2) From the

Figure 1. Bubble; mole fraction of hexane, predicted by the square gra-
dient model (solid line), Capillary Model 1 (red dashed line) and Capillary
Model 2 (blue dash-dot line)

Figure 2. Droplet; Mole fraction of hexane, predicted by the square gra-
dient model (solid line), Capillary Model 1 (red dashed line) and Capillary
Model 2 (blue dash-dot line)

figures, one can see that the thickness of the surface, coarsely
defined as the zone where the composition deviates from those
of the two homogeneous phases, is significant compared to the

Table 1. Data used in the simulations. Component 1 is hexane, com-
ponent 2 is cyclohexane. Surface tension is calculated by the square
gradient model for a flat surface, for the mixture at the temperature and
composition considered

Variable Value

Temperature 330 K

κ1 4.2 10−13 Jm5/kmol2

κ2 3.4 10−13 Jm5/kmol2

Mole fractions 0.5

Surface tension 0.162 N/m

Container radius 38 nm

radius. Even if the capillary models are obviously not capable
of reproducing the behavior of the square gradient model at the
surface, the compositions, pressures and densities in the homo-
geneous regions are reproduced well, both for the single com-
ponent systems, and for the binary system. This is surprising
since the excess of mass of both components is 0 in the cap-
illary models, when it is clearly different from 0 in the square
gradient model. The location of the equimolar surface (over-
all density) in the square gradient model gives the radius of the
bubble/droplet. The radii predicted by the capillary models de-
viate from this by less than one percent. The difference between
the gas and the liquid pressure in the two cases, also known as
the Laplace pressure, is even less. These observations are true,
even if the liquid is assumed to be incompressible. This shows
that a capillary model can be used as a tool to understand the
behavior of the more detailed square gradient model, and to re-
veal the behavior and stability of bubbles and droplets at small
sizes, as we shall see.

The minimal bubble radius

In this section, we discuss how assumptions about the liquid-
phase will affect the smallest possible bubble-size in a system
in the canonical ensemble. We also discuss the stability of the
different extrema of the Helmholtz energy in terms of the Hes-
sian and of the work of formation. The difference in Helmholtz
energy between a system with a bubble or a droplet and a super-
saturated gas or undersaturated liquid is known as the reversible
work of formation, ∆W [9; 14]. If this quantity is positive, it
indicates that the bubble is unstable or metastable with respect
to the homogeneous liquid solution. In particular, one can show
that there exists a region where a bubble is metastable, which
means that the total Helmholtz energy of the system is at a local
minimum, but ∆W is positive. We define the minimal radius of
a bubble as the smallest radius for which it will form sponta-
neously, i.e. the state where ∆W = 0, dFsys=0 and Fsys is con-
vex (positive eigenvalues of the Hessian matrix). Fig 3 shows
how the radii corresponding to the extrema of the Helmholtz
energy of the system change with the scaled total mass. The
reference point for mass is the mass corresponding to the ho-
mogeneous liquid at the equilibrium density. It is evident that
with a specified total mass in the system, Capillary model 1 pre-
dicts two possible bubble radii, one large and one small, both
representing extrema of the Helmholtz energy in the capillary
models. The radii of the large bubbles in both capillary models
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Figure 3. The square gradient model (black solid line) compared with
Capillary Model 1 in the stable (dashed line) and the unstable (solid line)
region, and Capillary Model 2 (dash-dot lines) for two component bub-
bles at 330 K.

are almost identical to the radii predicted by the square gradi-
ent model. In fact, they are so similar that they can hardly be
distinguished from each other in Fig. 3. Since we have two
components in this system, there are three possible eigenval-
ues of the Hessian, associated with the number of moles of the
components and the volume of the bubble. Fig. 4 shows that
the large bubbles give only positive eigenvalues of the Hessian,
which proves that these solutions are minima, and locally stable
bubbles. The small bubbles (dot-dashed lines) have one nega-
tive and two positive eigenvalues. This means that these solu-
tions are unstable saddle-points of the Helmholtz energy, corre-
sponding to the critical bubble of interest for nucleation. The
same behavior was observed for the single-component systems,
hexane and cyclohexane (not shown here).

We would like to give some attention to the region close to
where the stable and unstable solutions of Capillary Model 1
merge. From Fig. 5 we observe that there exists locally sta-
ble minima of the Helmholtz energy of the bubbles, where it is
energetically favorable for the system to have a homogeneous
density and no bubble. We make this observation for both Cap-
illary Model 1 and the square gradient model, and refer to this
region as metastable. The minimal radius for a stable bubble is
reached at 8.4 nm, but it is actually possible to have a metastable
bubble down to 6.5 nm in this system (see Fig. 3). The mini-
mal stable radius is found by identifying the radius at which
∆W = 0, and the minimal metastable radius is found by locat-
ing the point where the smallest eigenvalue is close to zero. We
have done the same analysis for the single-components, hex-
ane and cyclohexane and found the same behavior. Metastable
behavior can also be observed for hexane-cyclohexane droplets
near the minimum density, as already discussed in Ref. [11].
These observations show that one should be careful to distin-
guish between metastable and unstable bubbles, since they are
all extremal states of the total Helmholtz energy.

Another interesting observation is that Capillary Model 2,
where the liquid surrounding the bubble is incompressible, has
only one possible bubble solution at a specified total mass of

Figure 4. The smallest eigenvalue of the hessian, Hm,n, in the Capil-
lary Model 1 describing two component bubbles at 330 K, for the stable
(dashed line), the unstable (solid line) and the metastable region (dash-
dot line). The solid line corresponds to small bubbles, and the upper line
is the large bubbles.

Figure 5. The reversible work of formation of Capillary Model 1 for two
component bubbles at 330 K for the stable (dashed line), the unstable
(solid line) and the metastable region (dash-dot line)

the system (Fig. 3). This means that assumptions about the
compressibility of the liquid will have a large impact on esti-
mates of minimal radii. In the limiting case of an incompress-
ible liquid, there is no minimal radius of the bubble, but when
the liquid is compressible there is a minimal radius. We can ad-
dress the stability of Capillary Model 2, through evaluation of
∆W , with homogeneous ideal gas as the only possible reference
state. Then the bubbles are always stable. A more detailed anal-
ysis is needed to see if the minimal radius decreases monotoni-
cally with the compressibility. For small drops, the assumption
of an incompressible liquid did not change the minimal radius
of the drop to a significant extent (not shown).
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CONCLUSION

In this paper, we have investigated how the formation of
nanoscale bubbles are limited by a minimal size in systems with
constant Ntot,i, Vtot, T (total mass of components, total volume
and temperature). We used the square gradient model for curved
systems combined with the cubic equation of state, Peng Robin-
son, to analyze the system from a mesoscopic point of view, and
compared the results to those obtained from the capillary model,
which addresses the problem from a macroscopic point of view.
For the hexane-cyclohexane mixture, we observed that the cap-
illary model was able to reproduce the results from the square
gradient model in the homogeneous regions well, if the value
for the surface tension obtained from the square gradient model
was used. The minimal radius for a stable bubble in a 38 nm
container in this binary system was found to be 8.4 nm, but a
thermodynamic stability analysis showed that it was possible to
have metastable bubbles down to 6.5 nm. No threshold radius,
and only one possible bubble solution corresponding to a stable
bubble was found using the capillary model with the liquid as-
sumed to be incompressible. The assumption of incompressible
liquid had little effect on the minimal droplet radius. This indi-
cates that a more detailed analysis should be done regarding the
role of the compressibility in determining the stability and size
of nano bubbles in binary systems.
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NOMENCLATURE

α Parameter in EoS
a Parameter in EoS [Pam6]
b Parameter in EoS [m3/mol]
c Concentration [mol/m3]
ccc Concentration vector [mol/m3]
ε Structure parameter
F Helmholtz energy [J/mol]
H Hessian matrix of Helmholtz energy
κ Square gradient parameter [Jm5/mol2]
MMM Matrix with kappas [Jm5/mol2]
m Constants in EoS
µ Chemical potential [J/mol]
N Number of moles, capillary model [mol]
nnn Composition vector [mol]
ni Moles of component i [mol]
Ω Surface area [m2]
P Pressure [Pa]
q Order parameter
r Radial position in container [m]
σ Surface tension [N/m]
R Radius bubble/droplet [m]
Rtot Radius of container [m]
Rg Universal gas constant [J/K mol]
U Internal energy [J/mol]
v Molar volume [m3/mol]
V Volume [m3]
xi Mole fractions
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