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ABSTRACT
We study the motion of charged and neutral tracers, in an electrolyte embedded in a varying section channel. Making use of
systematic approximations, we map the convection diffusion equation governing the motion of tracers density in an effective 1D
equation describing the dynamic along the channel where its varying-section is encoded as an effective entropic potential. This
simplified approach allows us to characterize tracer diffusion in semi-confined environment by measuring its mean first passage
time (MFPT). We disentangle the MFPT dependence upon channel geometry, electrolyte properties and tracers charge even at
equilibrium. Such behavior can be exploited in different biological as well as synthetic situation whenever relevant phenomena
can be triggered by the presence pf few particles.

INTRODUCTION

The motion of charged tracers in an electrolyte has become a
matter of interest due to its implication in both biological situa-
tions as well in the development of micro- nano-fluidic devices.
In many cases tracers move in an electrolyte that is embedded
in a channel or in a porous media. Due to the interaction with
the electrolyte, the walls of the channel or the porous media ac-
cumulate net charge. Hence a net, screened, electrostatic field
develops inside the channel. This feature is at the basis of phe-
nomena such as electro-osmosis and it has been exploited for
micro- nano-pumping. The currents in these devices generally
relies on the control of some external force as hydrostatic or
electrostatic fields. Tuning the external forcing leads to the con-
trol of particle currents as it happens, e.g. in sodium-potassium
pumping in neurons.

An alternative route to current control relies on the geomet-
rical confinement provided by the channel itself. It has been
shown [1],[2] that the rectification provided by local variation in
channel section can strongly affect particle transport. Moreover,
the geometrically-induced current control is affected by the in-
homogeneous distribution of particles along the radial direc-
tion [1]. This is the case of neutral tracers under an external field
as gravity, or of charged tracers embedded in an electrolyte con-
fined in charged-wall channel. Recently different groups [3], [4]
have characterized the flow in varying-section channels when
the electrostatic field generated by the charge channel walls is
characterized by a screening (Debye) length,k−1, that is van-
ishing small compared to the channel half-amplitude,h(x).

However, the regime wherek−1 is comparable to the chan-
nel bottleneck leads to a competition between electrostatic driv-
ing and geometric confinement and can lead to new dynamic
scenarios where channel modulation plays a relevant role in
charged tracer transport. Such regime has already shown in-
teresting features as current inversion and negative mobility for
forced electrolytes [5].

In this piece of work we show that, even at equilibrium, a sig-
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Figure 1. Electrostatic field inside a varying-section channel whose

bottleneck amplitude h0−h1 is comparable with the Debye double layer

thickness k−1.

nature of the interplay between the local rectification provided
by the varying-section channel and the inhomogeneous distribu-
tion of charged tracers, provided by the transverse electrostatic
field, can be read out from the tracers mean first passage time
(MFPT) along the channel. Our results show a remarkable de-
pendence of the MFPT on particle charge as well as on chan-
nel corrugation. For positively charged channel walls, positive
(negative) tracers are depleted (attracted) towards the channel
walls and their MFPT is enlarged (reduced) respectively. We
expect such features to be relevant for several biological sit-
uations where channel walls are made by bilipidic membrane
while the cytoplasm or physiologic solution particles are trans-
ported is rich in salt. In the latter situation the MFPT is a key
quantity since cell fate might be determined by the recognition
of, low concentrated, receptors. On the other hand in synthetic
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situations such as nuclear waste containers or pattern forming
system, a charge-dependence of the MFPT can lead to enlarge-
ment of the half-life of the former as well to, transitory, pattern
formation/deformation for the latter.

To capture the main features of such an interplay between
the geometrically induced local rectification provided by the
varying-section channel and the electrostatic field we study a
z− z electrolyte embedded in a conducting channel (similar re-
sults have been obtained for an insulating channel). To keep an
analytical insight we assume a highly diluted ion concentration
and a smallζ potential on the channel walls, i.e.βeζ ≪ 1 where
β−1 = kbT is the inverse temperature (beingkB the Boltzmann
constant) ande the elementary charge. This choice keeps the
electrostatic field inside the channel in the linear regime hence
allowing for a Debye-Huckel approximation to the electrostat-
ics inside the channel. In order to gain insight in the properties
of the MFPT of charged tracers and the which are the most rel-
evant parameters determining their dynamic, we will assume
that the channel amplitude,h(x), varies slowly, i.e.∂xh(x) ≪ 1.
Such assumption allows for a projection of the 2D−3D convec-
tion diffusion equation to an effective 1Dequation, where the
varying-section of the channel will enter as an entropic effec-
tive potential.This approximation, called Fick-Jacobs, has been
used and validated in many different scenarios [6], [1], [7].

The structure of the text is the following: in section II we
will derive the Fick-Jacobs equation for charged tracers moving
in a varying-section channel, in section III we will present our
results while in section IV we will summarize our conclusions.

THEORETICAL FRAMEWORK: EQUILIBRIUM

The motion of suspension of charged particles is character-
ized by a convection-diffusion equation, that in the overdamped
regime, reads:

∂tP(x,y, t) = Dβ∇ · (P(x,y, t)∇U(x,y))+D∇2P(x,y, t) (1)

whereD is the diffusion coefficient andU(x,y) is the total con-
servative potential acting on the particles. When particles are
embedded in a confined region as is the case for tracers mov-
ing across a channel, the boundary condition of eq. 1 along
the channel longitudinal axis will vary according to its chan-
nel amplitude. If the channel section varies only along thex-
direction and it is constant inz, the free space accessible to the
center of mass of a point-like particle is 2h(x)Lz, beingh(x) the
half-width of the channel along they-direction andLz the width
along thez-direction. For such a situation, we encode the pres-
ence of the channel and the electrostatic potential in the overall
potentialU(x,y,z) defined as:

U(x,y,z) = U(x+L,y,z)

U(x,y,z) = ψ(x,y), |y| ≤ h(x)& |z| ≤ Lz/2 (2)

U(x,y,z) = ∞, |y| > h(x)or |z| > Lz/2

that is periodic along the longitudinal direction,x, and confines
the particles inside the channel.

In order to find the electrostatic potential,ψ(x,y), inside the
channel, we should solve the, 2D, Poisson equation:

∂2
xψ(x,y)+∂2

yψ(x,y) = −
ρq(x,y)

ε
(3)
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Figure 2. Debye double layer inside a varying-section channel. The

Debye length k−1
0 = λ0 is shown as well as the approximated Debye

length k−1 = λ.

with the boundary condition given by eq. 3, beingρq =
ρ0exp(−βzeψ(x,y)) the, equilibrium, charge density inside the
channel in the absence of tracers. Assuming smoothly-varying
channel walls,∂xh ≪ 1, we can take advantage of the lubrica-
tion approximation,∂2

xψ(x,y) ≪ ∂2
yψ(x,y). In this way we can

reduce eq. 3 to a 1Dequation for the potentialψ(x,y). Such
an approximation introduces an error in the electrostatic field
that can be estimated. In fact we know that, prior to our lubri-
cation approximation, the electrostatic field is perpendicular to
the channel wall. Hence, for varying-section channel, we should
count for the projection of the electrostatic field along the radial
direction as shown in fig. 2 when solving the Poisson equation.
For a smoothly-varying channel amplitude, the projected elec-
trostatic field reads:

E = E0cos(α) (4)

with α = arctan[∂xh(x)]. Due to the smoothness of the variation
of channel amplitude, we have∂xh(x) ≪ 1 hence leading to a
second order correction in∂xh(x) for the electrostatic field

E = E0

[

1−
1
2
(∂xh(x))2

]

. (5)

In the following we will neglect such correction assuming,
E = E0 along the channel. For low salt concentration in the
electrolyte and smallζ potential on channel walls, we can fur-
ther simplify eq. 3 by linearizing the charge densityρq(x,y) ≃
ρ0 (1−βzeψ(x,y)), hence getting:

ψ(x,y) = ζ
cosh(ky)

cosh(kh(x))
(6)

for a channel made by conducting walls or

ψ(x,y) =
σ
2ε

cosh(ky)
sinh(kh(x))

(7)

for an insulating-walls channel characterized by a constant
surface-density of electric chargeσ, beingε the dielectric con-
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stant of the electrolyte. Such assumption, known as Debye-
Huckel approximation, allows to identify the screening length,
k−1

0 , of the electrostatic potential ask2
0 = βzeρ0/ε. The approx-

imation made for the electrostatic field reflects in the Debye
length. Fig. 2 shows the common origin of the corrections for
both the Debye length and the electrostatic field, provided by
the change in the channel section. Consistently with the choice
for the electrostatic field, we can assume constant Debye length,
k−1 = k−1

0 , along the channel by safely ignoring the second or-
der correction given by eq. 5.

Under the assumption of smoothly varying-section channels,
∂xh ≪ 1, we can approximate the radial profile of the proba-
bility distribution function (pdf),P(x,y, t), of a tracer of charge
q by its profile at equilibrium, i.e we can factorize the pdf by
assuming:

P(x,y,z, t) = p(x, t)
e−βqψ(x,y)

e−βA(x)

e−βA(x) =

Z Lz/2

−Lz/2

Z h(x)

−h(x)
e−βqψ(x,y)dydz. (8)

By integration overdy,dz we obtain:

ṗ(x, t) = ∂xD [βp(x, t)∂xA(x)+∂x p(x, t)] (9)

where we have assumed vanishing small tracers concentration
so not to perturb the equilibrium electrostatic potentialψ(x,y).
Eq. 9 encodes both the confining as well as the electrostatic
potential given by eq. 3 in the free energyA(x). Since all
the quantities of interest are independent ofz, without loss of

generality we can assume
R Lz/2
−Lz/2 dz = 1. Defining the average,

x−dependent, electrostatic energy as:

〈V (x)〉 = eβA(x)
Z h(x)

−h(x)
qψ(x,y)e−βqψ(x,y)dy (10)

from eq. 8 we can define the entropy along the channel as
T S(x) = 〈V (x)〉−A(x) hence getting:

S(x) = ln

[

Z h(x)

−h(x)
e−βqψ(x,y)dy

]

+β〈V (x)〉. (11)

In the linear regimeβqψ(x,y) ≪ 1; we can linearize eq. 11 get-
ting:

S(x) ≃ ln(2h(x))

where the entropy has a clear geometric interpretation, being the
logarithm of the space, 2h(x), accessible to the center of mass
of the tracer. Accordingly, we introduce the entropy barrier,∆S,
defined as:

∆S = ln

(

hmax

hmin

)

(12)

that represent the difference, in the entropic potential, evaluated
at the maximum,hmax, and minimum,hmin of channel aperture.
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Figure 3. Filled points: inverse of the MFPT, 1/T±, normalized by the

MFPT of neutral tracers T0, as a function of the inverse Debye length,

k−1, normalized by the minimum channel amplitude hmin for positive,

βqζ = 3, (blue squares) or negative, βqζ = −3, (red dots) tracers in a

conducting channel characterized by ∆S = 2.2.

RESULTS

In the present work we analyze the motion of charged tracers
in a channel characterized by conducting walls (similar results
have been obtained for the case of insulating channel walls)
whose half section along they-direction is characterized by

h(x) = h0 +h1sin
2π
L

(x+φ) (13)

whereh0 is the, average channel section, andh1 is the, possi-
ble, modulation, while we assume the channel to be flat along
thez-direction. φ controls the channel shape with respect to its
boundaries fixed atx = 0 andx = L. According to eq. 13 we
havehmax = h0 +h1 andhmin = h0−h1.

In order to characterize the geometrically induced contri-
bution to the diffusion of charged tracers at equilibrium, we
choose to analyze the first passage time distribution. In par-
ticular we focus on the mean of such distribution, i.e. the mean
first passage time (MFPT) tracers take to pass through the chan-
nel. Such quantity has a twofold interest. On one hand, the
MFPT captures, even at equilibrium where electrostatic current
vanishes, the role played by the geometrically-induced poten-
tial. On the other hand, it is an interesting quantity for situations
like ion trapping or chemical segregation as happens in nuclear
waste containers. In the following we assume that one of the
ends of the channel, namely the one atx = 0, is in contact with
a reservoir of tracers and we are interested in the MFPT of pos-
itive negative or neutral tracers,t±,0(x), tracers take to diffuse
from x to the other end of channel situated atx = L. Such situ-
ation leads to a reflecting boundary condition on the end of the
channel in contact with the reservoir, i.e atx = 0, and to an ab-
sorbing condition on the other end, atx = L. Taking advantage
of the 1Dprojection, eq. 9, we can calculate thex-dependent
MFPT, t(x), which reads [8]:

βD∂xA(x)∂xt±,0(x)+D∂2
xt±,0(x) = −1 (14)

By numerically solving eq. 14 the MFPT of tracers crossing the
channel is given byT±,0 = t±,0(0). Fig. 3 shows the MFPTs
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Figure 4. A: MFPT, T , normalized by L2/D, as a function of the en-

tropic barrier ∆S for positive (blue squares), βqζ = 3, or negative (red

dots), βqζ = −3, tracers in a channel with khmin = 1. B: ratio of

the MFPTs (red circles), τ = T−/T+, and “current” (green squares),

i = 2L3

σD
|ρ+T−−ρ−T+|

T−T+
, with T± the MFPT of positive (negative) tracers

and σ the charge density on the channel walls as a function of the en-

tropic barrier ∆S for the same parameters as panel A.

for positive (blue squares) as well negative tracers (red dots)
across a varying-section channel normalized by the MFPT of
neutral tracers,T0, whose MFPT does not depend onk−1. When
the Debye lengthk−1 is comparable with the channel minimum
amplitude,hmin, negative tracers, attracted towards the positive
charged walls, benefit from the modulation induced by the cor-
rugation of the channel and their MFPT is smaller than the one
corresponding to neutral tracers. Positive tracers, depleted from
the channel walls, experience an enhanced electrostatic barrier
at the channel bottleneck that increases their MFPT. Interest-
ingly such a modulation in the MFPT for charged tracers van-
ishes forkhmin ≪ 1 as well as forkhmin ≫ 1, underlying the
relevance of the regime,khmin ∼ 1, under study.

The dependence of the MFPTs on the entropy barrier is
shown in fig. 4.A. While for vanishing values of∆S all trac-
ers show the same MFPT, a monotonous increase in the MFPT
for all tracers is registered upon increasing∆S. The increase
in the MFPT even for neutral tracers is of solely entropic ori-
gin. Hence fig. 4.A confirms the enhanced sensitivity of posi-
tive tracers with respect to negative ones upon variation of the
geometry of the channel. The relative behavior of positive with
respect to negative tracers can be useful for application as chem-
ical segregation or particle separation. The ratio of the MFPTs
for positive and negative tracers,τ = T+

T−
is shown in fig. 4.B.

For vanishing values of∆S, positive and negative tracers expe-
rience the same MFPT while for increasing∆S negative trac-
ers can be as faster as an order of magnitude leading to a ra-
tio of the order ofτ ∼ 10−1. The asymmetry in the MFPT
for positive and negative tracers suggest the onset of net cur-
rents as a response to fluctuations in tracers density. In the spirit
of linear response theory, we can define the adimensional cur-
rent i = 2L3

σD
|ρ+T−−ρ−T+|

T−T+
. Fig. 4.B shows that the asymmetry in

tracer motion leads to an effective current, suggesting that en-
tropic rectification can give rise to non-negligible electrostatic
currents with a non-monotonous dependence on channel corru-
gation. This indicates that one can exploit geometrical modula-
tion to tune electrostatic currents. This requires a more detailed
analysis.

CONCLUSIONS

The motion of charge tracers suspended in an electrolyte em-
bedded in a channel with charged walls is strongly affected by
the geometry of the channel. The geometrical confinement in-
troduces an effective potential due to the local bias induced by
the varying section of the channel. Such feature is captured
by neutral tracers whose MFPT is modulated by the channel
shape through the amplitude of the entropy barrier,∆S. The
dependence of the MFPT of charged tracers upon different pa-
rameters, such as the Debye lengthk−1 and the entropy barrier
∆S, allows for a particle-diffusion control mechanism relying
on the geometrical properties of the channel as well as on the
electrolyte properties encoded in the Debye lengthk−1. The
MFPT of charged tracers is very sensitive to tracers chargeq.
According to it, tracers are depleted or attracted to the chan-
nel walls hence experiencing different energetic barriers. Such
a dependence leads to an additional control parameter that can
be exploited to promote/reduce the crossing of the channel by
charged tracers as registered in extensive numerical simula-
tions [9].

The phenomenology we have just described has a twofold
interest. It shows that interesting behavior, such as particle cur-
rent inversion or negative mobility, observed when the system
is drive out of equilibrium [5] can be captured even studying the
properties of the system at equilibrium. By analyzing the MFPT
we have been able to show that when the Debye length matches
the channel bottleneck, i.e.khmin ∼ 1 novel effects can rise to
due the overlap between the geometrically induced local bias
in the diffusion and the geometrically modulated electrostatic
field inside the channel. Such an interplay leads to a non-trivial
behavior of the MFPT upon different parameters. On the other
hand in situations such as cellular signaling, gene regulation or
chemical segregation where many phenomena are triggered by
the capture of few molecules rather than on the steady state con-
centration, one is interested in the time a few tracers reach the
target rather than on the steady values. For such situations our
study shows that in the case in which particles have to diffuse
across an inhomogeneous (porous) media, such inhomogeneity
can lead to significant advances or delays of the typical trigger-
ing time.
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