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ABSTRACT
In this paper, we examined 0D and 1D Fermi gases (for example an electron gas in semiconductors or even atom gases like He3)
confined in certain dimensions. It has been shown that thermodynamic properties have a discrete nature in nanoscale. Also,
they have certain physically meaningful values, which mean thermodynamic properties cannot take any continuous value, unlike
classical thermodynamics in which they are considered as continuous quantities. We conclude that, as long as the confinement is
strong enough, discrete nature of thermodynamic properties can be observed. Since quantum confinement in semiconductors is
a well-established experimental research area, it is also possible to experimentally verify the results obtained here. Furthermore,
the possibility of introducing new effects and developing new thermodynamic devices that depend on the discrete nature of
thermodynamics in nanoscale will be discussed.

INTRODUCTION

Leap forwards in nanotechnologies in recent years, make
it necessary to study thermodynamic behaviors of matter in
nanoscale, which leads to a relatively new research area called
as nano thermodynamics.[1-12] Numerous researches are go-
ing on in these areas recently. There are considerable deviations
from classical thermodynamics and there have been proposed
new effects based on the quantum nature of the systems. One of
these new effects is examined under the name of Quantum Size
Effects (QSE) in literature recently.

Thermodynamic properties such as number of particles, free
energy, entropy, internal energy, chemical potential and heat ca-
pacity are represented with summations over quantum states, in
their fundamental and exact forms. In macro scale, these sum-
mations in thermodynamic expressions may be replaced by in-
tegrals to make algebraic operations easy. However, when the
sizes of the domain are comparable to the thermal de Broglie
wavelength of particles, for instance in nanoscale; wave na-
ture of particles become dominant, so we cannot use integrals
instead of summations, since continuum approximation is no
longer valid. Exact forms of thermodynamic properties must
be considered in nanoscale thermodynamics. There are several
ways to calculate exact sums in thermodynamics; one way is
using Poisson summation formula. Evaluating partition func-
tion by Poisson summation formula expands the sum to three
terms. Integral term is the conventional term that has been used
in classical thermodynamics under continuum approximation.
Zero correction term is a consequence of the fact that there are
no zero-momentum states for particles in a system. Eventu-
ally, discrete term represents the discrete nature of momentum
states and becomes dominant in nanoscale. Effects of zero cor-
rection term have been studied in literature as QSE. When the
domain size is comparable to the thermal de Broglie wavelength
of particles, contribution of zero correction term becomes rec-
ognizable. In addition to zero correction, in Fermi-Dirac statis-
tics, discrete nature of thermodynamic properties, which depend

on Pauli Exclusion Principle, starts to reveal itself. Intrinsic
discrete nature has not seen in Maxwell-Boltzmann and Bose-
Einstein statistics, since discretization is a consequence of Pauli
Exclusion Principle, which is used fundamentally in the deriva-
tion of Fermi-Dirac statistics.

EXACT EXPRESSIONS OF THERMODYNAMIC PROP-
ERTIES FOR A FERMI GAS CONFINED IN A RECTAN-
GULAR DOMAIN

For a rectangular domain with dimensions L1,L2 and L3, en-
ergy eigenvalues from Schrödinger equation are

ε =
h2

8m
[(

i1
L1

)2 +(
i2
L2

)2 +(
i3
L3

)2],

with (i1, i2, i3)=1,2,3,...,
(1)

where h is the Planck’s constant and m is the mass of the
fermion. Fermi-Dirac distribution function is

f =
1

e−Λ+(α1i1)2+(α2i2)2+(α3i3)2
+1

(2)

where Λ = µ/kbT and αn’s are dimensionless scale factors
defined as αn = Lc(T )/Ln with n = 1,2,3 and Lc(T ) =

h/
√

8mkbT =
√

π

2 λth, where λth is the thermal de Broglie wave-
length, kb is the Boltzmann’s constant and T is the temperature
of the gas. Summations over all states of the distribution func-
tion will give the number of particles of a Fermi gas

N =
∞

∑
(i1,i2,i3)=1

1
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(3)
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Now we can write the exact forms of thermodynamic properties
such as internal energy U and heat capacity at constant volume
CV respectively as follows

U = kbT
∞

∑
(i1,i2,i3)=1

[(α1i1)2 +(α2i2)2 +(α3i3)2] f (4)

CV = kb

∞

∑
(i1,i2,i3)=1

[(α1i1)2 +(α2i2)2 +(α3i3)2]2 f (1− f )

−
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(i1,i2,i3)=1[(α1i1)2 +(α2i2)2 +(α3i3)2] f (1− f )]2

∑
∞

(i1,i2,i3)=1 f (1− f )
(5)

DISCRETE NATURE IN STRONGLY ANISOMETRIC
QUANTUM DOTS

For 0D, we examined two cases; strongly anisometric do-
main and isometric domain. In strongly anisometric domain,
dimensionless scale factors are chosen as α1 = 1, α2 = 40 and
α3 = 40, so that domain is confined in all three directions to
make it a quantum dot, only 2 directions are confined much
strongly than the other direction. Note that, α = 40 is not a
physically meaningless confinement, since it can be reached by
using todays techniques in laboratories. For strongly anisomet-
ric domain, dimensionless chemical potential Λ against particle
number N has been shown in Figure 1:

Figure 1. Strongly anisometric 0D domain (Quantum Dot), N vs Λ

Dimensionless chemical potential values between 0 and Λ0
corresponds to zero particle. In other words, physically mean-
ingful Λ values start from Λ0. In Figure 1, critical Λ values are
Λ0 = (α1)

2 +(α2)
2 +(α3)

2 and Λ1 = (α1)
2 +(α2)

2 +(2α3)
2.

Beginning from Λ0 = (1)2+(40)2+(40)2 = 3201, states of the
momentum component in direction-1, start to be occupied by
particles since the discreteness of momentum in direction-1 is
not as strong as in directions-2 and 3. That means, occupation
of momentum states in direction-1 is possible, although the oth-
ers are not. Hence, we can convert triple sum into a single sum,
in a limited range of Λ.

N =
∞

∑
i1=1

1
e−Λ+(α1i1)2+(α2)2+(α3)2

+1
(6)

Thereby, Eq. 6 gives exactly the same results of Eq. 3, for
Λ < Λ1. After Λ1 = (1)2 + (40)2 + (2× 40)2 = 8001 value,
we have to consider excitations also in other directions. As it
is shown in Figure 1, Λ changes with N in a stepwise manner.
These steps can be seen in close-up more easily in Figure 2

Figure 2. Strongly anisometric 0D domain (Quantum Dot) close-up, N
vs Λ

Points on the middle of stepwise plateaus indicate Λ values
corresponding to the integer particle numbers. As long as num-
ber of particles has integer values, continuous parts which do
not contain points, are the forbidden region for Λ values. In
other words, chemical potential can take only some certain dis-
crete values which correspond to the integer number of parti-
cles. That is a very crucial deviation from classical thermody-
namics. After Λ1, the second modes of momentum components
in direction-2 and 3 start to be occupied and the relation between
N and Λ has a new character. Pay attention to that, horizontal
steps are not completely flat, so the derivative of the function
in any point is never zero. Similar stepwise behavior of particle
number vs Λ, can be seen also in internal energy of Fermi gas.
In Figure 3 and 4, dimensionless internal energy and specific
heat at constant volume; Ũ = U

NkbT and C̃V = CV
Nkb

, versus Λ are
shown respectively.

Figure 3. Strongly anisometric 0D domain (Quantum Dot), Ũ vs Λ
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Figure 4. Strongly anisometric 0D domain (Quantum Dot), C̃V vs Λ

Behavior of specific heat is as shown in Figure 4. Definite
Λ values, marked with points, are determined from N vs Λ re-
lationship and they are same in all figures. Besides, effects of
particle addition to the system which is moderately confined in
direction-1 and strongly confined in direction-2 and 3, can be
shown in Figure 5.

Figure 5. Strongly anisometric 0D domain (Quantum Dot), C̃V vs N

DISCRETE NATURE IN ISOMETRIC QUANTUM DOTS

Now, let’s consider isometric quantum dot. In isometric do-
main, dimensionless scale factors are chosen as α1 = 3, α2 = 3
and α3 = 3. So, confinement is not extremely strong, however
it is strong enough to make the structure a quantum dot. Be-
cause of the contribution of the excited modes of momentum
components, we have to do triple sum in order to express state
functions and particle number, in all range.

For this case, N, U and CV versus Λ are shown respectively
in Figures 6, 7 and 8. Unlike the first case, for this case there
are allowed values also in the steepnesses of the function, since
excited modes in each direction start to be occupied from the
very early Λ = (3)2 +(3)2 +(3)2 = 9 value.

Figure 6. Isometric 0D domain (Quantum Dot), N vs Λ

Figure 7. Isometric 0D domain (Quantum Dot), Ũ vs Λ

Figure 8. Isometric 0D domain (Quantum Dot), C̃V vs Λ

Another interesting inference is that, unlike the first case
we considered, adding particles does not affect thermodynamic
properties equally in this case. Since occupation of momen-
tum states in all directions are possible, particle addition causes
sometimes to an increase, and sometimes to a decrease in spe-
cific heat CV as in Figure 9. Particle number dependency of heat
capacity is so severe that in some cases (high magnitude peaks
on the Figure 9), changing number of particles in the domain
causes to eight or more times radical changes in heat capacity

427



of the system. Also, for a quantum dot with α values α1 = 1,
α2 = 1 and α3 = 1, we can see oscillations in heat capacity, in
Figure 10. Even for the large number of particles, oscillations
are still observable.

Figure 9. Isometric 0D domain (Quantum Dot), C̃V vs N

Figure 10. Isometric moderately (α1 = α2 = α3 = 1) confined 0D
domain (Quantum Dot), C̃V vs N

THE CASE OF QUANTUM WIRES

For 1D structures, it is shown in Figures 11 and 12, that step-
wise behavior turns into kind of a quasi-continuous behavior. In
spite of that, noticable peaks can still be observed in heat ca-
pacity, in Figure 13. Again changing number of particles in the
system has different effects on the heat capacity, as it is shown
in Figure 14. Change of particle number affects system dras-
tically, so that CV doubles and halves even for small changes
in large number of particles. Such strong dependencies can be
verified experimentally.

Figure 11. 1D domain (Quantum Wire), N vs Λ

Figure 12. 1D domain (Quantum Wire), Ũ vs Λ

Figure 13. 1D domain (Quantum Wire), C̃V vs Λ
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Figure 14. 1D domain (Quantum Wire), C̃V vs N

As we expected, discrete nature of thermodynamics becomes
slighter and slighter as we decrease the number of confined di-
rections. For quantum wire (1D) and well (2D), discrete na-
ture and peaks in heat capacity are still partially observable.
Conversely, for the bulk (3D), discrete nature disappears almost
completely.

DISCUSSION

In this study, we made numerical calculations on several ther-
modynamic quantities (N, U , CV ) by using exact summations.
We showed that in nano scale, there is an intrinsic discrete na-
ture in 0D and 1D Fermi gases (quantum dots and nanowires)
and thermodynamic quantities can take only some certain val-
ues, if there is no applied external potential field to the system.

In case of the existence of electrical field, chemical potential
becomes electrochemical potential. Therefore, it is possible to
change Λ value by changing the strength of the field. In that
case, intermediate values between certain Λ values, which cor-
respond to the integer number of particles, correspond now to
the non-integer number of particles. This means that, by apply-
ing and changing an electrical field, it is possible to create quasi-
particles which have non-integer numbers. This also leads to a
possibility of making quantum dot energy conversion and stor-
age units. If the external electrical field is increased, quantum
dot will store the energy and when the external field is disabled,
system will turn back into its initial state, by releasing energy.

Considering the development rate of nanotechnology, it is
very likely not only to verify the discrete nature of thermody-
namic properties, but also to make efficient quantum energy
storage devices which can easily be used later in new energy
technologies. In addition to numerical results, evaluation of ex-
act sums into analytical expressions is under consideration.
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