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INTRODUCTION 

Recent developments in nano science and technology 
reveal the difference between nano and macro scale material 
properties. Quantum wells, quantum wires and quantum dots 
are the remarkable examples for the diversity in transport and 
optical properties of the same material. Similarly, 
thermodynamic properties of gases confined in nano domains 
become size and shape dependent due to wave nature of 
particles [1-12]. 

Here, dimensional transitions in thermodynamic properties 
of an ideal monatomic Maxwell gas confined in a rectangular 
box are considered. Partition function is used to determine 
free energy. From expression of free energy; entropy, internal 
energy and specific heat at constant volume are then derived 
in exact forms based on expressions of infinite summations. 
Therefore the expressions are valid even for strongly confined 
domains although the trivial macroscopic expressions based 
on integral approximation are valid only for unbounded 
domains. 

To examine the dimensional transitions in thermodynamic 
properties, dimension of momentum space is defined based on 
mean probability change per step in quantum state space. 
Internal energy of excited states is taken into account by 
eliminating ground state energy from internal energy to 
consider only thermal contributions instead of size dependent 
contribution of ground state energy. Similarly instead of 
considering entropy itself, only the entropy of momentum 
space is considered by subtracting entropy of the ground state, 
which is the pure configurational entropy, from the entropy 

itself. Dimensionless inverse scale factors 1 2 3, ,    are 

defined as the ratio of the sizes of rectangular box in each 
direction (L1, L2 and L3) to Lc. Thermodynamic quantities and 
their dimensional transitions are examined in terms of these 
dimensionless scale factors. 

THERMODYNAMIC PROPERTIES OF AN IDEAL 

MAXWELL GAS IN A RECTANGULAR BOX 

Free energy expression of an ideal Maxwell gas is given as  
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where, N is number of particles, T is temperature, bk  is the 

Boltzmann’s constant and   is the partition function. For 

particles confined in a rectangular box,   is defined below 

[5] 
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Here  , ,i j k  are the quantum state numbers running from 

unity to infinity, 
n  is the dimensionless inverse scale factor 

defined as 
n n cL L   where 

nL  is the size of the box in 

direction n and  TmkhL bc 22 . 

Entropy is determined by the derivation of free energy with 
respect to temperature as follows, 
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where  1 2 3, ,      is given by 
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ABSTRACT 
In this work, dimensional transitions in thermodynamic properties of an ideal Maxwell gas confined in a finite domain are 

studied. When one of the sizes of confinement domain becomes shorter than the thermal de Broglie wavelength of particles, 
momentum space is subject to a dimensional transition. Dimension of momentum space is defined based on mean probability 
change per quantum state step. Variation of the dimension with domain sizes is examined. Dependencies of internal energy, 
specific heat at constant volume and entropy on domain sizes as well as dimension of momentum space are analyzed. 
Dimensional transitions in momentum space from 3D to 2D and similarly from 2D to 1D and 1D to 0D are considered. It is 
shown that there is an increment in specific heat at constant volume during the dimensional transitions. Furthermore, all 
quantities considered here decreases when the confinement increases. 
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Free energy and entropy relations are used to obtain 

internal energy expression as 
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On the other hand, by differentiating the internal energy 

with respect to temperature, specific heat at constant volume 
is determined as 
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where  1 2 3, ,      is defined as  
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To examine the dimensional transition in thermodynamic 
properties above, dimensionless entropy, internal energy and 
specific heat at constant volume are introduced as, 
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It should be noted that conditions of 1N   and N   

should be satisfied to use both statistical approach and MB 
statistics respectively. In case of confinement in two directions 
(directions 2 and 3), these conditions are expressed as  
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Therefore, MB statistical approach can still be used if the 

value of 
1  is sufficiently small in spite of large values of 

2  

and 3 ,  2 3, 1   . 

 

DIMENSION DEFINITION AND TRANSITION IN 

MOMENTUM SPACE 

Before examining dimensional transition in thermodynamic 
properties, dimension in momentum space should be defined 
with probabilistic approach. Excitation probability of particles 
in momentum space drastically decreases for the confinement 
direction and particles lose their excitation chance in that 
direction. In other words, only the ground state of momentum 
in confined direction can be occupied by the particles and all 
the excited states of momentum in that direction become 
empty. Occupation probability of quantum state r is  
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Change of probability per change of quantum state number is 
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The ensemble average of absolute value of 
rp  is  
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When 
r  is greater than unity, the probability of ground state 

goes to unity which means that the whole particles accumulate 

in ground state. In that case, rp  also goes to unity since 

the probabilities of the excited states are zero and probability 
distribution becomes a single point in probability space. 
Therefore, this situation corresponds to a zero dimensional 

probability space. On the contrary, as 
r  goes to zero each 

state becomes equally probable which corresponds one 
dimensional space. Consequently the dimension of momentum 
space can be determined by 
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Thereby, dimensional transition from 3D to 0D can be 

examined by Eq.(15) as a function of 
1 2 3, ,   . The 

dimensional transition due to change of domain sizes in 
directions of 1 and 2 is shown in Fig.1.  

 

 
Figure 1: Dimensional transition from 3D to 2D and 1D. 

 
Similarly dimensional transition from 1D to 0D is given in 

Fig.2. 
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Figure 2: Dimension transition from 1D to 0D. 
 

As seen in Fig.(1) and Fig.(2), even the value of 3 for 
n  is 

enough for a strong confinement and dimensional transition in 
direction n.   

DIMENSIONAL TRANSITION IN THERMODYNAMIC 

PROPERTIES 

Internal energy of particles in exited states is calculated as 
 

2 2 2

1 2 3ex ou u u


  


       (16) 

 

where 
ou  is the ground state energy. The reason of subtracting 

ou  is that the ground state energy considerably increases when 

the domain sizes decreases. Thus thermal energy can 
stimulates only the particles in excited states instead of 
particles in ground state. Therefore confinement energy 

represented by the ground state energy is eliminated if 
exu  is 

considered. Similarly dimensionless entropy of particles in 
excited states is determined by 
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By subtracting entropy of the ground state, which is the pure 
configurational entropy, from the entropy itself, only the 

entropy of momentum space is considered. In other words, 
exs  

is the measure of disorder in momentum space only. Due to 
the first term of the right hand side of Eq.(17), however, the 

value of exs  goes to infinity when n  goes to zero as 

expected. Therefore, exs  is normalized by dividing to its value 

for unconfined domain (3D domain) as follows 
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Variation of exu , exs  and vc  with domain sizes can be 

examined by changing 
3  for different set of  1 2,   values. 

Since the variation of dimension with domain sizes is also 
known, it is possible to examine the variation of 
thermodynamic quantities also with dimension by matching 
the values of dimension and thermodynamic properties for the 

same  1 2 3, ,    values. 

RESULTS AND DISCUSSIONS 

3D unbounded domain is represented by 

 1 2 30, 0, 0     . Confinement of the domain in one 

direction needs an increment of   value in that direction 

from zero to the values higher then unity. By following the 
same procedures for other directions, it is possible to confine 
the systems into smaller dimension in momentum space. 
Therefore the dimension of momentum space can be 
decreased from 3D to 2D, 1D and 0D. 

The change of dimensionless internal energy and specific 
heat at constant volume of particles in excited states with 

respect to 
3  are given in Fig.3. and Fig.4 respectively.  

 

 

 
 
Figure 3: Variation of internal energy of particles in excited 

states with 
3 . 

 
 

 
 
Figure 4: Variation of specific heat at constant volume of 

particles in excited states with 3 . 

 
In Figure 4., it seems that there is an increment in specific 

heat at constant volume as an interesting behavior during the 
dimensional transitions. Functional analysis of Eq.(10) shows 
that the first term represents the ensemble average of the 

square of dimensionless energy  
2

bk T  while the second 

one represents the square of ensemble average of 

dimensionless energy 
2

bk T . Therefore Eq.(10) can be 

rewritten as 
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The first term in Eq.(19) increases faster than the second 

one up to a critical value of 0.56   and then the first one 

approaches to the second one. Therefore the contribution of 
momentum component to the heat capacity becomes 
negligible for each direction when the related alpha value gets 
higher and higher values. In this case, also the dimension of 
momentum space decreases a unit value. This increment in 
specific heat is a pure quantum size effect which may be 
experimentally verified. 

 
In Fig.5, variation of normalized dimensionless entropy of 

the particles in excited states with 
3  is given for different set 

of  1 2,   values. 

 
 

 
 
Figure 5: Variation of normalized entropy of gas in excited 

states with 
3   

 
Normalized entropy of the particles in excited states 

decreases with increase of 
3 . For each confinement process, 

change in 
exs  is 1/3. For the case of  1 23, 3   , 

exs  goes 

to zero when 
3  goes to higher values then unity. Because all 

particles occupy ground state which has zero entropy. On the 
other hand, it should be noted that in case of 

 1 2 33, 3, 3     , Eq.(11) becomes 

 

 2 2 2
1 2 3

1N e
    

 (20) 

 
Therefore, number of particles should be much less then unity 
to use Maxwell statistics which is physically meaningless. 
Consequently, although the expressions mathematically give 

the consistent results for  1 2 33, 3, 3      they 

represent a physically impossible condition. 

As a result of increasing values of 1 2 3, and   , 

dimensional transitions occur from 3D to 2D, 2D to 1D and 
1D to 0D. Dimensionless internal energy and specific heat of 
particles in excited states versus to dimension is given in Fig. 

6 and Fig. 7 respectively. Both 
exu  and 

vc  decrease 1/2 for 

each unit dimensional transition. 
 
 

 
 
Figure 6: Variation of internal energy of gas in excited 

states with confined domain dimension 
 

 
 
Figure 7: Variation of specific heat at constant volume of 

gas in excited states with confined domain dimension 
 
In Fig.8 dimensional transition of normalized entropy of 

particles in excited states is shown. As expected, entropy 
value decreases with decreasing dimension. 

 

 
 
Figure 8: Variation of normalized entropy of gas in excited 

states with confined domain dimension 
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NOMENCLATURE  

Symbol Quantity SI Unit 
   
Cv Heat capacity at 

constant volume 
J K

-1 

vc  Dimensionless Specific 
heat at constant volume  

 

F Free energy J 
h Planck’s constant J s 
kB Boltzmann’s constant J K

-1
 

L Domain length m 
Lc Half of the most 

probable wave length 
m 

m Particle mass kg 
S Entropy J K

-1
 

s  Dimensionless entropy  

exs  Dimensionless entropy 
of particles in excited 
states 

 

os  Dimensionless entropy 
of ground state 

 

T Temperature K 
U Internal energy J 

u  Dimensionless internal 
energy 

 

exu  Dimensionless internal 
energy of particles in 
excited states 

 

ou  Dimensionless energy 
of ground state 

 

n  Dimensionless inverse 
scale factor 

 

  Partition function  
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