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INTRODUCTION 

Today, the synthesis design and optimization steps of 
chemical processes require more and more to access quasi 
immediately to PVT properties of a nearly infinite set of 
molecules in order to select the most efficient ones without 
having to perform costly and fastidious experiments. In that 
purpose, group–contribution methods can be of great interest 
since they allow guesstimating thermodynamic properties of a 
given mixture from the mere knowledge of chemical structures 
of molecules constituting it. Starting from these observations, 
the so–called PPR78 model (for Predictive Peng–Robinson 
1978) is developed since 2004 [1–12]. This predictive 
equation of state (EoS) combines the Peng–Robinson equation 
in its 1978 version and the Van Laar activity coefficient model 
under infinite pressure. In addition a group contribution 
method is used to accurately quantify the interactions between 
each pair of molecules. Nowadays, the PPR78 model can 
manage complex mixtures containing alkanes, cycloakanes, 
aromatic compounds, alkenes, carbon dioxide, nitrogen, 
hydrogen sulfide, mercaptans and hydrogen. The group–
interaction parameters were determined in order to minimize 
the deviations between experimental and calculated fluid–
phase equilibria on hundreds of binary systems. It is indeed 
acknowledged that accurate phase equilibria is the key point 
to design and optimize chemical processes. However, excess 

enthalpies (hE) and excess heat capacities (E
Pc ) are also very 

important quantities because they are involved in the energy 
and exergy balances of any process. Our first task was thus to 
check whether the PPR78 model could accurately predict such 
data. The obtained results were however not fully satisfactory. 
It was realized that while the Peng–Robinson EoS can 
accurately correlate vapor–liquid equilibrium (VLE) and hE 
data separately, attempting to predict the values of one 

property with parameters obtained from the other does not 
give satisfactory results. We thus decided to refit all the 
group–interaction parameters of the original PPR78 model 
taking simultaneously into account phase equilibria and excess 
properties data. Our goal was obviously to obtain an enhanced 
model having the same accuracy as the original PPR78 to 
predict phase equilibria but also able to accurately describe 
excess enthalpies and excess heat capacities. 

THE PPR78 MODEL 

The PPR78 model relies on the Peng–Robinson EoS [13] 
which for a given pure component i, can be written as: 
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ABSTRACT 
PPR78 is a predictive thermodynamic model that combines the Peng–Robinson equation of state in its 1978 version and the 
Van Laar activity coefficient model under infinite pressure. A group contribution method is used to accurately quantify the 
interactions between each pair of molecules. During the last decade, the group–interaction parameters were determined in 
order to minimize the deviations between experimental and calculated fluid–phase equilibria on hundreds of binary systems. It 
is indeed acknowledged that accurate phase equilibria is the key point to design and optimize chemical processes. Excess 
enthalpies and excess heat capacities are however very important quantities because they are involved in the energy and exergy 
balances of any process. The prediction of such properties with parameters obtained from fluid–phase equilibrium data 
however does not give satisfactory results. It was thus decided to refit all the group–interaction parameters of the original 
PPR78 model taking simultaneously into account phase equilibria and excess property data. The resulting model, called E–
PPR78 (E for Enhanced) has the same accuracy as the original PPR78 to predict phase equilibria but is able to much better 
describe excess enthalpies and excess heat capacities. 
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where P is the pressure, R is the gas constant, T is the 
temperature, a and b are respectively the energy parameter 
and the covolume, v is the molar volume. Tc,i is the critical 
temperature, Pc,i is the critical pressure, and ωi is the acentric 
factor of a pure component i. Extension to mixtures requires 
mixing rules for the energy parameter and the covolume. 
 
• A widely employed way to extend the cubic EoS to a 

mixture containing p components, the mole fractions of 
which are xi, is via the so–called Van der Waals one–fluid 
mixing rules [quadratic composition dependency for both 
parameters – see Eqs. (2) and (3)] and the classical 
combining rules, i.e. the geometric mean rule for the 
cross–energy [Eq. (4)] and the arithmetic mean rule for the 
cross covolume parameter [Eq. (5)]: 

= =

=∑∑
p p

i j ij
i 1 j 1

a x x a  (2) 

= =

=∑∑
p p

i j ij
i 1 j 1

b x x b  (3) 

= −ij i j ija a a (1 k )  (4) 

( )= + −1
ij i j ij2

b b b (1 l )  (5) 

Doing so, two new parameters, the so–called binary 
interaction parameters (kij and lij) appear in the combining 
rules. One of them, namely kij is by far the most important 
one. Indeed, a non null lij is only necessary for complex 
polar systems and special cases. This is the reason why, 
phase equilibrium calculations are generally performed 
with = 0ijl  and the mixing rule for the covolume 

parameter simplifies to: 

=

=∑
p

i i
i 1

b x b  (6) 

When used with temperature–independent kij, cubic EoS 
with Van der Waals one–fluid mixing rules (VdW1f) lead 
to very accurate results at low and high pressures for 
simple mixtures (few polar, hydrocarbons, gases). They 
can however not be applied with success to polar mixtures. 
 

• In order to avoid the limitations of the VdW1f mixing 
rules, extension of cubic EoS to mixtures can be 
performed via the so–called EoS/gE models. Indeed, gE 
models (activity–coefficient models) are applicable to low 
pressures and are able to correlate polar mixtures. It thus 
seems a good idea to combine the strengths of both 
approaches, i.e. the cubic EoS and the activity coefficient 
models and thus to have a single model suitable for phase 
equilibria of polar and non–polar mixtures and at both low 
and high pressures. 
 
The starting point for deriving EoS/gE models is the 
equality of the excess Gibbs energies from an EoS and 
from an explicit activity coefficient model at a suitable 
reference pressure. The activity coefficient model may be 
chosen among the classical forms of molar excess Gibbs 
energy functions (Redlich–Kister, Margules, Wilson, Van 
Laar, NRTL, UNIQUAC, UNIFAC…). Such models are 

pressure–independent (they only depend on temperature 
and composition) but the same quantity from an EoS 
depends on pressure, temperature and composition 
explaining why a reference pressure needs to be selected 
before equating the two quantities. In order to avoid 

confusion, we will write with a special font ( EG ) the 

selected activity coefficient model and with a classical font 
(gE) the excess Gibbs energy calculated from an EoS. The 
starting equation to derive EoS/gE models is thus: 
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where subscript P indicates that a reference pressure has to 
be chosen. The first systematic successful effort in 
developing such models is that of Huron and Vidal [14], 
who used the infinite pressure as the reference pressure. 
Starting from Eq. (7), Huron and Vidal (HV) obtained: 
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where EoS
2

C ln(1 2 ) 0.62
2

= + ≈  for the Peng–

Robinson EoS. 
 
Jaubert and Privat [15–16] demonstrated that the 
introduction of a Van Laar–type excess Gibbs energy 
model: 

p p
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in Eq. (8) was rigorously equivalent to using VdW1f mixing 
rules with temperature–dependent kij. The mathematical 
relation between kij(T) [Eq. (4)] and the interaction 
parameter of the Van–Laar gE model [Eij(T) in Eq. (9)] is: 

2
ij i j

ij
i j

E (T ) ( )
k (T )

2

δ δ
δ δ

− −
=  with i

i
i

a

b
δ =  (10) 

The works by Jaubert and Privat thus demonstrate that the 
use of temperature–dependent kij in the VdW1f mixing rules 
can overcome the limitations encountered with a constant kij. 
 
The previous considerations were the starting point for the 
development of the PPR78 model. We indeed wanted a 
model which could be used with commercial process 
simulators in which the PR EoS is systematically available 
but we also wanted to overcome the limitations of the 
constant kij VdW1f mixing rules (which, as previously 
explained, only apply to simple fluids). This is why, 
following the previous works of Abdoul et al. [17] a group 
contribution method (GCM) to estimate indifferently the 
interaction parameters Eij(T) in Eq. (9) or the kij(T) in Eq. 
(4) was developed. 
 
The following equations were considered: 
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Eq. (11) will be employed with the HV mixing rules and Eq. 
(12) with the VdW1f mixing rules. In both cases, the same 
results will be obtained. In Eqs. (11) and (12), T is the 
temperature. ai and bi are the attractive parameter and the 
covolume of pure i. Ng is the number of different groups 
defined by the method (for the time being, twenty–one groups 
are defined and 21gN = ). αik is the fraction of molecule i 

occupied by group k (occurrence of group k in molecule i 
divided by the total number of groups present in molecule i). 

kl lkA A=  and kl lkB B=  (where k and l are two different 

groups) are constant parameters determined during the 
development of the model (kk kkA B 0= = ). As can be seen, to 

calculate the kij (or Eij) parameter between two molecules i 
and j at a selected temperature, it is only necessary to know: 
the critical temperatures of both components (Tc,i, Tc,j), the 
critical pressures of both components (Pc,i, Pc,j), the acentric 
factors of each component (ωi, ωj) and the decomposition of 
each molecule into elementary groups (αik, αjk). It means that 
no additional input data besides those required by the EoS 
itself is necessary. Such a model relies on the Peng–Robinson 
EoS as published by Peng and Robinson in 1978 [Eq. (1)]. 
The addition of GC method to estimate the temperature–
dependent kij (or Eij) makes it predictive; it was thus decided 
to call it PPR78 (predictive 1978, Peng Robinson EoS). 

For the 21 groups, we had to estimate 420 parameters 
(210Akl and 210Bkl) the values of which were determined in 
order to minimize the deviations between calculated and 
experimental vapor–liquid equilibrium data from an extended 
data base containing roughly 100,000 experimental data 
points (56,000 bubble points + 42,000 dew points + 2,000 
mixture critical points). 

The following objective function was minimized: 
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nbubble, ndew and ncrit are the number of bubble points, dew 
points and mixture critical points respectively. x1 is the mole 
fraction in the liquid phase of the most volatile component and 
x2 the mole fraction of the heaviest component (it is obvious 
that 2 1x 1 x= − ). Similarly, y1 is the mole fraction in the gas 

phase of the most volatile component and y2 the mole fraction 
of the heaviest component (it is obvious that 2 1y 1 y= − ). xc1 

is the critical mole fraction of the most volatile component 
and xc2 the critical mole fraction of the heaviest component. 
Pcm is the binary critical pressure. 
 
For all the data points included in our database, the objective 
function defined by Eq. (13) is only: 

 objF 7.6 %=  (14) 

 
The average overall deviation on the liquid phase 

composition is: 

obj ,bubble1 2

bubble

Fx % x %
x% 7.4 %

2 n

∆ ∆∆ += = =  (15) 

 
The average overall deviation on the gas phase composition 

is: 

obj ,dew1 2

dew

Fy % y %
y% 8.0 %

2 n

∆ ∆∆ += = =  (16) 

 
The average overall deviation on the critical composition 

is: 

obj ,crit . compc1 c2
c

crit

Fx % x %
x % 7.1 %

2 n

∆ ∆∆ += = =  (17) 

 
The average overall deviation on the binary critical 

pressure is: 

obj ,crit . pressure
c

crit

F
P % 4.9 %

n
∆ = =  (18) 

 
We can thus assert that the PPR78 model is an accurate 

thermodynamic model which it is able to predict fluid–phase 
equilibria in any mixture containing alkanes, aromatics, 
naphthenes, CO2, N2, H2S, H2, mercaptans, water and alkenes.  

 
It is today integrated in many process simulators like 

ProSimPlus, PRO/II, ChemSep, GEM–Selektor, EQ–COMP 
(and probably soon in UniSim). 

 
Figure 1 graphically illustrates the accuracy of the PPR78 

model. 
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Figure 1. Illustration of the accuracy of the PPR78 model. The 
symbols are the experimental data points. The full lines are the 

predictions with the PPR78 model. 

FROM THE PPR78 MODEL TO THE E–PPR78 
MODEL 

The PPR78 model being able to predict with accuracy fluid–
phase equilibria, it was decided to test its ability to predict 

excess enthalpies (hE) and excess heat capacities (E
Pc ). A 

literature review made it possible to collect 30,000 hE data 

points over 500 binary systems and 2,000 E
Pc  data points over 

100 binary systems. 
By definition, the molar excess enthalpy hE [see Eq. (19)] is 

the difference between the molar enthalpy of a solution and 
the sum of the molar enthalpies of the components which 
make it up, all at the same temperature and pressure as the 
solution, in their actual state weighted by their mole fractions 
zi: 

p
E

i pure i
i 1

h (T ,P,z ) h(T ,P,z ) z h (T ,P )
=

= − ⋅∑  (19) 

For nearly ideal solutions i.e. when the molecules of a 
mixture are similar, hE tends to zero and its influence on an 
energy balance is negligible. For such systems (e.g. mixture of 
n–hexane and n–heptane), high relative deviations – even 
higher than 200 % – are totally acceptable. In return, for 
highly non–ideal systems, hE values can reach several kJ/mol 
and important absolute deviations can have a detrimental 
impact on the energy balance even if the corresponding 
relative deviations remain low (20 % deviation on a hE value 
of 5 kJ/mol leads to a non–acceptable absolute deviation of 
1 kJ/mol). For these reasons, the deviations on the excess 
enthalpies were neither expressed as relative nor absolute 
deviations but instead as a temperature difference defined by: 

E E
cal exp PT h h c  ∆ = −  (20) 

where E
calh  and E

exph  are respectively the calculated and the 

experimental hE values. cP is the heat capacity of the mixture. 

From an engineering point of view, a deviation of 1 K is 
considered as acceptable. For the 30,000 experimental hE data 
point collected, the PPR78 model lead to an average deviation 

of: 78 2.1 KPPRT∆ =  which is at least twice too high. 

Regarding the accuracy on the EPc  prediction, an average 

deviation (on the 2,000 experimental data points) of: 
1 1

PPR78 14.5 J mol KE
Pc∆ − −= ⋅ ⋅  was obtained. Such a 

deviation is huge and totally unacceptable. E
Pc  values are 

indeed generally small and only a deviation smaller than 
1 10.5 J mol K− −⋅ ⋅  can be considered as acceptable. In front of 

such disappointing results, the group–interaction parameters 
[Akl and Bkl in Eq. (11)] were fitted in order to minimize an 
objective function which took into account only the deviations 

on hE and E
Pc . In that case, very accurate predictions could be 

obtained on such quantities but the deviations on VLE data 
were really too large. Moreover, we found unacceptable to 
have two sets of parameters: one for phase–equilibrium 
calculations and another one to perform energy balances. 
Indeed phase equilibrium and enthalpy calculations are 
frequently made together and it is thus useful to consider the 
applicability of a single set of parameters to both these 
properties. This statement was the basis to develop the E–
PPR78 model in which the group–interaction parameters were 
determined in order to minimize an objective function which 
included both the deviations on the fluid–phase compositions 
[see Eq. (13)] and the deviations on the excess properties. The 
corresponding Akl and Bkl group–interaction parameters are 
not yet published but can be found in the thesis by Qian [18]. 
The deviations obtained with such an enhanced model can be 
summarized as follows: 

 
• the deviation on fluid–phase equilibria is: 

 E PPR78 7.8 %objF − =  [see Eq. (13)] 

• the deviation on hE is: 

78 0.6 KE PPRT∆ − =  

• the deviation on E
Pc  is: 

1 1
78 0.5 J mol KE

P E PPRc∆ − −
− = ⋅ ⋅  

 
Such deviations highlight that the accuracy of the E–PPR78 
model to predict fluid–phase equilibria, is the same as the one 
obtained with the original PPR78 model (the two objective 
functions: 7.6 % and 7.8 % are very close). On the other hand, 
the E–PPR78 model allows a much better prediction of the hE 
(∆T has been divided by a factor 3.5) and a spectacular 

improvement on the EPc  prediction can be noticed. 

 
Figure 2 graphically illustrates the accuracy of the E–PPR78 
model to predict excess properties. 
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Figure 2. Illustration of the accuracy of the E–PPR78 model. The 
symbols are the experimental data points. The full lines are the 

predictions with the E–PPR78 model. 

 

CONCLUSION 

In this study, the parameters of the PPR78 model have been 
readjusted by considering phase equilibrium (vapor–liquid 
equilibrium, liquid–liquid equilibrium, mixture critical 
points), excess enthalpy and excess heat capacity data, in 
order to have a simultaneous correlation of VLE, LLE, hE and 

E
Pc . The resulting model has been called E–PPR78 where E 

means enhanced. 
 

Several conclusions can be made from this work: 
 
(1) In comparison with the original PPR78 model, by using 

this enhanced version, the prediction quality of VLE and 
LLE is retained, as well as that of mixture critical points. 
On the other hand, the accuracy of the predicted hE (and 

E
Pc ) data has been remarkably improved. 

 
(2) It is possible to use a cubic EoS with a unique set of 

temperature–dependent binary interaction parameters to 
represent both phase equilibrium and excess properties. 

 
(3) Fitting parameters only to excess properties data or only 

to phase–equilibrium data deteriorates the prediction of 
VLE data and of excess properties, respectively. 
Consequently, parameters must be fitted by considering 

the simultaneous correlation of phase equilibrium and 
excess properties data. 
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