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INTRODUCTION 

New experimental evidence (e.g., [1-8]) over the last three 

decades has seen the emergence at atomistic scales of the 

phenomenon of “spontaneous decoherence”, which in turn has 

led to a revival of interest in matters related to the unitary 

foundations of quantum mechanics (QM) and what if anything 

non-equilibrium thermodynamics (NET) may have to say 

about this.  This renewed interest is fuelled to a large extent by 

the impact that this phenomenon has on a large number of 

applications. Thus, understanding and predicting modern 

physics phenomena such as decoherence, entanglement and 

coherence structure, and dynamics in applications involving 

nanometric devices, fast switching times, clock 

synchronization, super-dense coding, quantum computation, 

teleportation, quantum cryptography, etc. [9-27] is of great 

importance. Since “spontaneous decoherence” at these scales 

suggests the presence of non-linearities not envisioned by the 

unitary dynamics of QM, a number of recent publications 

[28-33] have proposed possible fundamental tests of standard 

unitary QM, emphasizing on the basis of the fairly general 

ansatz developed in [28-32] “that if the pure states happen to be 

attractors of a nonlinear evolution, then testing the unitary 

propagation of pure states alone cannot rule out a nonlinear 

propagation of mixtures” [33].   

This last statement is illustrated in the context of recent 

work on nonlinear Lie-Poisson dynamics [29-32]. However, 

testing these particular dynamics experimentally is necessarily 

a matter of guesswork since the physicality of these theories is 

quite obscure. In contrast, a physically meaningful nonlinear 

dynamics emerges when the postulates of QM are 

supplemented by both the 1
st
  and 2

nd
  laws of thermodynamics. 

In such an approach, the evolution of state of a quantum system 

is no longer unitarily constrained but can, in fact, occur 

non-unitarily in time. Thus, at the expense of only violating the 

unitary constraint, an approach such as intrinsic quantum 

thermodynamics (IQT) [34-56] (not to be confused with 

quantum thermodynamics (QT), i.e., dissipative quantum 

dynamics [27,57])  provides an overall physical framework for 

such non-unitary evolutions. Central to IQT is the fact that the 

dynamics of any change in state is at all times consistent with 

the laws of physics and thermodynamics [34-40].  To satisfy 

both the requirements of thermodynamics, particularly that of 

the 2
nd

 law, as well as those of QM, IQT relies on two 

fundamental insights.  The first is that the ontological entity 

representing any state of a quantum system
1
 is not the density 

operator (i.e., wave function projector) of QM, i.e., a projector 

onto a wave function,
2
 but instead a density or “state” operator 

based on an ensemble consisting of an infinite number of 

identical systems identically prepared [34].  The second is that 

the Schrödinger equation of motion of QM, though correct, is 

incomplete since it is unable to describe the dynamics of a 

system with entropies greater than zero [34,37-40]. IQT 

completes this equation on the basis of the 

steepest-entropy-ascent (SEA) principle or today better known 

as the locally-maximal entropy generation (LMEG) dynamical 

law, which encompasses the Hatsopoulos-Keenan statement of 

the 2
nd

 law via the Hatsopoulos-Gyftopoulos ansatz [34] as a 

theorem about the dynamical (Lyapunov) stability of 

equilibrium states [53]. This equation is able to describe the 

irreversible (i.e., non-linear and non-unitary) relaxation of 

system state to one of stable equilibrium based solely on 

changes occurring intrinsic to the system. 

In contrast, QT, which presents an alternative framework, is 

based on the so-called “open-system model” in which the 

dynamics of relaxation to stable equilibrium result from 

assumed “weak-interactions”, i.e., statistical perturbations (the 

so-called Born-Markov approximation), with an environment 

or heat bath. However, the “dissipative” state evolutions, 

                                                           
1 All systems are in the end quantum systems; but as the size of a system increases, the 

importance of quantum effects decreases, since the dispersions representing observables 

approach delta functions. 
2 The density operator of QM only represents a limited class of states and is, thus, a special 

case of the density operator of IQT. 
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which this approach predicts, are still linear in nature and, thus, 

can at best only mimic the non-linear dynamics that may be in 

play. Despite this weakness, QT has engendered a great deal of 

work over the last few decades [27,57-71]. Even so, whatever 

the reality of the assumed “weak interactions”, Nakatani and 

Ogawa [60] have shown that the Born-Markov approximation 

for obtaining evolution equations, i.e., quantum master 

equations (QMEs), cannot be used for composite systems in 

the strong-coupling regime, no matter how short the reservoir 

correlation time. Indeed, the assumption of very short 

correlation times is problematic even in the weak-coupling 

regime, since it comes at the expense of introducing the 

so-called Loschmidt paradox [72]. In other words, because the 

overall linear dynamics of the closed and isolated 

system-plus-environment composite is reversible and unitary, 

the assumption of weak coupling is equivalent to assuming that 

system and environment are effectively maintained 

decorrelated, which in turn gives rise to an irreversible and 

non-unitary linear dynamics of the system alone. This paradox 

as well as the inherent weaknesses outlined in [52] limit the 

applicability of these QMEs. 

Other more traditional approaches to the modelling at the 

atomistic level of phenomena typically viewed as irreversible 

(e.g., heat transfer) are the so-called “closed quantum systems” 

(CQS) approach [73] and the two heat reservoirs mediated by a 

quantum system (HRQS) approach [74-95]. Results shown to 

date with the former [73] indicate that as long as a “persistent 

coherence” is maintained between the amplitudes of the 

different energy eigenlevels, the heat flux remains constant. 

This observation may indeed have important implications for 

other “irreversible” phenomena such as the decoherence of 

qubits, which is a major obstacle to the construction of 

quantum computers [18]. Thus, if a qubit were placed, for 

example, in contact with a non-equilibrium environment so 

that a persistent energy flux through the qubit could be 

induced, would it protect the qubit from complete 

decoherence? This question requires an answer, which needs 

further investigation to see if it can be answered generally in 

the affirmative and if so, how such a system and interaction 

could be set up. Note that an early candidate for the role of 

qubit, i.e., a trapped ion, can be described to some extent by the 

model of a particle confined to a harmonic potential well 

exposed to statistical perturbations due to electromagnetic 

noise [96–99]. It is also interesting to note that it can be 

described quite well by IQT [56], which is able to describe its 

behaviour in terms of a relaxation from a state of 

non-equilibrium to that of stable equilibrium.  

As to the HRQS approach, results to date (e.g., [74]) show 

that certain quantities (i.e., a non-equilibrium temperature Tp 

equal to the kinetic energy of the quantum system (mediator) 

and another, Tx, to its potential energy) have proven useful in 

quantifying the strengths of the couplings between the 

mediator (quantum particle or system) and the heat reservoirs 

[91]. When the so-called friction kernel, which is a measure of 

the interaction between mediator and reservoirs, is non-zero, 

the difference between these two temperatures as well as 

between Tx and the average of the two reservoir temperatures is 

also non-zero; and, therefore, these temperatures and 

differences can be used as a measure of the quantum 

entanglement, i.e., the degree of coherence, between the 

mediator and reservoirs [91]. As a criterion for quantifying the 

coupling strength, these quantities are equally applicable to 

steady as well as unsteady state. Nonetheless, it is doubtful that 

the HRQS model even if modified could be used to determine 

the rate of decoherence, which takes place as the composite 

system relaxes to stable equilibrium. In contrast, IQT is not 

limited in this way.  

THE IQT APPROACH 

At the heart of IQT is the concept that irreversible 

relaxations of state occur due to the intrinsic characteristics, 

i.e., endogenous (as opposed to exogenous) statistics, of the 

system itself. Thus, the framework of IQT suggests that 

“spontaneous decoherence” is a consequence of intrinsic 

system irreversibilities and that thermodynamics and in 

particular NET do indeed have a great deal to say about it. 

Beyond the theoretical work, which has laid the foundations 

for IQT, this assertion has found a number of verifications via 

experimental comparisons found in [41,44,56,100,101] and is 

reasonable in the context of a quantum system (even a 

one-particle system) in a non-equilibrium state spontaneously
3
 

relaxing to stable equilibrium.  

The foundations of IQT were developed by Hatsopoulos 

and Gyftopoulos [34] with important preliminary work by Park 

[35]. In 1981, Beretta contributed a fundamental dynamical 

postulate embodied in a non-linear equation of motion [37] 

consistent with the proof by Simmons and Park [36] that the 

evolution in state of a closed thermodynamic system to stable 

equilibrium is necessarily non-linear. Important subsequent 

work includes [38-56,100,101,106,107].  IQT asserts that the 

2
nd

 law of thermodynamics, with its implications of intrinsic 

irreversibility, applies at all physical levels of description from 

the macroscopic and classical to the atomistic and quantum 

[34].  Central to the foundations of IQT is the recovery of the 

concept of “state of a system”, a bedrock of physical thought 

and a concept lost in quantum statistical mechanics (QSM) 

where the state necessarily refers only to the state of an 

ensemble, which consists of an infinite number of identical 

systems not identically prepared [34,35].  Also central to IQT 

is the fact that the dynamics of any change in state is at all 

times consistent with the laws of physics and thermodynamics 

[34-40].   

The rationale behind the concept that the density operator 

is synonymous with the state of a system is based on the idea 

that in QM the density operator contains all the information 

necessary to characterize the state (i.e., the so-called pure state) 

of a quantum system at any given instant of time.  Thus, for 

example, the expectation value S  for the entropy, as defined 

by von Neumann, can be written in terms of the density or 

“state” operator   via  

)(kS B lnTr  (1) 

Here kB is Boltzmann’s constant.  In QM, the value of S  is 

necessarily zero for all pure states.  For states whose entropy is 

greater than zero, the density operator of QM can be replaced 

with the von Neumann statistical operator of QSM.  However, 

the problem which arises with using QSM to describe non-zero 

entropy states is that not only does this introduce the difficulty 

mentioned above about the loss of the concept of “state of the 

system” but as well leads to an entropy, which is not the 

entropy of thermodynamics [45].  In fact, QSM leads to the 

so-called ‘irreversibility paradox”, the resolution of which 

requires a simultaneous consideration of questions that 

specifically go to the heart of issues surrounding the 2
nd

 law of 

thermodynamics, namely, i) what the physical roots of 

                                                           
3 A physical mechanism for such relaxations may, for example, be spontaneous emissions 

resulting from vacuum fluctuations and/or self-radiation reactions [102-105]. 
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“entropy” and “irreversibility” are, ii) whether or not “entropy 

generation” due to irreversibility is merely a statistical 

illusion
4
, and iii) what a general description of non-equilibrium 

is [54].  Such a general description is not possible with QSM 

without the addition of a non-thermodynamic principle 

(microscopic reversibility), assumption (e.g., small 

perturbations to ensure linear behaviour), or approximation 

(e.g., sufficiently small deviations from stable equilibrium) 

[54].  In contrast, IQT and its density operator exhibit none of 

these drawbacks and instead lead to an entropy that is physical 

and exists for all zero-entropy and non-zero entropy states and 

all systems regardless of size.  Moreover, the entropy at a 

fundamental level of description is seen as a measure of how 

the system energy E  is distributed amongst the system’s 

available degrees of freedom, i.e., its energy eigenlevels, while 

the entropy generation is a measure of how the energy E  is 

redistributed in a change of state [54]. 

The second insight mentioned above that the Schrödinger 

equation of motion is incomplete has prompted the search for 

an equation able to describe irreversible processes.  In QT, this 

has led to master equations of various types [27,57].  These 

equations have been developed to model the “open quantum 

systems” introduced by Lindblad and Kossakowski and others 

[62-65] where the increase in the entropy of a system is 

brought about through interactions with an external reservoir. 

In IQT, the generalization to irreversible or “dissipative” 

processes is provided by an equation of motion originally 

developed by Beretta [37,39,40], which assumes a priori a 

tendency for an intrinsic increase in system entropy, i.e., the 

entropy of thermodynamics, along the direction of steepest 

entropy ascent compatible with the system’s constraints.  

Unlike the master equations of QT, which are often second 

order approximations [108], the Beretta equation represents the 

full nonlinear dynamics, which describes the irreversible 

evolutions in state of systems that are arbitrarily far from stable 

equilibrium. 

Thus, the outlook provided by IQT avoids the 

inconsistencies pointed out by Loschmidt [72], which arise 

when trying to force the emergence of irreversible, non-unitary 

behaviour from dynamics that is intrinsically reversible and 

unitary. Avoided as well is the need for the exogenous statistics 

found in QSM that destroy the concept of state of a system by 

requiring that a system possessing entropy be described with 

heterogeneous ensembles of identical systems in “pure” states. 

Statistical mixtures of pure states have the additional 

inconsistency which arises when work can be extracted from 

subsets of the ensemble even though none can be extracted 

from the ensemble as a whole.  Clearly, this violates the 2
nd

 law 

[54]. 

IQT also avoids the violations of the 2
nd

 law that are 

inherent with the QT approach.  In contrast to QSM, QT is not 

based on statistical mixtures of pure states and, thus, the 

definition of “state of the system” is preserved.  However, 

because the entropy for the “overall closed system” (i.e., open 

system plus reservoir) cannot increase, the potential for 

extracting energy to do work remains unchanged (i.e., is not 

degraded) regardless of whether gradients of thermodynamic 

potentials between the open system and reservoir exist and 

change over time.  This cannot be since it suggests that 

regardless at what point in time energy is extracted that the 

                                                           
4 In fact, this is the conclusion drawn from statistical mechanics that entropy generation 

due to irreversibility does not result from the endogenous dynamics but instead from 

temporal changes of some exogenous statistical description. 

potential to do work remains unchanged even when all 

thermodynamic potentials have ceased to exist.  This is 

inconsistent with what is observed in nature and, thus, violates 

the 2
nd

 law.  IQT obviates such difficulties because the increase 

in entropy is a process that is intrinsic to the closed (isolated) 

system, leading to a degradation in the potential to do work. 

THE IQT EQUATION OF MOTION 

The equation of motion of IQT governs how the diagonal 

and off-diagonal elements of the thermodynamic state or 

density operator (or matrix)  5
 evolve in time. The 

formulation is based on the hypothesis that physical systems 

naturally seek the path of local steepest entropy increase on 

their way to stable equilibrium [4,46,53,109].  For an isolated 

or non-isolated, single elementary constituent (i.e., a single 

particle, a single assembly of indistinguishable particles, or a 

single field) closed (i.e., not experiencing a non-work 

interaction) system, this equation is given by 

   





,M
k

,H
i

dt

d

B2

1



 (2)

 

where H is the Hamiltonian operator and   a scalar time 

constant or functional
6

. Both the 1
st
 and 2

nd
 laws of 

thermodynamics are implied by this equation and its other 

forms given below
7
. The first term on the right of this equation 

is the Schrödinger term, which governs the reversible (linear) 

dynamics for the system, and it along with the time-derivative 

term on the left are equivalent to the temporal part of the 

Schrödinger equation.  This term governs the relative phases 

between system energy eigenlevels and quantum interference 

effects. The second term on the right,    Bk/,M 2 , the 

so-called dissipation term, depends on  , ln , and H  and 

pulls the state operator in the direction of the projection of the 

gradient of the entropy functional S  onto the hyper-plane of 

constant system energy E . This term governs the dissipation 

of a system’s adiabatic availability [111] as its state relaxes to 

one of maximal entropy and is written as 

   MM,M    (3) 

where  HHSM   (4) 

   HSHHH    (5) 

Here M is a non-equilibirum Massieu function and H  and 

S are the deviation operators of H and S defined as 

HIHH   (6)  (105)  

SISS   (7)  (106)  

The S operator is expressed as  

   lnln BkPkS BoB   (8)  (107)  

with oP  and B, respectively, the projection operators onto the 

range and the kernel of  . 

For a closed composite system composed of two 

distinguishable particles, assemblies of particles, fields, or a 

                                                           
5 The state operator is a linear, self-adjoint, non-negative definite, unit-trace operator (i.e., 

an operator whose diagonal elements sum to one) on Hilbert space H. 
6 Note, that a lower bound for  and, thus, an upper bound on   Bk/,M 2  may be 

suggested by the time-energy Heisenberg uncertainty relation [53].  
7 This equation implies the 1st law because as is proven in Beretta et al. [39], each of the 

generators (e.g., the identity and Hamiltonian operators) of the motion (i.e., the evolution 

or change in state of the system) is also a constant of the motion of the system. Thus, 

)( HTrE  is conserved and the E in any adiabatic process is uniquely related to the 

amount of work involved in the process.  This equation also implies the 2nd law since as 

proven in Beretta et al. [39], a system admits of one and only one stable equilibrium state 

for given finite mean values of the generators of the motion. This, of course, is simply a 

generalization of the Hatsopoulos-Keenan statement of the second law [34,110].  
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combination of these, Eq. (2) is replaced by the following 

equation [40,52,53]: 

     BA
A

AB

,M
k

,H
i

dt

d








2

1


 

  B
B

A
BB

,M
k





2

1
 (9) 

where         H
JJJ

HSM   (10) 

     HρITrH
JJJ

J
   (11) 

     SρITrS
JJJ

J
   (12) 

and B,AJ  , while A,BJ  . Equation (9) is easily 

generalized to three or more distinguishable constituents. 

Finally, for a system experiencing a non-work interaction 

(i.e., a heat or mass interaction), the IQT equation of motion in 

the form of Eq. (2) may be extended to the following [56,112]:   

     








,G
~

k
,M

k
,H

i

dt

d

GBB 2

1

2

1



 (13) 

where the last term on the right accounts for either a heat or 

mass interaction. If the latter, G
~

is a non-equilibrium, 

Massieu-like, mass-interaction operator as described in detail 

in [112]. If the former, G
~

is a non-equilibrium Massieu heat 

interaction operator expressed as 

H

Q ~
H
~

S
~

)S
~

,H
~

(G
~

G
~


  (14) 

where H

~
  is a non-equilibrium temperature defined as 

S
~

H
~

H
~

H
~

~
H




   (15) 

and the S
~

and H
~

operators result from a rotation of the 

original S and H operators, i.e., 

.
H

S

TTH
~
S
~

** 






















 


















10

01

cossin

sincos

0

01




 (16) 

The angle of rotation  is a function of the slope of the heat 

interaction trajectory and is expressed as 

  .TT *
Q

1tan  (17) 

The quantity 
*T is a constant with units of temperature and a 

value of one, while QT  is yet another non-equilibrium 

temperature that corresponds to the slope of the line in the 

energy versus entropy operator plane, which connects the 

current state of the system and a state in mutual stable 

equilibrium with the heat reservoir.  

We now turn to a brief discussion of the application of 

each one of these equations of motion and a comparison of the 

results generated with experimental data found in the literature. 

The results presented and discussed are taken from 

[56,100,101]. Equation (2) is used to predict the reaction rate 

constant of the chemically reactive systems in [101] based on 

the IQT framework laid out by Beretta and von Spakovsky in 

[107], while Eq. (9) is employed to predict the rate of 

decoherence of a composite atom-field system [100]. Finally, 

Eq. (13) is utilized to predict the relaxation to stable 

equilibrium of a single ion in a cat state contained in a Paul trap 

as it interacts with a heat reservoir [56]. 

CHEMICALLY REACTIVE SYSTEM RESULTS 

Since the IQT equation of motion implements the 

principle of SEA, its application to chemical kinetics is 

consistent with the idea put forward by Ziegler [113] 

concerning the thermodynamic consistency of the standard 

model of chemical kinetics. In [107], Beretta and von 

Spakovsky develop a general modeling framework for 

applying IQT to chemically reactive systems at very small 

scales, i.e., to an isolated, chemically reactive mixture with one 

or moreactive reaction mechanisms. In modeling the 

non-equilibrium time evolution of state of these systems, both 

the system energy and particle number eigenvalue problems as 

well as the non-linear IQT equation of motion must be solved, 

i.e., in this case Eq. (2). The former establish the so-called 

energy and particle number eigenstructure of the system, i.e., 

the landscape of quantum eigenstates available for the system, 

while the latter determines the unique non-equilibrium 

thermodynamic path, i.e., unique cloud of trajectories, taken by 

the system, showing how the density operator, which 

represents the thermodynamic state of the system at every 

instant of time, evolves from a given initial non-equilibrium 

state to the corresponding stable chemical equilibrium state. 

Once this path is established, the time dependences of all the 

non-equilibrium thermodynamic properties (e.g., composition, 

chemical potentials, chemical affinities, reaction coordinates, 

reaction rates), including, of course, the entropy, are known. In 

fact, the reaction rate in the literature is typically reported at a 

given temperature in terms of the so-called reaction rate 

constant (i.e., the forward reaction rate constant), which is 

determined both experimentally as well as numerically via a 

phletora of classical (e.g., [114]), quasi-classical (e.g., 

[115-121]), and time-independent (e.g., [122,123]) and 

time-dependent quantum methods (e.g., [123,124]). The IQT 

results presented here and the more extensive ones in [101] are 

reported in terms of this parameter. It should be noted that no a 

priori limiting assumption of stable equilibrium via a specific 

choice of temperature nor of pseudo-equilibrium between 

reactant and activated complex, both of which are common to 

the other methods in the literature, is made. In addition,  the 

reaction rate constants found via the IQT formulation are in 

reality not constants but instead instantaneous values found at 

each instant of time along the non-equilibrium path determined 

by the IQT equation of motion.  

The IQT kinematic model for the chemically reactive 

system, which establishes the energy and particle number 

eigenstructure of the system, is not repeated here due to its 

complexity and, thus, the reader is referred to [101,107] for 

details. This model includes vibrational, rotational, and 

translational degrees of freedom consistent with the number 

and types of degrees of freedom used by other models found in 

the literature. The dynamic model is that of Eq. (2).  

For purposes of the comparisons given below, the system 

considered here initially consists of 1 particle of F and 1 of H2 

and is governed by the following reaction mechanism:  

HFHHF  2  (18) 

An initial non-equilibrium state is established by finding a 

metastable equilibrium state far from equilibrium, which is 

then perturbed into the initial non-equilibrium state used by the 

equation of motion, Eq. (2). This equation evolves the system 

density or state operator  for the reacting mixture in time at 

constant system energy until a state of stable equilibrium is 

reached. The temperature at this final state is found to be 298 

K.  The degrees of freedom for each of the molecules and 

atoms in the IQT model are given in Table 1. Results for the 

non-equilibrium compositional changes of the reacting mixture 

are shown in Figure 1, while Figure 2 provides the 

instantaneous values of the forward and backward reaction rate 
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constants kf(T,t) and kb(T,t), respectively, at every instant of 

time t. Included as well is the equilibrium constant K(T), which 

is the ratio between kf and kb. The time evolutions of the net, 

forward and backward reaction rates (i.e., r, rf, and rb) 

corresponding to these rate constants are shown in Figure 3. 

Similar time-evolutions for other non-equilibrium thermody-  
 

Table 1. Degrees of freedom for each of the molecules and atoms in 

the IQT model [101]. 

Species 
Translational 

quantum #’s
a
 

Vibrational 

quantum #’s 

Rotational 

quantum #’s 

F 1,...,400   

H2 1,...,400 0 0,1 

FH 1,...,400 0,1,2,3 0,1,...,7 

H 1,...,400   
a Although the translational principal quantum number k varies here from 1 to 

400 for each species, only a sampling (30) of these quantum numbers across 

this range is used for each species in the IQT model. 

 
Figure 1. IQT time evolution of the non-equilibrium compositions of 

the reacting mixture reported as the number of particles for each 

species for a system expectation energy, which at stable equilibrium 

corresponds to a temperature of 298 K [101]. 

 
Figure 2. IQT time evolution of the forward and backward reaction 

rate constants and the equilibrium constant for a system expectation 

energy, which at stable equilibrium corresponds to a temperature of 

298 K [101]. 

 

namic properties such as the reaction coordinate, reaction 

coordinate rate, entropy, entropy generation, species energies, 

non-equilibrium temperature, etc. can be generated. The 

relaxation time  for the time evolutions presented in the 

previous figures is 3.8 x 10
-15

 sec and is based on a fit of the 

IQT results to the value of kf at 298 K reported in the fourth 

column of Table 2 [101, 124]. This table also includes the 

values of kf from a number of other researchers. Note that the 

computational time to complete a single evolution, which 

provides a complete picture of the non-equilibrium quantum 

and thermodynamic evolution in time of the system is on the 

order of seconds for this size system on a conventional PC with 

a dual-core processor. Much larger systems have already been 

simulated.  

 
Figure 3. The forward, reverse and net reaction rates for a system 

expectation energy, which at stable equilibrium corresponds to a 

temperature of 298 K [101]. 

 

Table 2. Values of the forward reaction rate constant reported in the 

literature for the reaction mechanism of Eq. (18) [101,124]. 

kf(T)/10-11 (cm3/molecule-sec) 

T (K) WHa SBAb HBGMc RHPBd WTMe 

298 2.33 2.48 2.93 2.81 2.26 
a Wurzberg and Houston;  b Stevens, Brune, and Anderson; c Heidner, 

Bott, Gardner, and Melzer;  d Rosenman, Hochman-Kowal, Persky, 

and Baer; e Wang, Thompson and Miller. 

 

Finally, additional validation of the IQT predictions is 

needed via a comparison of the forward reaction rate constants 

predicted with IQT to those given in Table 2 based on a , 

which is a functional of the density operator and which 

reflects the physics of the problem. This validation has not yet 

been done. The present author and his co-authors in [101] are 

currently working on identifying a unique functional    

capable of capturing the dynamics of the reaction without the 

use of adjustable parameters.   

COMPOSITE ATOM-FIELD SYSTEM RESULTS 

In [100], the modeling of the non-linear dynamic change in 

state of a composite system formed by an atom and an 

electromagnetic field mode is accomplished using IQT (Eq. 

(9)). The state of the composite (closed and adiabatic) 

microscopic system evolves in time towards stable 

equilibrium, resulting in the loss of correlations between its 

constituents. The IQT description assumes the composite 

system to be isolated and the time evolution of its state to be 

intrinsically both Hamiltonian and non-Hamiltonian. In so 

doing, a loss of quantum entanglement or coherence is fully 

predicted. 

The IQT model of the composite system considered here is 

that given in [100] and for sake of brevity is not repeated here. 

A description of the Cavity Quantum Electrodynamic (CQED) 

experimental system upon which the IQT theoretical model is 

based is given in [125-131,100]. A very brief description is 

provided here beginning with the experimental configuration 

depicted in Figure 4. Rb atoms are contained in oven B from 

which one atom in an excited state eB   is selected and 

subsequently subjected to a classical resonant microwave 
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2/  pulse in 1R  supplied by source 'S . This creates a state 

in a superposition of circular Rydberg levels e  and g  

(ground level) for the atom, corresponding to principal 

quantum numbers 51 and 50, respectively. The atom is then 

allowed to enter the high-Q quantum cavity C that contains an 

electromagnetic field mode in a Fock state   previously 

injected into the cavity by an external source S . The 

atom-field interaction lasts for a time it  and since the atom 

and cavity are off-resonant, absorption of photons is not 

exhibited during the interaction; and the atom only shifts the 

phase of the field mode by an amount  . This dephasing 

provokes the coupling of the excited level of the atom to the 

field mode state with phase 
 ie  and the coupling of the 

ground state of the atom to the field mode state with phase 
 ie . In this maner, an entanglement between the states of 

the constituents is created. After leaving the cavity, the atom is  

 
Figure 4. Schematic representation of an atom-field Cavity QED 

experiment [126,100]. 

subjected again to a resonant microwave pulse in 2R  equal to 

that at 1R , mixing the atom energy levels and creating a 

“blurred” state for the composite, 
2R , which preserves the 

quantum ambiguity of the field phase. The excited level state 

of the Rb atom is then observed and recorder at D. 

To measure the decay of coherence left on the field mode 

state by the Rb atom, a second atom of identical characteristics 

to the first is sent along the same path after a delay time of dt . 

The state of the second atom recorded at D reveals the effects 

left by the first atom on the state of the field mode. A 

theoretical description of the experimental observations in 

[127] provides a functional for the correlation signal which is 

plotted in Figure 5 relative to the measured data found in [128]. 

The red triangles with error bars correspond to the 

experimental values, while the blue line corresponds to the 

theoretical prediction made using the correlation functional of 

[127]. The initial point of the correlation has been moved con 

sistent with [128] from a value of 0.5 to 0.18 on the vertical 

axis to account for experimental imperfections. As can be seen 

the fit is good for the initial points but deviates at the end and 

even becomes negative, which is inconsistent with what is 

observed. 

The IQT prediction is given by the green line, which is the 

norm C  of the commutator operator (  ,HiC  ). It is used 

as a direct indicator of how the coherence of the 

electromagnetic field mode is dissipated in time since the 

detection of the atom in the excited level state projects the state 

of the field in a maximally coherent local state. The green line 

corresponds to a value for the internal relaxation times of 

 BA  0.26 for the atom and field in Eq. (9). This value is 

comparable to that reported in [132]. As in the case of the 

correlation functional, the maximum value for C  is moved to 

0.18 on the vertical axis. As seen in this figure, IQT predicts 

the experimental data well. A very slight deviation from the 

 
Figure 5. Comparison of the loss of coherence predicted by IQT and 

by the correlation function of [127] with the CQED experimental 

results of the group at Paris [128]. 

 

experimental values is observed with the fourth and fifth points 

but is well within the experimental error bars. The deviation 

may correspond to normal imperfections in the experimental 

equipment (e.g., the quality of mirror reflections which allows 

a leak of photons from the cavity [130, 133]); or it may be that 

the value chosen for A  and B do not completely take into 

acount the physical characteristics of the contituents. For 

example, it may be that slightly differing values for each 

realaxation time are needed or that these times are instead 

functionals of the state operator as described in [37, 134].  

SINGLE TRAPPED ION SYSTEM RESULTS 

In [56], the modeling of the non-linear dynamic change in 

state of a single ion system in an excited cat state interacting 

with a heat reservoir is accomplished using IQT and Eq. (13). 

In this case, the system is not isolated and experiences a heat 

interaction. The time evolution of its state is intrinsically 

governed by the dissipation term and extrinsically by the heat 

interaction term in Eq. (13).  

The IQT model for this system is that given in [56] and for 

sake of brevity is not repeated here. A description of the 

experimental system upon which the theoretical model is based 

is given in [96,97,56] and involves a single trapped ion 

contained in a Paul trap put into various quantum superposition 

states. A very brief description is provided here beginning with 

the experimental configuration depicted in Figure 6. The decay 

of the initial state is observed and measured after the ion trap is  

 

Figure 6. Schematic of the Paul trap used in the experiment of 

Turchette et al. [97]. 
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put into contact with a range of engineered external 

electromagnetic sources. Radio frequency fields are produced 

to trap an ion, while noise signals serve as an external 

electromagnetic source.  The strength of the fields is quadratic 

so the particle behaves as a quantum harmonic oscillator within 

the trap.  The harmonic superposition or “cat” or “motional” 

states that are produced in the experiments are also known as 

Fock states, and density matrices describing these states 

contain only diagonal elements [96]. The amount of 

decoherence over time is measured using interferometry 

techniques. Nuclear spin states in the ion are excited and 

combined by means of optical pumping and laser cooling 

methods with the superpositions of the motional eigenstates of 

interest.  The spins constitute a “carrier” signal that enables the 

degree of decoherence of the cat states to be readily measured.  

Because the spin states are correlated with the energy 

eigenstates of the harmonic oscillator, any changes or 

degradation of the cat state result in proportional changes 

between the phases of the spin eigenstates. During the 

experimental procedure, a state is created and immediately 

coupled to the electromagnetic source.  After a given delay, a 

measurement is made.  The phase shift between the spin 

components is seen as a loss of signal contrast from which the 

magnitude of decoherence of the cat state is calculated.  The 

electromagnetic source consists of a noise spectrum of a given 

mean frequency and power that is applied to the fields 

containing the ion in the Paul trap.  Numerous measurements 

are conducted to produce ensemble average values that make 

up each experimental data point. 

Both Turchette et al. [96] using QT and Smith and von 

Spakovsky using IQT [56] have successfully modelled the 

decay (i.e. decoherence) observed in this first experiment.  

Levin et al. have studied this problem minus the external 

source using CQS [73]. The IQT simulations use 100 equally 

spaced energy eigenlevels to represent the lowest eigenlevels 

of the trap.  Results are presented here for one of the 

superposition eigenstates experimentally studied in [97], i.e., 

cat state 3  which is the state associated with the energy 

eigenlevel three levels above the ground energy level.  In the 

experiments, the power applied to the heat source 2V  is used 

to represent the relaxation time. 

Results for the IQT simulations are compared with the 

experimental probability distribution versus time data in Figure 

7 as well as with experimental data plotted on the energy- 

entropy diagram in Figure 8 [56].  The temperatures of the heat 

reservoirs of the experiment are estimated by noting the 

tightness of the probability distribution for the data as stable 

equilibrium is approached.  In Figure 7, comparisons between 

the IQT results and the experimental data for the lowest 5 

energy eigenlevels of the cat state are shown.  The 

experimental data is indicated by the symbols.  The solid lines 

are the probabilities predicted by IQT using Eq. (13).  The time 

constants used for the IQT simulation are  =20.0 and G
=25.0 for the dissipation term and heat interaction term, 

respectively.  The scaled reservoir temperature in each figure 

for a Boltzmann constant set to 1.0 is estimated to be 0.15.  As 

can be seen, the IQT simulation matches the data quite well.  

Comparisons with the experimental data shown in Figure 

8 include predictions from the QT quantum master equation 

used in [97] and from the IQT equation of motion, Eq. (13). 

Comparisons are made for the 5 lowest eigenlevels with the 

experimental data given in dark blue, those for QT in light blue  

 
Figure 7. Comparison of the experimentally measured dissipative 

decay of cat state 3
 
with IQT predictions [56]. 

 
Figure 8. Non-equilibrium evolutions in thermodynamic state for the 

lowest 5 energy eigenlevels as well as for the lowest 100 [56]. 

 

and those for IQT in magenta.  Note that the fact that the 

experimental data as well as the QT and IQT trajectories curve 

back on themselves is, of course, physically impossible, i.e., 

violates the 2
nd

 law.  However, this occurs here solely due to 

the fact that these trajectories are only based on the lowest 5 

energy eigenlevels.  When 100 eigenlevels are considered, the 

result for the IQT equation of motion is the magenta curve, 

which shows the evolution in state predicted by IQT from the 

initial state designated by the cross in magenta to a state of 

mutual stable equilibrium with the heat reservoir. Clearly, the 

IQT simulations do a good job of matching the experimental 

data, providing an alternative, comprehensive, and reasonable 

explanation to that provided by QT. 

CONCLUSIONS 

This paper has provided a brief summary of what IQT is and 

what can be done with it. The power of this rather unique 

approach has been illustrated via a number of applications of 

the IQT framework to non-reactive and reactive systems. 

Validations of this theory via comparisons of predicted results 

to experimental and numerical data found in the literature 

demonstrate the power of this approach and support the claim 

that IQT provides an alternative, comprehensive, and 

reasonable explanation of irreversible phenomena at an 

atomistic level. 
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