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INTRODUCTION 
 
Small systems are of interest from various viewpoint in 

contemporary science. In particular, the problems of 
constructing microscopic machines/engines and 
understanding their operating mechanisms are relevant to 
biology (e.g., biomolecular motors), information theory (e.g., 
Maxwell’s demon), nanoscience and so on. 
The subject of the present article is concerned with a 
reversible engine made of a single quantum-mechanical 
particle confined in an variable potential. This system does 
not contain heat baths, and the volume change (i.e., expansion 
and compression) is realized by external control of the 
potential. Accordingly, quantum coherence remains intact. In 
Ref. [1], it has been shown, by considering a cycle of a 
system consisting of a particle in an infinite square-well 
potential with the movable walls, that it is in fact possible to 
construct a reversible cycle and to extract work from it. The 
cycle constructed there is analogous to Carnot’s, and is 
therefore referred to as quantum-mechanical Carnot cycle. 
However, because of the absence of hot and cold heat baths, it 
should not be confused with cycles of genuine quantum heat 
engines discussed in the literature (see, for example, Refs. 
[2-7]). 

 
QUANTUM-MECHANICAL ANALOG OF THE 
CARNOT CYCLE  

 
The cycle is described in Fig. 1.  We discuss a case, which 

is much more general than that in Ref. [1]. 
Initially, the system is in a state, u1(VA ) , at A. After the 

volume expansion, the system reaches B in a higher state, say 
u2 (VB ) . During the expansion process BA → , the system 

is in a superposed state, a1(V ) u1(V ) + a2 (V ) u2 (V )  

a1(V )
2
+ a2 (V )

2
= 1( ) , but the average energy (i.e., an 

analog of the internal energy) EH ! H
H

= En (V ) an (V )
2

n=1,2!  is kept unchanged.  Here,  H = H (V )  
 
 

 
Figure 1. The cycle depicted in the plane of volume V and 

pressure P. 

 

 
is the system Hamiltonian for the stationary Schrödinger 
equation, H (V ) un (V ) = En (V ) un (V ) , which is valid under 
the adiabaticity condition, that is, slow change of V. The time 
scale of change of V is much larger than that of the dynamical 
one, E/~  , with E being a typical value of the energy. Note 
that EH = E1(VA ) = E2 (VB )  and a1(VB ) = a2 (VA ) = 0 . Similar 
is the process C ! D , in which the state changes from 
u2 (VC )  to u1(VD ) , and in-between it is a superposed one, 
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ABSTRACT 
The quantum-mechanical Carnot cycle is an analog of the thermodynamic one and is constructed without heat baths. The 

cycle is realized by controlling quantum states of particles as well as a confining potential. Here, recent developments about 
such a cycle are reported. The general formula for the efficiency is presented for an arbitrary potential. A finite-time process is 
also discussed, and the value of the efficiency under the maximum power condition is derived in the case of a one-dimensional 
infinite square-well potential. 
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b1(V ) u1(V ) + b2 (V ) u2 (V )  b1(V )
2
+ b2 (V )

2
= 1( ) , but the 

average energy EL ! H
L
= En (V ) bn (V )

2
n=1,2"  is kept 

unchanged. We have EL = E2 (VC ) = E1(VD )  and 

b1(VC ) = b2 (VD ) = 0 . These two processes are analogs of the 
isothermal processes in the thermodynamic Carnot cycle. On 
the other hand, B! C  and AD →  are analogs of the 
adiabatic processes. During CB →  ( AD → ), the state 
remains as u2 (V )  u1(V )( ) . These analogies have been 
clarified in Ref. [8] from the viewpoint of a formal similarity 
between quantum mechanics and thermodynamics. An 
explicit example using a one-dimensional infinite square-well 
potential with movable walls shows [1] that it is in fact 
possible to construct a cycle of this kind. 
Work is defined by d 'W = !H (V ) / !V dV " #P dV , where 
P is pressure. The work during each process is given as 

follows: WAB = dV !En (V ) / !V[ ]n=1,2"VA
VB# an (V )

2
, WBC =  

dV !E 2 (V ) / !VVB

VC" , dV !En (V ) / !V[ ]n=1,2"VC
VD# bn (V )

2
and 

WDA = dV !E1(V ) / !VVD
VA" . It can be shown [9] that 

WBC = !WDA holds, in general. Therefore, the work extracted 

after a single cycle is W =WAB +WBC +WCD +WDA  

=WAB +WCD . The efficiency of the cycle is then given by 

! =W /WAB . In Ref. [9], the following general formula for 
the efficiency has been presented:  

  

! = 1!
dV "E(V )

#

#V

EL ! E (V )
"E(V )

$
%&

'
()VD

VC*

dV "E(V )
#

#V

EH ! E (V )
"E(V )

$
%&

'
()VA

VB*

             

(1) 

where 

 E (V ) =
1

2
E1(V ) + E2 (V )[ ] ,         (2) 

 !E(V ) = E2 (V ) " E1(V ) .          (3) 
Eq. (1) shows how the efficiency depends on the structure 

of the energy spectrum. Since a potential is the analog of a 
working material in thermodynamics, this formula exhibits 
how the quantum-mechanical Carnot cycle is nonuniversal. 
This is due to the fact that, in pure-state quantum mechanics, 
the von Neumann entropy identically vanishes and, therefore, 
there does not exist an analog of the second law of 
thermodynamics. 

Closing this section, we would like to mention an 
intriguing point regarding the efficiency in Eq. (1) for a 
certain class of spectra. Suppose the energy eigenvalues to 
have the form 

 
En (V ) =

!n

V "
 ( ...,3,2,1=n )         (4) 

where !  and !n ’s are independent of V, ! > 0  and 

! 1 < ! 2 < ! 3 < ! ! ! . The spectra of this form are refereed to 
here as homogeneous type. In this case, Eq. (1) is calculated to 
have the following simple form: 

 

! = 1!
EL

EH

.           (5) 

A homogeneous-type spectrum will be discussed in the 
next section. 

 
FINITE-TIME PROCESSES AND MAXIMUM POWER 
OUTPUT 

 
So far, we have seen the nonuniversal nature of the 

quantum-mechanical Carnot cycle. Here, we wish to examine 
this point from a different aspect. Specifically, we consider 
finite-time processes and the condition for the maximum 
power output [10]. For this purpose, we employ a simple 
system of a particle confined in a one-dimensional infinite 
square-well potential as in Ref. [1]. The energy eigenvalues 
are given by En (L) = n

2! 2!2 / (2mL2 )  ( n = 1, 2, 3, ... ), 
where L is the width of the potential well and slowly changes 
in time. (Since the system is one-dimensional, L corresponds 
to the volume V in the preceding section.) We note that this 
spectrum is of the homogeneous type. Taking the ground 
( 1=n ) and first excited )2( =n  states and applying Eq. (5), 
we obtain 

 

! = 1! 4
LA
LC

"
#$

%
&'

2

,          (6) 

where LA  and LC  are the values of the potential width at A 
and C, respectively. 

Now, let v (t)  be the speed of the change of the width. The 
total amount of movement of L during a single cycle is given 
by 

 
Ltotal = 2(LC ! LA ) = d t v (t)

0

!

! " v ! ,        (7) 

where !  is the cycle time and v  is the average speed. Eq. (7) 
allows one to express the cycle time as follows: 

 
! =

2

v
(LC ! LA ) .          (8) 

On the other hand, the work extracted after a single cycle is 

W = (! 2!2 / m) 1 / LA
2 ! 4 / LC

2( ) ln 2 . The condition 

 

r !
LC
LA

> 2            (9) 

has to be fulfilled in order for the work extracted to be 
positive. The power output is then expressed as follows [10]: 

 

! "
W

!
=
" 2!2v ln 2

2mLA
3 #

r2 $ 4

r3 $ r2
.         (10) 

Our interest is in maximization of ! . This problem turns out 
to given by the solution of the equation, r3 !12r + 8 = 0 . 
This cubic equation has three real solutions, but 
r = 4cos(2! / 9)  is the one and only solution consistent with 
the condition in Eq. (9). Then, the corresponding value of the 
efficiency is 

 
!* = 1!

1

4cos2 (2" / 9)
= 0.573977952... .        (11) 

This result is universal in the sense that it does not contain 
any of the parameters characterizing the system under 
consideration. 
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CONCLUSION 
 

We have reported recent developments made about the 
quantum-mechanical Carnot cycle. We have discussed the 
general formula derived for the efficiency for an arbitrary 
potential confining a particle. Also, we have mentioned the 
result on the efficiency under the maximum power condition 
by employing a one-dimensional infinite square-well 
potential. 
As stressed in the very beginning of this article, the systems’ 
quantum coherence remains intact, since no heat baths are 
present. This fact leads to the following question: Can the 
principle of superposition plays some role here? The answer 
to this question seems to be affirmative. It is in fact shown in 
Ref. [11] that the efficiency can be enhanced by superposition 
of relevant states. It is also of extreme interest to examine 
roles and effects of quantum entanglement in systems 
consisting of more than one particle. 
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