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H-1111, Budapest, Műegyetem rkp. 3-9, Hungary;

3Montavid Thermodynamic Research Group
Email: van.peter@wigner.mta.hu

ABSTRACT
The explanation of the apparent universality of thermodynamics points toward the extension of the usual conceptual background
of the second law. Arguments are collected that a basic guiding idea of stability of thermodynamic equilibrium combined with a
proper interpretation of the entropy principle may provide the necessary solid foundation with verifiable consequences.

INTRODUCTION

When treating the conceptual background of the second law,
it is reasonable to start from the foundations, analysing the prin-
ciples behind the concepts.

The basic mystery in thermodynamics is the universality.
The validity of thermodynamic equations and theories regularly
exceed the expectations. There are three independent aspects
here:

1. Uniformity. We expect uniform principles and clear transi-
tion methods between the modeling levels. The validity of
the second law is accepted in

a) Thermostatics, treating the relation of state vari-
ables,
b) Ordinary thermodynamics, when processes of ho-
mogeneous bodies are modeled by time dependent
state variables,
c) Continuum thermodynamics, where the thermody-
namic quantities are fields,

2. Overdisciplinarity. The concept of entropy and tempera-
ture appears from black holes to quark-gluon plasma, from
general relativity to quantum chromodynamics.

3. Mechanism independence. The validity of the second law
is independent of the particular mechanisms behind. Sta-
tistical mechanics, kinetic theory can provide particular
demonstrations, but no proofs for a general principle.

One may wonder and discuss how extensive the validity of
these aspects is. The question is whether and how one can un-
derstand the origin of the observed overdisciplinarity consider-
ing the expected uniformity. We consider as a key aspect the
mentioned attitude to the mechanism independence – the gener-
ality.

In the following, we outline more exactly the challenge and a
possible program of validation. Our working hypothesis is that
the second law is a general principle and this is the reason of the
universality of thermodynamics. Therefore, we need a guiding

general idea, a conceptual understanding and, at the same time,
we need a working strategy to translate this understanding to
proper mathematical formulation of physical theories.

THE SECOND LAW IS MATERIAL STABILITY

A guiding general idea cannot and must not postulate the ex-
istence of entropy, neither the increase of entropy: the aim is
to introduce the physical origin of the entropy concept. The
general idea cannot introduce statistical concepts because that
violates the assumption of mechanism independence. Fluctua-
tions or periodic machines are too specific. A general idea must
be transparent. The general idea should produce a benchmark, a
method of verification. A good idea should have a way of exact
formulation in addition to flexibility. My suggestion is that

Thermodynamic equilibrium of simple materials
is stable under neutral conditions.

The idea that stability is connected to the second law, is an-
cient, it appears in the thermodynamic literature from different
points of view and in different contexts (see, e.g. [1; 2; 3; 4; 5;
6]). Sometimes there are wrong connected claims. We do not
state here the stability of steady-states (see, e.g. [7; 8] etc.). The
validity of an idea can be discussed [9] and exact formulations
of the statement are necessary. However, it is reasonable to be-
lieve that dissipation leads to stability of isolated simple mate-
rials. Without stability there is no observation, no reproduction
of experiments. The above statement should be considered as a
guiding idea, a challenge, a starting point of a program for the
search of exact conditions [10]. This is not an exact statement
yet, this is a principle.

On the other hand, the stability concept of the second law is
fully compatible to the other formulations. The complete ther-
mostatics can be understood from this point of view. That en-
tropy function is a potential in the thermodynamic phase space
of classical homogeneous gases and fluids, that it is concave,
and the requirement that entropy increases along several reason-
able sets of differential equations, form the three conditions of a
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Figure 1. Irreversible processes in a homogeneous van der Waals gas
in a cylinder closed by a piston are shown on the pressure-volume plane.
The initial conditions form a rectangular area around the critical point.
The three equilibrium points are denoted by crossed circles, the one
under the spinodal is instable. The tendency toward the equilibrium indi-
cates a slow manifold.

Lyapunov theorem. The thermodynamic equilibrium of simple
ordinary thermodynamic systems is asymptotically stable. This
is a simple but rigorous result, developed thoroughly in the book
of Matolcsi [11]. There are clear conditions when it is valid and
this is the necessary step between thermostatics and continuum
thermodynamics claimed e.g. in [12]. Instead of further details,
I show here some integral curves of a van der Waals body in
a constant environment at the pressure-volume plane with crit-
ical state normalization. These are processes, initial conditions
are around the critical point indicated by crosses. The van der
Waals gas body has a fold bifurcation at the critical point, and
we can observe a slow manifold in Fig. 1 with the particular
interaction parameters.

In case of continua, our basic expectation is similar. Dissi-
pation has to ensure that a homogeneous equilibrium is asymp-
totically stable in the absence of excitations and in case of neu-
tral boundary conditions. Otherwise the dissipative theory is
not properly constructed, it is a wrong model for real materi-
als. Construction and validation are not really separable when
speaking about principles. One can build a theory by any meth-
ods, introducing the empirical experience and also exploiting
the entropy inequality and then check the stability of the ho-
mogeneous equilibrium. Does the entropy principle ensures the
stability? The Fourier-Navier-Stokes system is linearly stable
[13], but generalized continua is not necessarily. Why? Is that a
problem of the principle or of the formulation?

Now we have arrived at the subject of the next section. To
formulate a reasonable attitude, we should clarify the relation
between the expected universality and the entropy principle in
continuum physics.

ENTROPY AND UNIVERSALITY

A possible and rather usual understanding of the relation of
thermodynamics and statistical theories assumes parallel mod-
eling levels according to the uniformity aspect of universality:

Thermodynamics Statistical mechanics

Thermostatics Equilibrium statistical mechanics

Ordinary thermodynamics Stochastic theory

Continuum thermodynamics Kinetic theory

Table 1. Conceptual relation of thermodynamics and statistical
physics

There is also a relativistic version of these theories. There
is a well-developed relativistic kinetic theory and also there are
relativistic theories of fluids (some of them are unstable). A rel-
ativistic stochastic theory is a relatively new development [14].
However, our particular interest now is, that there is a relativis-
tic thermostatics, too [15; 16]. It is the statics of fast motion. It
is an interesting subject in itself, but for us only one aspect is re-
markable. One of the basic relations, the most widely accepted
one, that leads to relativistic equilibrium statistical mechanics,
e.g. to Jüttner distribution, is the following:

dE = T dS− pdV + vdG.

This is a relation of energy E, temperature T , entropy S, pres-
sure p and volume V of a thermodynamic body and its velocity v
and momentum G. This relativistic generalization of the Gibbs
relation expresses the fact that energy and momentum cannot
be separated. The content of the above formula is that entropy
is a function of the volume and also of the energy-momentum
four-vector S = S(Ea,V ). Only for an observer can entropy be a
function of energy and momentum separately. Relativistic ther-
mostatics requires that entropy depends on momentum [17; 18].

Quantum versions of statistical theories at the second col-
umn of Table 1 are well known. We have been struggling with
quantum thermostatics for a long time, mostly via statistical ap-
proaches, too. However, what is quantum continuum thermody-
namics? It is originally not an outcome of a statistical theory.
It is well-known for a long time that a special Korteweg fluid,
where the pressure tensor is a function of the density gradient,
the so-called Schrödinger-Madelung fluid, is equivalent to the
one component Schrödinger equation [19]. The fluid equations
are the following:

ρ̇+ρ∂ivi = 0

ρv̇i−∂ j

[
h̄2

8m2

(
∂

k
kρδ

i j +∂
i j

ρ− 2∂iρ∂ jρ

ρ

)]
= 0, (1)

where ρ is the probability density, m is the mass of the particle,
h̄ is the Planck constant and vi is the velocity field. The connec-
tion with the wave function is given by the Madelung transfor-
mation ψ =

√
ρeiI , where I is related to the velocity potential in

the simplest case vi =
h̄
m ∂iI. There are no complex fields, nor

operators. Many researches extend the original analogy and put
the Madelung idea into a wider context, and, at the same time,
are speculating on the interpretational consequences. Some of
the most interesting ones are [20; 21; 22; 23; 24; 25; 26; 27].

This is not just an inconvenient side effect that can be forgot-
ten and put aside. Quantum field theories, let they be Abelian
or not, can be reformulated as fluid theories in general [28; 29].
There are vortices there, too. There is a corresponding thermo-
dynamic background that requires a density gradient dependent
entropy density [30]. For quantum continuum thermodynamics,
the entropy density depends on the gradient of velocity.
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Finally, one of the most striking relativistic —not yet
observed— phenomena is the Unruh effect. An accelerating
observer may observe a thermal electromagnetic radiation of an
oscillating charge. In a covariant framework a thermodynamic
theory of Unruh effect may require an acceleration dependent
entropy function. As acceleration is related to gravitation one
may wonder the role of the second law here... [31].

Therefore, the manifest overdisciplinary aspects of thermo-
dynamic concepts indicate a need of a profound generalization
of our classical approaches. Velocity and acceleration depen-
dent entropies are well justified by relativistic theories. The
traditional nonrelativistic concept of objectivity, which forbids
this dependence, is wrong [32]. Moreover, gradient dependent
constitutive state spaces and entropies are required for the ex-
planation of quantum-hydrodynamic relations...

There is a simple idea that unfolds the mystery of universal
aspects of thermodynamics. A theory is as universal as general
the built-in assumptions and the conditions are. In continuum
physics, the entropy principle is interpreted as an inequality,
constrained by all other relevant conditions of the corresponding
theory. Objectivity, material symmetries, kinematic restrictions,
and fundamental balances are among the constraints that should
be considered by the exploitation. This is a general approach to
the second law if we analyse and properly apply the constraints
and the other fundamental aspects [33; 34; 35].

What are these fundamental aspects that should be scruti-
nized? It is already mentioned that the choice of the state space,
both the basic and the constitutive one, is definitely one of them,
where the known classical restrictions can be questioned. More-
over, entropy is a four-vector, entropy density and entropy cur-
rent are frame dependent separations both in relativistic and in
nonrelativistic spacetimes. Therefore, entropy current is a con-
stitutive quantity, too.

These questions are connected. Assuming a classical en-
tropy current, as the quotient of the heat flux and the tempera-
ture, ji

s = qi/T , one can prove that gradients are excluded from
the state space [36; 37; 38]. One may wonder that the multi-
ple methods and ideas in weakly nonlocal continuum theories
appear to circumvent these restrictions. These are for exam-
ple the square-gradient ideas [39; 40; 41], GENERIC [42; 43;
44], phase fields theories [45; 46; 47], different modifications
of power [48; 49; 50; 51], and others [52; 53]. Which is the
best idea? Some researches say that the triumph of Copenhagen
interpretation is due to pure manpower and the beautiful math-
ematical framework of von Neumann [54] . What will happen
in thermodynamics? Shall we able to discuss and reconcile the
problematic aspects? Or, at least, shall we able to understand
each other?

My opinion is that universality is the key for ordering the dif-
ferent approaches and understanding their relations. Our best
tool toward universal thermodynamic theories is the formula-
tion of the entropy inequality as generally as it is possible and
applying proper formulation of the additional principles, first of
all objectivity, that determine the choice of the basic and consti-
tutive state spaces. Therefore, if our methods of the second law
are general and correct then we will obtain a universal theory.

What is the role of stability then?

ENTROPY AND STABILITY

Thermodynamic equilibrium and thermodynamic state are
delicate concepts. State variables should distinguish between
the thermodynamic bodies, characterize the state and not the in-

teraction [55]. The stability concept of the second law alone
does not clarify the state variables and it is not constructive
without the entropy principle. On the other hand, the entropy
principle without stability is a complicated formulation of the
second law with an obscure physical content. Stability some-
times follows from the thermodynamic framework, but not al-
ways. Thermodynamic frameworks, the different entropy prin-
ciples are not equivalent.

The relation between stability and entropy is not simple. This
is a long-discussed, deeply investigated and frequently rejected
relation in classical continuum mechanics. A non-negative en-
tropy production with concave entropy density alone does not
ensure the asymptotic stability of equilibrium. Higher grade
fluids are unstable [56; 57]. At the local equilibrium level,a fa-
mous counterexample is the Eckart theory of relativistic fluids
[58]. It is the simplest relativistic generalization of the Fourier-
Navier-Stokes equations, constructed by thermodynamic princi-
ples. However, the homogeneous equilibrium of an Eckart fluid
is violently unstable, in spite of the thermodynamic framework
and nonnegative entropy production [59].

Technically, the Lyapunov method for partial differential
equations is not easy. It is simpler and more straightforward
to check the linear stability of the equilibrium. Linear stability
should be the consequence of the expected more general stabil-
ity requirement and therefore serves as a convenient necessary
condition, a suitable benchmark in the theory development.

The universal extension of the entropy principle is a promis-
ing program. Recent examples of dissipative relativistic fluids
indicate that an extension of the entropy principle may restore
the expected stability [60; 61; 13; 62]. In this particular case,
momentum also has to be among the state variables and, most
importantly, the momentum balance is a constraint of the en-
tropy inequality [61; 18].

The thermodynamic framework and the stability of homoge-
neous equilibrium in case of neutral conditions are two sides of
the same coin. Stability is not only a general idea behind the
second law, but also a verification tool of thermodynamic theo-
ries.

HOW UNIVERSAL?

The first book of the Landau-Lifshitz series of theoretical
physics is about analytical mechanics [63]. It starts with a mind
provoking derivation of the Lagrangian of a free point mass by
spacetime symmetries and Hamiltonian variational principles.
This is an attempt to understand the origin of evolution equa-
tions in physics. However, the variational principles as tools are
not universal. Dissipation cannot be incorporated easily. Heat
conduction and also dissipative mechanical systems in general
cannot be understood with the help of variational principles,
even the best attempts are artificial and their validity is restricted
[64; 65; 66; 67; 68].

On the other hand, the previously outlined entropy principle
provides a possibility to construct and derive evolution equa-
tions both for the nondissipative and the dissipative cases [69].
The clear examples in this respect are the evolution equations
for internal variables, where restrictions from the second law
provide the best way of construction, recovering and including
results from dissipation potentials or variational assumptions,
without these additional hypotheses [70]. Moreover, in some
investigated cases, the nondissipative part of the resulted evolu-
tion equation has an Euler-Lagrange form, the thermodynamic
potential is connected to a Lagrangian. This generality requires
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the extension of the second law incorporating gradients of dual
internal variables in the constitutive state space. This exten-
sion, the method of dual internal variables introduces a general
framework of dissipative mechanical phenomena [71; 72; 73;
74].

Generalized mechanics provides an example where several
independent methods were applied for generating evolution
equations of internal variables of mechanical origin [75; 76;
77]. Here the thermodynamic method of dual internal variables
—the previous extension of the entropy principle— can gener-
ate the evolution equations [78; 79]. The dissipative part of the
evolution equations promisingly stabilizes the thermodynamic
equilibrium according to linear stability analysis [80].

Then one may ask: how universal are the thermodynamic
principles? As general laws of nature, their validity incorporates
mechanics, electrodynamics and every discipline of physics [81;
82]. With a proper formulation and understanding, we can grasp
the very origin and connection between these seemingly sepa-
rated fields. This is the final dream of universality.

UNIVERSAL SUMMARY

There are some principles in physics that provide a driving
force for the development. Those are sometimes subjective feel-
ings, like the requirement of simplicity and harmony. Others
express deeper and almost inevitable requirements of physical
theories, like objectivity. In a sense it is convenient to say that
some expected general principles are invalid [83; 84; 85; 86].
That way we may separate ourselves for some inconveniences
and close a direction of investigations. This reductionism is fre-
quently fruitful in focusing and deepening our understanding.
On the other hand, general principles are pharoses in the scien-
tific landscape, shining lights that keep ourselves on the right
way. Focusing on the nearby stormy waves cannot prevent us
from the greater dangers of reefs, which can be detected only
from a right perspective. From this point of view an ostensi-
ble violation of a general principle is not only an indication that
its validity is limited, but also a challenge that something is not
properly formulated.

The experienced universality indicates the need for the fol-
lowing generalizations of the entropy principle in continuum
theories:

– The entropy four-vector is a constitutive quantity, both
in classical and relativistic theories. Therefore, the entropy
current density is constitutive.
– Momentum should be incorporated in the basic state
space when dealing with mechanics and thermodynamics.
– Space and time derivatives of the basic variables cannot
be excluded from the constitutive state space.
– The momentum balance must be considered directly as
a constraint in the entropy inequality, beyond the internal
energy concept.

These generalizations, in particular the clarification of the role
of energy and momentum, require the proper formulation and
use of objectivity.

The tool of the validation of the mentioned generalizations
—a benchmark— is provided by the stability concept of the
second law. In particular, the linear stability of the evolution
equations is a necessary condition.

Understanding the extent and the origin of the manifest uni-
versality of thermodynamic principles is one of the greatest
challenges of thermodynamics.
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