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ABSTRACT
In this paper we discuss a systematic procedure to assess the nucleation rate with the help of the non-equilibrium square gradient
model, which is also known as H-model or diffuse-interface model. We first distinguish between the density (concentration)
gradient caused by the phase coexistence in equilibrium and the density (concentration) gradient caused by the non-equilibrium
conditions in bulk phases. The non-equilibrium description of the interfacial region requires a proper Gibbs relation, which
is formulated in our theory. Non-equilibrium thermodynamics uses the constitutive relations between thermodynamic forces
and thermodynamic fluxes. It does not provide the values of the transport coefficients. We use the transport coefficients in the
interfacial region which follow from the square gradient model. Furthermore, the nonzero curvature of the surface modifies the
expressions for thermodynamic quantities in the interfacial region. Next we combine all these pieces in a systematic picture,
which gives a consistent description of heat and mass transport across curved interfaces.

INTRODUCTION

Nucleation is a dynamic process which involves formation
and growth of small nuclei of one phase in another phase [1].
One could think of formation of bubbles in liquid or drops in a
multicomponent fluid. This process requires formation of an in-
terface between two phases, a region where the density or con-
centration gradient are large. Furthermore, during nucleation
matter and heat are being transfered across the interface, which
moves the system towards equilibrium. The interface poses an
additional barrier to transport [2]. This barrier will affect the
standard Fourier’s or Fick’s laws in the interfacial region, where
the transport coefficients become dependent on the density gra-
dients. For small nuclei of the new phase the curvature is rather
high which will also modify the values of the integrated trans-
port coefficients [3]. The knowledge of the integrated surface
transfer coefficients, which determine the barrier of the inter-
face to heat and mass transfer, is useful for a correct prediction
of the nucleation rate.

In this paper we provide a systematic procedure to describe
a non-equilibrium interface of a bubble or droplet, which com-
bines non-equilibrium thermodynamics with the square gradient
model for a curved interface. Following [4], we distinguish the
following steps which are essential in any non-equilibrium ther-
modynamic theory: i) equilibrium thermodynamics; ii) Gibbs
relation; iii) balance equations; iv) constitutive relations. It is
the aim of this paper to emphasize the difference between these
parts and at the same time to bring them together. We will go
through these steps for spherical interface of one-component
fluid, however, the established framework is not restricted to
this particular case.

One of the interesting topics is the origin of so-called non-

equilibrium capillary forces, that are believed to cause the self-
propelled motion of bubbles [5]. Analyzing the structure of the
interface in equilibrium and non-equilibrium, we show that one
should distinguish between the gradients of the density (con-
centration) in the interfacial region on the one hand and the
gradients of the chemical potential or the pressure on the other
hand [2]. The former ones are present even in equilibrium sys-
tem and therefore cannot cause the motion of bubble interface
nor the bubble as a whole. In contrast, the latter ones are the
genuine measure of non-equilibrium and are not reduced to the
interfacial density gradients.

The paper is organized as follows. First, we summarize the
square gradient model for equilibrium interface. In particular,
we discuss the different quantities all of which have a mean-
ing of pressure. It is important to distinguish between them,
especially when coming to non-equilibrium. We identify the
meaning of these pressures. Next, we extend the equilibrium
description to non-equilibrium. Care should be taken when ex-
tending these quantities in the interfacial region. In particular,
we formulate the Gibbs relation for the interfacial region which
differs from the one for a homogeneous phase. Furthermore,
formulating the balance equations we identify the fluxes, which
are a measure of non-equilibrium. Next, we formulate and dis-
cuss the constitutive relations between the fluxes and the ther-
modynamic forces in the context of linear irreversible thermo-
dynamics. We discuss that on macro scale the surface can be
viewed as a separate thermodynamic system, which, in particu-
lar, increases the number of dissipative fluxes by one. Now it is
not only a diffusion flux, but also a component flux, which leads
to dissipation. We also discuss a particular example of a sim-
ple system, where the above considerations are implemented.
Finally, we give the concluding remarks.
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SQUARE GRADIENT MODEL FOR EQUILIBRIUM
SPHERICAL INTERFACE

In square gradient model one starts with the expression for
the Helmholtz energy density f v(r) which can be represented
as a sum of two terms [3]: the local contribution f v

0 (ρ(r),T ),
and the gradient contribution f v

∇ρ(∇ρ(r)),

f v(r) = f v
0 (ρ(r),T )+ f v

∇ρ(ρ(r),∇ρ(r)) (1)

where T is the temperature, ρ(r) is the local density, while
∇ρ(r) is the density gradient. For a spherical interface the den-
sity gradient has only nonzero component ρ′(r), the derivative
of the density with respect to the radial position r. For the sake
of clarity we provide the description for a one-component sys-
tem. The general analysis for multicomponent systems forming
planar interface can be found in [6].

The local contribution f v
0 (ρ(r),T ) is determined by an equa-

tion of state. A particular choice of the equation of state is not
important for the present analysis. In all further calculations we
use van der Waals equation of state. Equation (1) can be con-
sidered as a Taylor expansion in the density derivatives, since
in the interfacial region the density change abruptly. Therefore,
the gradient contribution f∇ρ(ρ(r),ρ′(r)) contains the first non-
local terms in the Taylor expansion

f v
∇ρ(ρ,ρ

′) =
1
2

κρ′(r)2 (2)

The coefficient κ(ρ) is independent of the temperature but may
depend on the density. Without restriction in generality we will
consider it to be independent of the density as well.

For a closed system with fixed total volume and mass the
density distribution is such that it minimizes the total grand po-
tential Ω =

∫
dr 4πr2 ( f v(r)−µeρ(r)), where µe is the equilib-

rium chemical potential of the system. The density distribution
satisfies therefore the equation

µe =
∂ f v

0 (ρ,T )
∂ρ

−κ
(

ρ′′+
2
r

ρ′
)

(3)

We note, that the system considered is highly inhomoge-
neous, which contains the density gradients even in equilibrium.
However, the condition of thermodynamic equilibrium requires
that the chemical potential is constant through the system. In-
deed, that is the case: the chemical potential µe, being the La-
grange multiplier of the variational minimization procedure, is
a number which characterizes the whole system. Even though
each term in Eq. (3) depends substantially on the position, the
entire right hand side of Eq. (3) is independent of the position.

The pressure

In the interfacial region the pressure is no longer a scalar:
it becomes a tensor. It is convenient therefore to consider its
structure in general tensorial form. The tensorial pressure σαβ

can be represented as

σαβ(r) = p(r)δαβ + γαβ(r) (4)

where

p(r) = µeρ(r)− f v(r) (5)

is the thermodynamic pressure and

γαβ(r) = ∇αρ(r)∇βρ(r) (6)

is the tension tensor. Here δαβ is the Kronecker symbol and ∇α

represents the partial derivative with respect to the α coordinate.
In equilibrium in the absence of external field it satisfies the
relation

∇ασαβ(r) = 0 (7)

where the summation convention over double Greek symbol is
used. In the presence of external field the right hand side of
Eq. (7) contains the density of external field.

Identification of the scalar and tensorial terms in Eq. (4) is
arbitrary. For instance, the thermodynamic pressure

p(r) = p0(ρ,T )−κρ∇2ρ− 1
2

κ |∇ρ|2 (8)

where p0(ρ,T ) is the homogeneous pressure which is given by
an equation of state. Equation (4) can therefore be written as

σαβ = p0(ρ,T )δαβ +ϖαβ (9)

where

ϖαβ(r)≡ γαβ(r)−κ
(
ρ∇2ρ+

1
2

κ |∇ρ|2
)

δαβ (10)

is the Korteweg tensor [7].
When using the pressure tensor in the interfacial region, it

is common to speak of the scalar and tensorial parts separately.
The particular identification may depend on the application one
uses it for. In this paper we show that distinguishing the thermo-
dynamic pressure and the tension tensor is natural in the context
of non-equilibrium thermodynamics.

For instance, the expression for the thermodynamic pressure,
Eq. (5), has the same functional form as in a homogeneous
phase. This is important when one introduces the hypothesis
of local equilibrium in non-equilibrium description. Further-
more, integral of the tension tensor over the interfacial region
determines the surface tension. Finally, since Eq. (7) represents
the condition of mechanical equilibrium, it is the gradient of the
total pressure tensor σαβ, not the Korteweg tensor ϖαβ, which
changes the momentum of the system. We will see this when
we discuss the balance equations.

For a spherical system the pressure tensor has a diagonal
form with two independent components, the normal pressure
pn(r) = p(r) + κρ′(r)2 and the tangential pressure pτ(r) =
p(r). The condition of mechanical equilibrium becomes

p′n(r)+
2
r

κρ′(r)2
= 0 (11)
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Figure 1. Profile of the normal, tangential and homogeneous pressure
across the interfacial region for cyclohexane at 330 K

Variations in the pressure are of two kinds. First, due to nonzero
curvature, the normal pressure is not constant across the inter-
facial region. The second term in Eq. (11) represents the local
form of the Laplace pressure and is nonzero for a spherical in-
terface. It is substantial for small bubbles and decreases when
the bubble grows, becoming zero for a planar interface. Next,
there exist variations in pressure which lead to the surface ten-
sion. They are present in the system even in the case of zero
curvature. For a planar interface the normal pressure is con-
stant through the interface, while the thermodynamic pressure
has a large negative dip. The variation of the tension tensor is
the opposite. Figure 1 represents typical profiles of the various
pressures for a spherical bubble of cyclohexane in equilibrium
at T = 330 K.

LOCAL EQUILIBRIUM AND BALANCE EQUATIONS

In order to use the above thermodynamic analysis in non-
equilibrium, one has to assume that there exist so-called local
equilibrium, i.e. that all the thermodynamic quantities and re-
lations in non-equilibrium have the same functional form as in
equilibrium. In formulating the local equilibrium hypothesis
it is important to do the correct identification of the thermo-
dynamic quantities. In homogeneous phase, where the spatial
variations of all the quantities are small, this is straightforward.
However, in the interfacial region, where the density changes a
lot, care should be taken. For instance, as was discussed above,
in the interfacial region one can identify at least three different
quantities with the meaning of pressure: the normal pressure
pn(r), the tangential pressure pτ(r) and the homogeneous pres-
sure p0.

We start with introducing the density ρ(r, t) and the temper-
ature T (r, t) as independent thermodynamic variables. Next we
define the non-equilibrium local Helmholtz energy f v(r, t) in the
interfacial region in the same way as in equilibrium, see Eq. (1).
In non-equilibrium the total grand potential does not have a min-
imum, so it is not possible to perform a variational minimization
procedure. Thus, the pressure and the chemical potential have
to be defined independently. We use Eq. (3) and Eq. (5) for this.
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Figure 2. Profile of the non-equilibrium chemical potential, non-
equilibrium homogeneous chemical potential and the equilibrium total
chemical potential for cyclohexane. Equilibrium temperature is 330 K,
while the non-equilibrium boundary temperature is 10 K higher than
equilibrium value in the center.

Namely, the non-equilibrium chemical potential is

µ(r, t) = µ0(ρ(r, t),T (r, t))−κ
(

ρ′′(r, t)+
2
r

ρ′(r, t)
)

(12)

and the non-equilibrium thermodynamic pressure is

p(r, t) = µ(r, t)ρ(r, t)− f v(r, t) (13)

We note, that unlike µe, the non-equilibrium chemical potential
µ(r, t) is not constant through the system. However, the spa-
tial variation of µ(r, t) is much less than the spatial variation of
µ0(ρ(r, t),T (r, t)). The former one is determined by the rate of
non-equilibrium perturbation, which is considered to be small,
and vanishing in equilibrium. The latter one is determined by
the rate of the density variation in the interfacial region, which
is large and non-zero even in equilibrium. Typical variations of
the chemical potential are represented in Figure 2.

The non-equilibrium normal pressure is defined with the help
of Eq. (4) as

pn(r, t) = p(r, t)+κρ′(r, t)2 (14)

Gibbs relation

An important part of specifying local equilibrium is to pro-
vide the rates of change of thermodynamic quantities, the Gibbs
relation. A particular Gibbs relation can be justified only by the
validity of the results, which follow from the analysis. We can,
however, provide arguments which elucidate a particular form
of the Gibbs relation.

In an inhomogeneous equilibrium system such as interfacial
region the local thermodynamic properties can vary in two dif-
ferent dimensions. First, they can change when the whole sys-
tem changes its thermodynamic state from, for instance, one
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temperature to another. Since the temperature and the chemical
potential are constant in equilibrium system, it means that every
small element of the system follows the same change in ther-
modynamic state, but locally. For a one-component system this
can be described by the ordinary Gibbs relation

T δs(r) = δu(r)+ p(r)δv(r) (15)

where symbol δ denotes a change in a thermodynamic state of
the entire system. Furthermore, u(r) = f v(r)v(r)− T s(r) is
the specific internal energy, s(r) = v(r)∂ f v(r)/∂T ) is the spe-
cific entropy, and v(r) = 1/ρ(r) is the specific volume. Next,
the thermodynamic properties in an inhomogeneous equilib-
rium system vary in space. This variation is not arbitrary and
is constrained by the conditions of mechanical equilibrium,
Eq. (4) and the conditions of the thermodynamic equilibrium,
T (r) = const and µ(r) = const. Using Eq. (5), we obtain

T ∇αs(r) = ∇αu(r)+ p(r)∇αv(r)− v(r)∇βγαβ(r) (16)

Equation (16) has the form of Eq. (15) except the las term. Since
it accounts for spatial changes of thermodynamic properties, we
will call it the spatial Gibbs relation. We note, that both Eq. (15)
and Eq. (16) are exact in equilibrium.

The next step is to formulate the non-equilibrium Gibbs re-
lation. One can observe that the change of a thermodynamic
quantity in thermodynamic state at a given spatial position cor-
responds to the partial time derivative of this quantity, while its
change in spatial position at a given thermodynamic state cor-
responds to the partial spatial derivative. Multiplying Eq. (16)
with barycentric flow velocity v and adding it to Eq. (15) we
obtain

T
d s
d t

=
d u
d t

+ p
d v
d t

− Jm,α v2 ∇βγαβ (17)

where Jm ≡ ρv is the mass flux across the interface and we have
omitted the arguments (r, t), as now all the quantities depend
on position and time. Equation (17) is the Gibbs relation for
a non-equilibrium interfacial region. The last term is nonzero
only in the interfacial region and vanishes in the homogeneous
phase, leading to the ordinary form of the Gibbs relation. The
last term can be considered as a work required to transfer an
element of specific volume v across the interface. We note that it
is the tension tensor which comes to the non-equilibrium Gibbs
relation, not the Korteweg tensor.

Balance equations

For a one-component system we can write four balance equa-
tions, for mass, energy, momentum and entropy respectively:

∂ρ
∂t

= −∇ ·Jm (18)

∂ev

∂t
= −∇ ·Je (19)

∂ρvα

∂t
= −∇β Jp,αβ (20)

∂sv

∂t
= −∇ ·Js +σs (21)

Here Jm, Je, Jp,αβ, Js are the mass flux, the energy flux, the mo-
mentum flux and the entropy flux respectively. Furthermore, ev

is the total energy density, sv is the entropy density and σs is
the local entropy production. The form of the balance equations
in an inhomogeneous region is the same as in an homogeneous
region. In particular, the momentum flux Jp,αβ consists of the ki-
netic term ρvαvβ and the mechanical pressure tensor σαβ. When
there is no flux, the momentum balance equation, Eq. (20), re-
duces to the condition of mechanical equilibrium, Eq. (4). It
is clear, therefore, that it is the total pressure tensor σαβ which
contributes to the momentum flux.

Using the Gibbs relation, Eq. (17), and the above balance
equations we can derive the expression for the entropy produc-
tion. In spherical coordinates it takes the following form

σs = Jq

(
1
T

)′
(22)

where the heat flux Jq ≡ Je − Jm(u+ v2/2+ pv) is the measur-
able heat flux.

CONSTITUTIVE RELATIONS AND TRANSPORT CO-
EFFICIENTS

We must provide constitutive relations between the ther-
modynamic driving forces and the fluxes. In case of one-
component system the thermodynamic force is the radial tem-
perature gradient, (1/T )′ while the flux is the heat flux Jq. In
order for the entropy production to be positive, they must be
related linearly, i.e.

(
1
T

)′
= rqq(r)Jq (23)

where rqq(r) is the local resistivity to the heat transfer. A par-
ticular expression for the resistivity coefficient does not follow
from the theory and must be given in addition. In the context of
the square gradient theory we model the resistivity coefficient
similarly to the local Helmholtz energy, Eq. (1), i.e.:

rqq(r) = rqq,0(ρ,T )+ rqq,∇ρ(ρ,∇ρ) (24)

In this form the resistivity coefficient resembles the equilibrium
profiles of the density and the density gradient. Even though
it depends on the density gradient, it does not contribute to the
driving force, as is expected in linear non-equilibrium thermo-
dynamics. All the effects of non-equilibrium perturbation are
therefore due to the nonzero heat flux Jq.

In equilibrium thermodynamics a smooth variation of local
density profile across the interface leads to the surface excess
properties, such as the interfacial tension or the Laplace pres-
sure. For small bubbles or droplets these properties modify the
state of the system such that the surface becomes its important
part, together with the bulk phases. A similar situation is ob-
served in non-equilibrium. Due to smooth variation of the local
resistivity profile rqq(r) across the interface, the surface pos-
sesses excess resistance to the heat transfer. Additional resis-
tance is particularly large for small bubbles or droplets as it may
be comparable to the bulk resistance.

In a continuous description of a one-component non-
equilibrium system there exist only one irreversible flux, the
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heat flux, which is caused by the temperature gradient, as sug-
gested, in particular, by Eq. (23). However, description in
terms of the excess interfacial properties, in particular for bub-
ble and droplets, reveals existence of the cross effects. Thus,
the temperature gradient across the interface causes the mass
flux, while the gradient in the chemical potential causes the heat
flux. These phenomena are the essence of nucleation process,
so the correct account for these phenomena is crucial for un-
derstanding the nucleation. The reason for the existence of the
irreversible mass flux in the one-component system is the pres-
ence of surface. Its velocity does not necessarily coincide with
the barycentric velocity of the fluid. This leads to the mass flux
across the interface. This flux carries along additional heat due
to the temperature gradient.

One can perform the analysis of non-equilibrium transport
for a discrete system (see e.g. [8] or [2]) and in stationary states
obtain the following constitutive relations

∆
1
T

= Rqq Jg
q +Rqm Jm

−∆
µ
T
+hg ∆

1
T

= Rmq Jg
q +Rmm Jm

(25)

where ∆ indicates the difference between the extrapolated to the
surface bulk values of the corresponding quantities. Further-
more, hg is the specific enthalpy in the gas phase and Jg

q is the
measurable heat flux in the same phase. Equation (25) suggests
that there exist mass flux Jm across the interface, which depends
both on the temperature difference and the chemical potential
difference across the interface.

The coefficients Rqq, Rqm, Rmq, Rmm represent the excess in-
terfacial resistances to the heat and mass transfer. Just like the
local resistivity coefficient rqq(r), they can depend only on equi-
librium properties of the system and do not depend on the non-
equilibrium perturbation. They are related to the local resistivity
profile in the following way:

Rqq(x) = E[rqq](x)

Rmq(x) = Rqm(x) = E[rqq (hg −h)](x)

Rmm(x) = E[rqq (hg −h)2](x)

(26)

where

E[q](x)≡
∫ rℓ

rg
dr

x2

r2

(
q(r)−qgΘ(x− r)−qℓΘ(r− x)

)
(27)

In this expression Θ is the Heaviside step function, while rg and
rℓ are the positions in the homogeneous region of the gas and
liquid phase. Furthermore, qg and qℓ are the extrapolated to the
position x homogeneous values of the quantity q. E[q] repre-
sents therefore the excess of a quantity q(r) across the interfa-
cial region above the homogeneous values. Figure 3 illustrates
the idea of excess: it is basically the difference between the
shaded areas of different color. The value of the excess depends
on the position of the dividing surface. Depending on the kind
of profile it can be either positive or negative, such as in Fig-
ure 3(a), if the profile changes monotonically across the inter-
face, or always positive, such as in Figure 3(b), if the profile has

a peak inside the interfacial region. Equations (26) show that in-
terfacial resistances are the excesses of local profiles, which are
the combinations of resistivity profile and the enthalpy profile.

A PARTICULAR SOLUTION FOR STATIONARY
STATES

We consider here an example of solution for a bubble in sta-
tionary states. The balance equations 18-21 take the following
form

(r2 Jm)
′ = 0

(r2 Je)
′ = 0

(r2 Jp)
′ = 2r p(r)

(r2 Js)
′ = σs

(28)

where the momentum flux Jp = pn +ρv2. Unlike the planar in-
terface the mass, energy and momentum fluxes are not constant
through the interfacial region. Due to spherical symmetry, it is
r2 Jm and r2 Je which are constant. In addition, r2 Jp is not even
constant.

For a planar interface stationary states are typically realized
by keeping different values of the temperature and pressure on
the boundaries of the system. This leads to a flux of matter and
energy into the system at one side of it and out of the system
at the other side. An equivalent picture for a spherically sym-
metric system would be to control the temperature and pressure
at the spherical boundary. This would lead to a flux of matter
and energy through that boundary. In stationary states this flux
should be compensated by the corresponding source or sink in
the center of the bubble. Equation (28) suggests that this could
be realized either if the flux of matter or energy is zero every-
where or if they are infinite in the center. In the first case we get
equilibrium, while the second case is unphysical. In other words
the stationary non-equilibrium state for a bubble or a droplet is
not possible. It can either be in equilibrium, or grow (shrink).

The interfacial property of a bubble do not depend, however,
on its motion. Besides, the most convenient condition to study
these properties is stationary state. In order to circumvent the
above problem in stationary state we need to allow matter and
energy to be sinked not in the center of the bubble, but at some
finite radius. Our system would be therefore have not only the
outer boundary of the radius Lo, but also the inner boundary of
radius Li. The gas-liquid interfacial region lies entirely inside
the layer between these boundaries. With this geometry we can
control the temperature and pressure at the both boundaries.

To illustrate a particular solution we consider the case when
there is no mass flux across the boundary. In this case Eq. (23)
allows an analytic solution for the temperature:

1
T (x)

=
1
T i +

(
1

T o − 1
T i

) ∫ x

Li
dr

rqq(r)

r2

/ ∫ Lo

Li
dr

rqq(r)

r2 (29)

The local resistivity profile depend only on equilibrium proper-
ties of the system. Equation (24) can take the following form

rqq(r) = ri
qq +(ro

qq − ri
qq)

ρeq(r)−ρi
eq

ρo
eq −ρi

eq
+α(ro

qq + ri
qq)

|∇ρeq|2

|∇ρeq|2max
(30)
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Figure 3. Illustration of the interfacial excess. The excess is the difference between the shaded areas of different color. (a) Depending on the position
of the dividing surface the excess may be both positive and negative; (b) Irrespectively of the position of the dividing surface, the excess is always
positive.
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Figure 4. Local resistivity profiles (a) and temperature profiles (b) for spherical layer filled with various amounts of cyclohexane, boundaries of which
are kept at 330 K and 336.6 K.

where superscripts i and o denote the values of the resistivity
and the density at the boundaries. Typical resistivity profiles for
different bubble sizes are given in Figure 4(a). Position of the
peaks in the profiles correspond to the positions of the interfa-
cial region. This lead to the temperature profiles illustrated in
Figure 4(b). We see that the temperature profiles has different
slopes in the gas and liquid phases. This is natural, since the gas
and liquid resistivity are different. Higher gas resistivity leads
to the more steep temperature profile in the gas phase. Another
interesting thing is that the extrapolated temperature profiles in
the gas and liquid phases are different at the interface.

CONCLUSIONS

In this article we have presented a systematic procedure for
the description of a non-equilibrium spherical interface. We

considered separately the equilibrium square gradient model,
non-equilibrium constitutive equations and the extension of the
equilibrium thermodynamic quantities in an inhomogeneous re-
gion to non-equilibrium. We emphasized the importance of this
extension as it allows one to identify correctly the forces which
drive the system away from equilibrium.

In particular we have summarized the role of pressure. It
was shown that one can identify several quantities with a mean-
ing of the pressure, namely the thermodynamic pressure, the
normal and tangential pressure, the tension tensor and the Ko-
rteweg tensor. In particular, the thermodynamic pressure is used
in the definition of local thermodynamic potentials, such as lo-
cal Helmholtz energy or local internal energy, and in the Gibbs
relation. In addition, the tension tensor appears in the Gibbs
relation for an inhomogeneous region, which illustrates an ad-
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ditional work required to transfer a volume element across the
interface. In contrast, the normal pressure is present in balance
equation for momentum, i.e. equation of motion.

We have discussed that non-equilibrium fluxes are deter-
mined by the gradients of the chemical potentials rather than
the gradients of the densities. While the variations of the ther-
modynamic quantities, such as p0 or µ0, determined from the
equation of state are large across the interfacial region, the non-
equilibrium flux of matter is determined by the slow variation
in the total chemical potential.

We have discussed the origin of an additional resistance met
by a bubble to heat and mass transfer, which is caused by the
interface. The excess resistance is essentially determined by the
peak in the local resistivity profile caused by the large density
gradients in the interfacial region. As the surface can be consid-
ered as a separate thermodynamic phase, its resistance is deter-
mined by the equilibrium properties, just like the resistance of
the homogeneous phase.

Finally we considered a simple example of a bubble in non-
equilibrium conditions. It illustrated the typical profiles of local
properties which are developed in non-equilibrium bubble or
droplet.

NOMENCLATURE

Vectors are indicated by the bold phase, tensors are indicated
by two Greek subscripts.
0 Subscript indicating the homogeneous phase
f v Helmholtz energy density [J/m3]
h Specific enthalpy [J/kg]
Jm Mass flux [kg/(m2s)]
Je Energy flux [J/(m2s)]
Jq Measurable heat flux [J/(m2s)]
Jp Momentum flux [Pa]
Js Entropy flux [J/(m2K)]
p Thermodynamic pressure [Pa]
pn Normal pressure [Pa]
pτ Tangential pressure [Pa]
r Position [m]
rqq Local heat resistivity coefficient [(m s)/(J K)]
Rqq Excess heat resistance coefficient [(m2s)/(J K)]
Rqm Excess heat resistance coefficient [(m2s)/(kg K)]
Rmm Excess heat resistance coefficient [(m2s)/(kg2 K)]

s Specific entropy [J/kg]
T Temperature [K]
t Time [s]
u Specific internal energy [J/kg]
v Specific volume [m3/kg]
v Velocity [m/s]
α, β Spatial components of vectors and tensors []
E Excess operator []
γαβ Tension tensor [Pa]
κ Square gradient coefficient [J m5/kg2]
µ Chemical potential [J/kg]
ρ Mass density [kg/m3]
σs Entropy production [J/(m3K)]
σαβ Pressure tensor [Pa]
ϖαβ Korteweg tensor [Pa]
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