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ABSTRACT
A rigorous and general logical scheme for the definition of entropy is presented, which is based on a complete set of operational
basic definitions and is free of the unnecessary assumptions that restrict the definition of entropy to the stable equilibrium states
of simple systems. The treatment applies also to systems with movable internal walls and/or semipermeable walls, and with
chemical reactions and and/or external force fields. Preliminary and auxiliary to the definition of entropy are the definition
of thermal reservoir and an important theorem which supports the operational definition of temperature of a thermal reservoir.
Whereas the thermal reservoir must be a normal system, the definition of entropy applies, in principle, even to special systems,
i.e., system with both a lower and an upper bound in energy.

INTRODUCTION

From the origins of classical thermodynamics to the present
time, several methods for the definitions of thermodynamic tem-
perature and of entropy have been developed. If we exclude the
treatments based on statistical mechanics and those which di-
rectly postulate the existence and additivity of entropy, as well
as the structure of the fundamental relations [1], most of the
methods can be divided in three main categories, which we will
call as follows: classical methods, Carathéodory-derived meth-
ods, Keenan-school methods.

Classical methods start with the Zeroth-Law of thermody-
namics (transitivity of mutual thermal equilibrium) and the defi-
nition of empirical temperature, then define energy by a suitable
statement of the First Law, and finally define thermodynamic
temperature and entropy through the Kelvin-Planck statement
of the Second Law [2]: it is impossible to construct an engine
which, working in a cycle, produces no effect except the raising
of a weight and the cooling of a thermal reservoir.

In their original formulation, classical methods had a logical
loop in the definition of energy. In fact, the First Law was stated
as follows: in a cycle, the work done by a system is equal to the
heat received by the system,

Q =W . (1)

The energy difference between state A2 and state A1 of a sys-
tem A was defined as the value of Q−W for A in any process
of A from A1 to A2. Clearly, this definition is vitiated by a logi-
cal circularity, because it is impossible to define heat without a
previous definition of energy.

The circularity of Eq. (1) was understood and resolved in
1909 by Carathéodory [3], who defined an adiabatic process
without employing the concept of heat and stated the First Law
as follows: the work performed by a system in any adiabatic
process depends only on the end states of the system.

Among the best treatments of thermodynamics by the classi-
cal method we can quote, for instance, those by Fermi [4] and
by Zemansky [5].

In his celebrated paper [3], Carathéodory proposed also a
new statement of the Second Law and developed a completely
new method for the definitions of thermodynamic temperature
and entropy. The treatment refers to simple systems, stable
equilibrium states, and quasistatic processes, i.e., processes in
which the system evolves along a sequence of stable equilib-
rium states. A simple system is defined as a system such that:
a) its stable equilibrium states are determined uniquely by n + 1
coordinates, ξ0,x1, ...,xn, where x1, ...,xn are deformation coor-
dinates (i.e., coordinates which determine the external shape of
the system), while ξ0 is not a deformation coordinate.
b) in every quasistatic reversible process, the work performed
by the system is given by

δW = p1 dx1 + ...+ pn dxn , (2)

where p1, ... , pn are functions of ξ0,x1, ...,xn;
c) the (internal) energy U of the system is additive, i.e., equals
the sum of the energies of its subsystems.

Carathéodory stated the Second Law (Axiom II) as follows:
in every arbitrarily close neighborhood of a given initial state
there exist states that cannot be reached by adiabatic processes.
Then, by employing a mathematical theorem on Pfaffian equa-
tions, he proved that, on account of the Second Law, there exists
a pair of properties, M(ξ0,x1, ...,xn) and x0(ξ0,x1, ...,xn), such
that for every quasistatic process

dU +δW = M dx0 . (3)

Through other assumptions on the conditions for mutual sta-
ble equilibrium, which include the Zeroth Law (transitivity of
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mutual stable equilibrium), Carathéodory proved that there ex-
ists a function τ(x0,x1, ...,xn), called temperature, such that if
two systems A and B are in mutual stable equilibrium they have
the same temperature. Moreover, by applying the additivity of
energy, he proved that there exists a function f (τ), identical for
all systems, such that

M = f (τ)α(x0) , (4)

where α(·) is another function that varies from system to sys-
tem.

Finally, he defined thermodynamic temperature T and en-
tropy S as

T = c f (τ) , S−Sref =
∫ x0

x0|ref

α(x′0)
c

dx′0 , (5)

where c is an arbitrary constant and Sref an arbitrary value as-
signed to the reference state with x0 = x0|ref, and rewrote Eq.
(3) in the form

dU +δW = T dS . (6)

Although mathematically very elegant, Carathéodory’s defi-
nition of entropy is rather abstract. For this reason, several au-
thors proposed simplifications of Carathéodory’s treatment [6;
7; 8].

On the opposite side, more recently, Lieb and Yngvason [9]
developed a new treatment of the foundations of thermodynam-
ics which can be classified among the Carathéodory-derived
ones, because the key postulates concern adiabatic accessibility,
but is more abstract and complex than the original presentation
by Carathéodory. The treatment is based on 15 Axioms, which
regard adiabatic accessibility, simple systems, thermal equilib-
rium, mixtures and reactions. The treatment by Lieb and Yn-
gvason, like that by Carathéodory, refers exclusively to stable
equilibrium states of simple systems.

An alternative method for the treatment of the foundations of
thermodynamics was introduced by Keenan [10] and developed
by Hatsopoulos and Keenan [11], by Gyftopoulos and Beretta
[12], and, more recently, by Beretta and Zanchini [13; 14]. The
treatments developed along this line of thought will be called
Keenan-school methods.

Some advantages of the Keenan-school methods, with re-
spect to the Carathéodory-derived ones, are the following:
a) careful operational definitions of all the concepts employed
in the theory are given; thus, the definition of entropy is com-
pletely free of ambiguities, and an operational procedure to
measure entropy differences is clearly stated;
b) the treatment does not employ the concepts of simple system
and of quasistatic process, so that it is not necessarily restricted
to the stable equilibrium states of simple systems.

A disadvantage is the use, in analogy with the classical meth-
ods, of the concept of thermal reservoir, which, however, is de-
fined rigorously. This disadvantage will be removed in a re-
search work under development.

In this paper, some improvements of the method developed
in Refs. [13; 14] are introduced. In particular, the statements
of the First Law and of the Second Law are split in parts, to
form 5 independent Assumptions. This is done because the do-
main of validity could be different for different Assumptions.

Moreover, the restriction to normal systems is released. The
treatment presented here refers exclusively to closed systems.
A rigorous extension of the definitions of energy and entropy to
open systems can be found, for instance, in Ref. [14].

SUMMARY OF BASIC DEFINITIONS

We briefly recall here some definitions of the basic concepts
of thermodynamics employed in our treatment. A more com-
plete and more detailed set of operational basic definitions can
be found in Refs. [13; 14].

With the term system we mean a set of material particles, of
one or more kinds, such that, at each instant of time, the parti-
cles of each kind are contained within a given region of space. If
the boundary surfaces of the regions of space which contain the
particles of the systems are all walls, i.e., surfaces which cannot
be crossed by material particles, the system is called closed.

Any system is endowed with a set of reproducible measure-
ment procedures such that each procedure, if applied at an in-
stant t, yields a result which is independent of the previous time
evolution of the system; each procedure of this kind defines a
property of the system. The set of all the values of the proper-
ties of a system, at a given instant of time, defines the state of
the system at that instant.

A system can be in contact with other matter, or surrounded
by empty space; moreover, force fields due to external matter
can act in the region of space occupied by the system. If, at an
instant of time, all the particles of the system are removed from
the respective regions of space and brought far away, but a force
field is still present in the region of space (previously) occupied
by the system, then this force field is called an external force
field. An external force field can be either gravitational, or elec-
tric or magnetic, or a superposition of the three.

Consider the union of all the regions of space spanned by
a system during its entire time evolution. If no other material
particles, except those of the system, are present in the region
of space spanned by the system or touch the boundary of this
region, and if the external force field in this region is either
vanishing or stationary, then we say that the system is isolated.
Suppose that an isolated system I can be divided into two sub-
systems, A and B. Then, we can say that B is the environment
of A and viceversa.

If, at a given instant of time, two systems A and B are such
that the force field produced by B is vanishing in the region of
space occupied by A and viceversa, then we say that A and B are
separable at that instant. The energy of a system A is defined
only for the states of A such that A is separable from its envi-
ronment. Consider, for instance, the following simple example
from mechanics. Let A and B be rigid bodies in deep space, far
away from any other object and subjected to a mutual gravita-
tional force. Then, the potential energy of the composite system
AB is defined, but that of A and of B is not.

If, at a given instant of time, two systems A and B are such
that the outcomes of the measurements performed on B are sta-
tistically independent of those of the measurements performed
on A, and viceversa, we say that A and B are uncorrelated from
each other at that instant. The entropy of a system A is defined
only for the states of A such that A is separable and uncorrelated
from its environment.

We call process of a system A from state A1 to state A2 the
time evolution (AB)1 → (AB)2 of the isolated system AB from
(AB)1 (with A in state A1) to (AB)2 (with A in state A2), where B
is the environment of A. A process of A is reversible if the iso-
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lated system AB can undergo a time evolution (AB)2→ (AB)1,
which restores it in its initial state (AB)1 and is called reverse of
(AB)1→ (AB)2. A process of a system A is called a cycle for A
if the final state A2 coincides with the initial state A1. A cycle
for A is not necessarily a cycle for AB.

An elementary mechanical system is a system such that the
only admissible change of state for it is a space translation in a
uniform external force field; an example is a particle which can
only change its height in a uniform external gravitational field.
A process of a system A from state A1 to A2, such that both in
A1 and in A2 system A is separable from its environment, is a
weight process for A if the only net effect of the process in the
environment of A is the change of state of an elementary me-
chanical system.

An equilibrium state of a system is a state such that the sys-
tem is separable, the state does not vary with time, and it can be
reproduced while the system is isolated. An equilibrium state
of a closed system A in which A is uncorrelated from its envi-
ronment B, is called a stable equilibrium state if it cannot be
modified by any process between states in which A is separable
and uncorrelated from its environment such that neither the ge-
ometrical configuration of the walls which bound the regions of
space RRRA where the constituents of A are contained, nor the state
of the environment B of A have net changes. Two systems, A and
B, are in mutual stable equilibrium if the composite system AB
(i.e., the union of both systems) is in a stable equilibrium state.

DEFINITION OF ENERGY FOR A CLOSED SYSTEM

Assumption 1. First Law Statement - Part 1. The works
done by a system in any two weight processes between the same
initial and final states are identical.

Assumption 2. First Law Statement - Part 2. Every pair of
states (A1, A2) of a closed system A, such that A is separable
from its environment in both states, can be interconnected by
means of a weight process for A.

Definition of energy for a closed system. Proof that it is a
property. Let (A1, A2) be any pair of states of a closed system
A, such that A is separable from its environment in both states.
We call energy difference between states A2 and A1 either the
work W A←

12 received by A in any weight process from A1 to A2
or the work W A→

21 done by A in any weight process from A2 to
A1; in symbols:

EA
2 −EA

1 =W A←
12 or EA

2 −EA
1 =W A→

21 . (7)

The First Law yields the following consequences:
(a) if both weight processes A1

w−→ A2 and A2
w−→ A1 exist, the

two forms of Eq. (7) yield the same result (W A←
12 =W A→

21 );
(b) the energy difference between two states A2 and A1 depends
only on the states A1 and A2;
(c) (additivity of energy differences) consider a pair of states
(AB)1 and (AB)2 of a composite system AB, where both A and
B are closed, and denote by A1,B1 and A2,B2 the corresponding
states of A and B; then, if A, B and AB are separable from their
environment in the states considered,

EAB
2 −EAB

1 = EA
2 −EA

1 +EB
2 −EB

1 ; (8)

(d) (energy is a property) let A0 be a reference state of a system
A, in which A is separable from its environment, to which we
assign an arbitrarily chosen value of energy EA

0 ; the value of the
energy of A in any other state A1 in which A is separable from
its environment is determined uniquely by either

EA
1 = EA

0 +W A←
01 or EA

1 = EA
0 +W A→

10 , (9)

where W A←
01 is the work received by A in any weight process for

A from A0 to A1, and W A→
10 is the work performed by A in any

weight process for A from A1 to A0.
Rigorous proofs of these consequences can be found in Refs.

[12; 15], and will not be repeated here.

DEFINITION OF ENTROPY FOR A CLOSED SYSTEM

Lemma 1. Uniqueness of the stable equilibrium state for a
given value of the energy. There can be no pair of different
stable equilibrium states of a closed system A with identical re-
gions of space RRRA and the same value of the energy EA.

Proof. Since A is closed and in any stable equilibrium state it
is separable from its environment, if two such states existed, by
the First Law and the definition of energy they could be inter-
connected by means of a zero-work weight process. So, at least
one of them could be changed to a different state with no change
of the regions of space RRRA and no change of the state of the en-
vironment of A, and hence would not satisfy the definition of
stable equilibrium state.

Normal System. Every closed system A whose energy is
bounded from below and unbounded from above will be called
a normal system.

Assumption 3. Second Law Statement - Part 1. Starting from
any state, a normal system can be changed to a non-equilibrium
state with higher energy by means of a weight process for A in
which its regions of space have no net changes.

Comment. The additivity of energy implies that the union of
two or more normal systems, each separable from its environ-
ment, is a normal system, and thus fulfils Assumption 3.

In traditional treatments of thermodynamics, Assumption 3
is not stated explicitly, but is used, for example when one states
that any amount of work can be transferred to a thermal reser-
voir by a stirrer.

Theorem 1. Impossibility of a PMM2. If a normal system A is
in a stable equilibrium state, it is impossible to lower its energy
by means of a weight process for A in which the regions of space
RRRA occupied by the constituents of A have no net change.

Proof. (See sketch in Fig 1). Suppose that, starting from a
stable equilibrium state Ase of A, by means of a weight process
Π1 with positive work W A→=W > 0, the energy of A is lowered
and the regions of space RRRA occupied by the constituents of A
have no net change. On account of Assumption 3, it would
be possible to perform a weight process Π2 for A in which the
regions of space RRRA occupied by the constituents of A have no
net change, the weight M is restored to its initial state so that
the positive amount of energy W A← = W > 0 is supplied back
to A, and the final state of A is a nonequilibrium state, namely, a
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Ase 

WA  > 0 

A2 
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WA  > 0 

Figure 1. Illustration of the proof of Theorem 1.

state clearly different from Ase. Thus, the composite zero-work
weight process (Π1, Π2) would violate the definition of stable
equilibrium state.

Assumption 4. Second Law Statement - Part 2. Among all
the states of a closed system A such that the constituents of A
are contained in a given set of regions of space RRRA, there is a
stable equilibrium state for every value of the energy EA.

Lemma 2. Any stable equilibrium state Ase of a closed system A
is accessible via an irreversible zero-work weight process from
any other state A1 in which A is separable from its environment,
occupies the same regions of space RRRA and has the same value
of the energy EA.

Proof. By the First Law and the definition of energy, Ase and
A1 can be interconnected by a zero-work weight process for A.
However, a zero-work weight process from Ase to A1 would vi-
olate the definition of stable equilibrium state. Therefore, the
process must be in the direction from A1 to Ase. The absence
of a zero-work weight process in the opposite direction implies
that any zero-work weight process from A1 to Ase is irreversible.

Corollary 1. Any state in which a closed system A is separable
from its environment can be changed to a unique stable equi-
librium state by means of a zero-work weight process for A in
which the regions of space RRRA have no net change.

Proof. The thesis follows immediately from Assumption 4,
Lemma 1 and Lemma 2.

Systems in mutual stable equilibrium. We say that two sys-
tems A and B, each in a stable equilibrium state, are in mutual
stable equilibrium if the composite system AB is in a stable equi-
librium state.

Thermal reservoir. We call thermal reservoir a normal and
always separable system R with a single constituent, contained
in a fixed region of space, with a vanishing external force field,
with energy values restricted to a finite range in which any pair
of identical copies of the reservoir, R and Rd , is in mutual stable
equilibrium when R and Rd are in stable equilibrium states.

Comment. Every normal single-constituent system without in-
ternal boundaries and applied external fields, and with a number
of particles of the order of one mole (so that the simple system
approximation as defined in Ref. [12, p.263] applies), when re-
stricted to a fixed region of space of appropriate volume and to
the range of energy values corresponding to the so-called triple-

point stable equilibrium states, is an excellent approximation of
a thermal reservoir.

Indeed, for a system of this kind, when three different phases
(such as, solid, liquid and vapor) are present, two stable equi-
librium states with different energy values have, with an ex-
tremely high approximation, the same temperature (here not yet
defined), and thus fulfil the condition for the mutual stable equi-
librium of the system and a copy thereof.

Reference thermal reservoir. A thermal reservoir chosen once
and for all is called a reference thermal reservoir. To fix ideas,
we choose water as the constituent of our reference thermal
reservoir, i.e., sufficient amounts of ice, liquid water, and wa-
ter vapor at triple point conditions.

Standard weight process. Given a pair of states (A1,A2) of
a closed system A and a thermal reservoir R, we call standard
weight process for AR from A1 to A2 a weight process for the
composite system AR in which the end states of R are stable
equilibrium states. We denote by (A1R1→ A2R2)

sw a standard
weight process for AR from A1 to A2 and by (∆ER)sw

A1A2
the cor-

responding energy change of the thermal reservoir R.

Assumption 5. Second Law Statement - Part 3. Every pair
of states (A1, A2) of a closed system A, such that A is separable
and uncorrelated from its environment in both states, can be
interconnected by a reversible standard weight process for AR,
where R is an arbitrarily chosen thermal reservoir.

Comment. The combination of Assumption 5, Assumption 4
and Lemma 1 forms our re-statement of the Gyftopoulos-Beretta
statement of the Second Law [12, p. 62-63]. The motivation for
the separation of the statement proposed in Ref. [12] into three
parts is as follows: to extract from the postulate a part which
can be proved (Lemma 1); to separate logically independent as-
sumptions, i.e., assumptions such that a violation of the first
would not imply a violation of the second, and vice-versa.

Theorem 2. For a given closed system A and a given thermal
reservoir R, among all the standard weight processes for AR be-
tween a given pair of states (A1, A2) of A in which A is sepa-
rable and uncorrelated from its environment, the energy change
(∆ER)sw

A1A2
of the thermal reservoir R has a lower bound which

is reached if and only if the process is reversible.

Proof. Let ΠAR denote a standard weight process for AR from
A1 to A2, and ΠARrev a reversible one; the energy changes of R
in processes ΠAR and ΠARrev are, respectively, (∆ER)sw

A1A2
and

(∆ER)swrev
A1A2

. With the help of Fig 2, we will prove that, regard-
less of the initial state of R:
a) (∆ER)swrev

A1A2
≤ (∆ER)sw

A1A2
;

b) if also ΠAR is reversible, then (∆ER)swrev
A1A2

= (∆ER)sw
A1A2

;
c) if (∆ER)swrev

A1A2
= (∆ER)sw

A1A2
, then also ΠAR is reversible.

Proof of a). Let us denote by R1 and R2 the initial and the final
states of R in process ΠARrev. Let us denote by Rd the dupli-
cate of R which is employed in process ΠAR, and by Rd

3 and Rd
4

the initial and the final states of Rd in this process. Let us sup-
pose, ab absurdo, that (∆ER)swrev

A1A2
> (∆ER)sw

A1A2
, and consider

the composite process (−ΠARrev, ΠAR), where −ΠARrev is a re-
verse of ΠARrev. This process would be a weight process for
RRd in which, starting from the stable equilibrium state R2Rd

3 ,
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revAR
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1A

1R

2A

2R
1 2

swrev( )R
A AE

1 2

sw( )R
A AE

Figure 2. Illustration of the proof of Theorem 2: −ΠARrev is a reverse
of the reversible standard weight processes ΠARrev, and Rd is a dupli-
cate of R; see text.

the energy of RRd is lowered and the regions of space occupied
by the constituents of RRd have no net changes, in contrast with
Theorem 1. Therefore, (∆ER)swrev

A1A2
≤ (∆ER)sw

A1A2
.

Proof of b). If ΠAR is reversible too, then, in addition to
(∆ER)swrev

A1A2
≤ (∆ER)sw

A1A2
, the relation (∆ER)sw

A1A2
≤ (∆ER)swrev

A1A2
must hold too. Otherwise, the composite process (ΠARrev,
−ΠAR) would be a weight process for RRd in which, starting
from the stable equilibrium state R1Rd

4 , the energy of RRd is
lowered and the regions of space occupied by the constituents
of RRd have no net changes, in contrast with Theorem 1. There-
fore, (∆ER)swrev

A1A2
= (∆ER)sw

A1A2
.

Proof of c). Let ΠAR be a standard weight process for AR, from
A1 to A2, such that (∆ER)sw

A1A2
= (∆ER)swrev

A1A2
, and let R1 be the

initial state of R in this process. Let ΠARrev be a reversible stan-
dard weight process for AR, from A1 to A2, with the same initial
state R1 of R. Thus, Rd

3 coincides with R1 and Rd
4 coincides with

R2. The composite process (ΠAR, −ΠARrev) is a cycle for the
isolated system ARB, where B is the environment of AR. As a
consequence, ΠAR is reversible, because it is a part of a cycle of
the isolated system ARB.

Theorem 3. Let R′ and R′′ be any two thermal reservoirs and
consider the energy changes, (∆ER′)swrev

A1A2
and (∆ER′′)swrev

A1A2
re-

spectively, in the reversible standard weight processes ΠAR′ =
(A1R′1 → A2R′2)

swrev and ΠAR′′ = (A1R′′1 → A2R′′2)
swrev, where

(A1, A2) is an arbitrarily chosen pair of states of any closed sys-
tem A, such that A is separable and uncorrelated from its envi-
ronment in both states. Then the ratio (∆ER′)swrev

A1A2
/(∆ER′′)swrev

A1A2
:

a) is positive;
b) depends only on R′ and R′′, i.e., it is independent of (i) the
initial stable equilibrium states of R′ and R′′, (ii) the choice of
system A, and (iii) the choice of states A1 and A2.

Proof of a). With the help of Fig 3, let us suppose that
(∆ER′)swrev

A1A2
< 0. Then, (∆ER′′)swrev

A1A2
cannot be zero. In fact,

in that case the composite process (ΠAR′ , −ΠAR′′ ), which is a
cycle for A, would be a weight process for R′ in which, starting
from the stable equilibrium state R′1, the energy of R′ is low-
ered and the regions of space occupied by the constituents of
R′ have no net changes, in contrast with Theorem 1. Moreover,
(∆ER′′)swrev

A1A2
cannot be positive. In fact, if it were positive, the

work performed by R′R′′ as a result of the overall weight process
(ΠAR′ , −ΠAR′′ ) for R′R′′ would be

W R′R′′→ =−(∆ER′)swrev
A1A2

+(∆ER′′)swrev
A1A2

, (10)

1''R 2''R

'AR

''AR

1A

1'R

2A

2'R
1 2

' swrev( )R
A AE

1 2

'' sw( )R
A AE

Figure 3. Illustration of the proof of Theorem 3, part a): reversible stan-
dard weight processes ΠAR′ and ΠAR′′ , see text.

where both terms are positive. On account of Assumption 3 and
Corollary 1, after the process (ΠAR′ , −ΠAR′′ ), one could per-
form a weight process ΠR′′ for R′′ in which a positive amount
of energy equal to (∆ER′′)swrev

A1A2
is given back to R′′ and the latter

is restored to its initial stable equilibrium state. As a result, the
composite process (ΠAR′ , −ΠAR′′ , ΠR′′ ) would be a weight pro-
cess for R′ in which, starting from the stable equilibrium state
R′1, the energy of R′ is lowered and the regions of space occu-
pied by the constituents of R′ have no net changes, in contrast
with Theorem 1. Therefore, the assumption (∆ER′)swrev

A1A2
< 0 im-

plies (∆ER′′)swrev
A1A2

< 0.

Let us suppose that (∆ER′)swrev
A1A2

> 0. Then, for process −ΠAR′

one has (∆ER′)swrev
A2A1

< 0. By repeating the previous argument,

one proves that for process −ΠAR′′ one has (∆ER′′)swrev
A2A1

< 0.

Therefore, for process ΠAR′′ one has (∆ER′′)swrev
A1A2

> 0.

Proof of b). Choose a pair of states (A1, A2) of a closed sys-
tem A, such that A is separable and uncorrelated from its en-
vironment, and consider the reversible standard weight process
ΠAR′ = (A1R′1 → A2R′2)

swrev for AR′, with R′ initially in state
R′1, and the reversible standard weight process ΠAR′′ = (A1R′′1→
A2R′′2)

swrev for AR′′, with R′′ initially in state R′′1 . Then, choose
a pair of states (A′1, A′2) of another closed system A′, such that
A′ is separable and uncorrelated from its environment, and con-
sider the reversible standard weight process ΠA′R′ = (A′1R′1 →
A′2R′3)

swrev for A′R′, with R′ initially in state R′1, and the re-
versible standard weight process ΠA′R′′ = (A′1R′′1 → A′2R′′3)

swrev

for A′R′′, with R′′ initially in state R′′1 .
With the help of Fig 4, we will prove that the changes in

energy of the reservoirs in these processes obey the relation

(∆ER′)swrev
A1A2

(∆ER′′)swrev
A1A2

=
(∆ER′)swrev

A′1A′2

(∆ER′′)swrev
A′1A′2

. (11)

Let us assume: (∆ER′)swrev
A1A2

> 0 and (∆ER′)swrev
A′1A′2

> 0, which im-

plies, on account of part a) of the proof, (∆ER′′)swrev
A1A2

> 0 and

(∆ER′′)swrev
A′1A′2

> 0. This is not a restriction, because it is possible
to reverse the processes under consideration.

Now, as is well known, any real number can be approximated
with arbitrarily high accuracy by a rational number. There-
fore, we will assume that the energy changes (∆ER′)swrev

A1A2
and

(∆ER′)swrev
A′1A′2

are rational numbers, so that whatever is the value
of their ratio, there exist two positive integers m and n such that
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(∆ER′)swrev
A1A2

/(∆ER′)swrev
A′1A′2

= n/m, i.e.,

m (∆ER′)swrev
A1A2

= n (∆ER′)swrev
A′1A′2

. (12)

As sketched in Fig 4, let us consider the composite processes
ΠA and Π′A defined as follows. ΠA is the following composite
weight process for the composite system AR′R′′: starting from
the initial state R′1 of R′ and R′′2 of R′′, system A is brought from
A1 to A2 by a reversible standard weight process for AR′, then
from A2 to A1 by a reversible standard weight process for AR′′;
whatever the new states of R′ and R′′ are, again system A is
brought from A1 to A2 by a reversible standard weight process
for AR′ and back to A1 by a reversible standard weight process
for AR′′, until the cycle for A is repeated m times. Similarly, ΠA′

is a composite weight process for the composite system A′R′R′′

whereby starting from the end states of R′ and R′′ reached by
process ΠA, system A′ is brought from A′1 to A′2 by a reversible
standard weight process for A′R′′, then from A′2 to A′1 by a re-
versible standard weight process for A′R′; and so on until the
cycle for A′ is repeated n times.

Clearly, the whole composite process (ΠA, ΠA
′) is a cycle

for AA′. Moreover, it is a cycle also for R′. In fact, on account
of Theorem 2, the energy change of R′ in each process ΠAR′ is
equal to (∆ER′)swrev

A1A2
, regardless of its initial state, and in each

process −ΠA′R′ is equal to −(∆ER′)swrev
A′1A′2

. Therefore, the en-

ergy change of R′ in the whole composite process (ΠA, Π′A) is
m (∆ER′)swrev

A1A2
−n (∆ER′)swrev

A′1A′2
and equals zero on account of Eq.

(12). As a result, after (ΠA, Π′A), reservoir R′ has been restored
to its initial state, so that (ΠA, Π′A) is a reversible weight process
for R′′.

Again on account of Theorem 2, the overall energy change
of R′′ in the whole composite process is −m (∆ER′′)swrev

A1A2
+

n (∆ER′′)swrev
A1A2

. If this quantity were negative, Theorem 1
would be violated. If this quantity were positive, Theorem 1
would also be violated by the reverse of the process, (−Π′A,
−ΠA). Therefore, the only possibility is that −m (∆ER′′)swrev

A1A2
+

n (∆ER′′)swrev
A1A2

= 0, i.e.,

m (∆ER′′)swrev
A1A2

= n (∆ER′′)swrev
A′1A′2

. (13)

Finally, taking the ratio of Eqs. (12) and (13), we obtain Eq.
(11) which is our conclusion.

Temperature of a thermal reservoir. Let R be a given thermal
reservoir and Ro a reference thermal reservoir. Select an arbi-
trary pair of states (A1, A2) of a closed system A, such that A is
separable and uncorrelated from its environment in both states,
and consider the energy changes (∆ER)swrev

A1A2
and (∆ERo

)swrev
A1A2

in
two reversible standard weight processes from A1 to A2, one for
AR and the other for ARo, respectively. We call temperature of
R the positive quantity

TR = TRo
(∆ER)swrev

A1A2

(∆ERo
)swrev

A1A2

, (14)

where TRo is a positive constant associated arbitrarily with the
reference thermal reservoir Ro.

Clearly, the temperature TR of R is defined only up to the
arbitrary multiplicative constant TRo . If for Ro we select a ther-
mal reservoir consisting of ice, liquid water, and water vapor at
triple-point conditions, and we set TRo = 273.16 K, we obtain
the Kelvin temperature scale.

Corollary 2. The ratio of the temperatures of two thermal reser-
voirs, R′ and R′′, is independent of the choice of the reference
thermal reservoir and can be measured directly as

TR′

TR′′
=

(∆ER′)swrev
A1A2

(∆ER′′)swrev
A1A2

, (15)

where (∆ER′)swrev
A1A2

and (∆ER′′)swrev
A1A2

are the energy changes of
R′ and R′′ in two reversible standard weight processes, one for
AR′ and the other for AR′′, which interconnect the same pair of
states (A1, A2) such that A is separable and uncorrelated from its
environment in both states.

Proof. Let (∆ERo
)swrev

A1A2
be the energy change of the reference

thermal reservoir Ro in any reversible standard weight process
for ARo which interconnects the same states (A1, A2) of A. From
Eq. (14) we have

TR ′ = TRo
(∆ER′)swrev

A1A2

(∆ERo
)swrev

A1A2

, TR ′′ = TRo
(∆ER′′)swrev

A1A2

(∆ERo
)swrev

A1A2

, (16)

so that the ratio TR ′/TR ′′ is given by Eq. (15).

Corollary 3. Let (A1, A2) be any pair of states of a closed sys-
tem A, such that A is separable and uncorrelated from its envi-
ronment in both states, and let (∆ER)swrev

A1A2
be the energy change

of a thermal reservoir R with temperature TR, in any reversible
standard weight process for AR from A1 to A2. Then, for the
given system A, the ratio (∆ER)swrev

A1A2
/TR depends only on the

pair of states (A1, A2), i.e., it is independent of the choice of
reservoir R and of its initial stable equilibrium state R1.

Proof. Let us consider two reversible standard weight processes
from A1 to A2, one for AR′ and the other for AR′′, where R′ is
a thermal reservoir with temperature TR′ and R′′ is a thermal
reservoir with temperature TR′′ . Then, equation (15) yields

(∆ER′)swrev
A1A2

TR′
=

(∆ER′′)swrev
A1A2

TR′′
. (17)

Definition of (thermodynamic) entropy, proof that it is a
property. Let (A1 , A2) be any pair of states of a closed system
A, such that A is separable and uncorrelated from its environ-
ment in both states, and let R be an arbitrarily chosen thermal
reservoir placed in the environment B of A. We call entropy
difference between A2 and A1 the quantity

SA
2 −SA

1 =−
(∆ER)swrev

A1A2

TR
, (18)

where (∆ER)swrev
A1A2

is the energy change of R in any reversible
standard weight process for AR from A1 to A2, and TR is the
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Figure 4. Illustration of the proof of Theorem 3, part b): composite process (ΠA, ΠA′ ), see text.

temperature of R. On account of Corollary 3, the right hand
side of Eq. (18) is determined uniquely by states A1 and A2;
therefore, entropy is a property of A.

Let A0 be a reference state of A, in which A is separable and
uncorrelated from its environment, and assign to A0 an arbi-
trarily chosen value SA

0 of the entropy. Then, the value of the
entropy of A in any other state A1 of A in which A is separable
and uncorrelated from its environment is determined uniquely
by the equation

SA
1 = SA

0 −
(∆ER)swrev

A0A1

TR
, (19)

where (∆ER)swrev
A0A1

is the energy change of R in any reversible
standard weight process for AR from A0 to A1, and TR is the
temperature of R. Such a process exists for every state A1, on
account of Assumption 5.

Theorem 4. Additivity of entropy differences. Consider the
pair of states (C1 = A1B1,C2 = A2B2) of the composite system
C = AB, such that A and B are closed, A is separable and uncor-
related from its environment in both states A1 and A2, and B is
separable and uncorrelated from its environment in both states
B1 and B2. Then,

SAB
A2B2
−SAB

A1B1
= SA

2 −SA
1 +SB

2 −SB
1 . (20)

Proof. Let us choose a thermal reservoir R, with tempera-
ture TR, and consider the composite process (ΠAR, ΠBR) where
ΠAR is a reversible standard weight process for AR from A1
to A2, while ΠBR is a reversible standard weight process for
BR from B1 to B2. The composite process (ΠAR, ΠBR) is a
reversible standard weight process for CR from C1 to C2, in
which the energy change of R is the sum of the energy changes
in the constituent processes ΠAR and ΠBR, i.e., (∆ER)swrev

C1C2
=

(∆ER)swrev
A1A2

+(∆ER)swrev
B1B2

. Therefore:

(∆ER)swrev
C1C2

TR
=

(∆ER)swrev
A1A2

TR
+

(∆ER)swrev
B1B2

TR
. (21)

Equation (21) and the definition of entropy (18) yield Eq.
(20).

Comment. As a consequence of Theorem 4, if the values of en-
tropy are chosen so that they are additive in the reference states,
entropy results as an additive property.

Theorem 5. Let (A1, A2) be any pair of states of a closed sys-
tem A, such that A is separable and uncorrelated from its en-
vironment in both states, and let R be a thermal reservoir with
temperature TR. Let ΠARirr be any irreversible standard weight
process for AR from A1 to A2 and let (∆ER)swirr

A1A2
be the energy

change of R in this process. Then

−
(∆ER)swirr

A1A2

TR
< SA

2 −SA
1 . (22)

Proof. Let ΠARrev be any reversible standard weight process for
AR from A1 to A2 and let (∆ER)swrev

A1A2
be the energy change of R

in this process. On account of Theorem 2,

(∆ER)swrev
A1A2

< (∆ER)swirr
A1A2

. (23)

Since TR is positive, from Eqs. (23) and (18) one obtains

−
(∆ER)swirr

A1A2

TR
<−

(∆ER)swrev
A1A2

TR
= SA

2 −SA
1 . (24)

Theorem 6. Principle of entropy nondecrease. Let (A1,A2)
be a pair of states of a closed system A, such that A is separable
and uncorrelated from its environment in both states, and let
(A1→ A2)W be any weight process for A from A1 to A2. Then,
the entropy difference SA

2 −SA
1 is equal to zero if and only if the

weight process is reversible; it is strictly positive if and only if
the weight process is irreversible.

Proof. If (A1 → A2)W is reversible, then it is a special case of
a reversible standard weight process for AR in which the ini-
tial stable equilibrium state of R does not change. Therefore,
(∆ER)swrev

A1A2
= 0 and by applying the definition of entropy, Eq.

(18), one obtains

SA
2 −SA

1 =−
(∆ER)swrev

A1A2

TR
= 0 . (25)

If (A1 → A2)W is irreversible, then it is a special case of an
irreversible standard weight process for AR in which the ini-
tial stable equilibrium state of R does not change. Therefore,
(∆ER)swirr

A1A2
= 0 and Equation (22) yields

SA
2 −SA

1 >−
(∆ER)swirr

A1A2

TR
= 0 . (26)
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Moreover, if a weight process (A1→ A2)W for A is such that
SA

2 − SA
1 = 0, then the process must be reversible, because we

just proved that for any irreversible weight process SA
2 −SA

1 > 0;
if a weight process (A1→ A2)W for A is such that SA

2 −SA
1 > 0,

then the process must be irreversible, because we just proved
that for any reversible weight process SA

2 −SA
1 = 0.

CONCLUSIONS

A rigorous and general logical scheme for the definition of
entropy has been presented. The treatment is based on a com-
plete set of operational definitions and does not employ the con-
cepts of empirical temperature, of heat, of simple system and of
quasistatic process. Therefore, in this scheme, the domain of va-
lidity of the definition of entropy is not constrained necessarily
to the stable equilibrium states of simple systems. On the other
hand, the important concepts of separability and non-correlation
between system and environment have been introduced and the
role of these concepts in the definitions of energy and of entropy
has been pointed out.

With respect to previous presentations of this approach, some
improvements have been introduced. The statements of the First
Law and of the Second Law have been split in 5 separate As-
sumptions, each of which may have his own domain of validity.
Moreover, the restriction to normal systems in the definition of
entropy has been removed, so that the definition applies, in prin-
ciple, also to special systems, such as spin systems.
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[3] C. Carathéodory, Untersuchungen über die Grundlagen
der Thermodynamik, Math. Ann., vol. 67, pp. 355-389,
1909.

[4] E. Fermi, Thermodynamics, Prentice-Hall, New Jersey,
1937.

[5] M.W. Zemansky, Heat and Thermodynamics, Mc Graw-
Hill, New York, N.Y., 1968.

[6] L.A. Turner, Simplification of Carathéodory’s treatment of
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