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INTRODUCTION 

Since an early investigation by Ziegler [1], maximum 
entropy production (MaxEP) has been suggested as a general 
thermodynamic property of nonlinear non-equilibrium 
phenomena, with later studies showing that the MaxEP state is 
consistent with steady states of a variety of nonlinear 
phenomena. These include the general circulation of the 
atmosphere and oceans [2–4], thermal convection [5], 
turbulent shear flow [6], climates of other planets [7], oceanic 
general circulation [8, 9], crystal growth morphology [10] and 
granular flows [11]. While the underlying physical mechanism 
is still debated, the MaxEP state is shown to be identical to a 
state of maximum generation of available energy [12, 13]. 
Moreover, recent theoretical studies suggest that the MaxEP 
state is the most probable state that is realized by 
non-equilibrium systems [14, 15].  

It is known, however, that entropy production in a linear 
process tends to decrease with time and reach a minimum in a 
final steady state when a thermodynamic intensive variable 
(such as temperature) is fixed at the system boundary. This 
tendency was first suggested for a linear chemical process in a 
discontinuous system by Prigogine [16], and then extended to 
the case of a linear diffusion process in a continuous system 
[17]. Since then, this minimum entropy production (MinEP) 
principle has become widely known in the field of 
non-equilibrium thermodynamics. Although a number of 
attempts have been made to extend this MinEP principle to a 
general one including nonlinear processes, the results remain 
controversial and inconclusive (e.g. [18, 19]). In fact, 
Prigogine [20] noted that “it came as a great surprise when it 
was shown that in systems far from equilibrium the 
thermodynamic behavior could be quite different ⎯ in fact, 
even directly opposite that predicted by the theorem of 
minimum entropy production”.  

Sawada [21] pointed out the limitations of the MinEP 
principle, and instead proposed the MaxEP principle as a 
general variational principle for nonlinear systems that are far 
from equilibrium. Dewar and Maritan [22] showed using 
Jaynes’s maximum entropy method that a state of minimum 
dissipation (MinEP) is selected for a system without dynamic 
instability, whereas that of maximum dissipation (MaxEP) is 
selected for a system with dynamic instability. It seems 
therefore that the existence of dynamic instability plays a key 
role in determining the behavior of entropy production in 
nonlinear non-equilibrium systems. However, the nature of the 
dynamic instability as well as its relation to nonlinearity 
remains unclear. Moreover, until now, we do not have a 
reasonable specification of the dynamic conditions under 
which the MinEP or MaxEP state is realized.  

In order to clarify the issues in the phenomena mentioned 
above, we have investigated the behavior of time evolution of 
entropy production in a fluid system. Based on a general 
expression of entropy production and balance equations of 
energy and momentum, we present a condition under which 
the MinEP state is realized in the course of time in a system of 
linear diffusion. We then add nonlinear advection terms in the 
balance equations, and examine the condition under which the 
MinEP state becomes unstable and the MaxEP state is realized 
in the system. We show that the rate of advection of heat or 
momentum plays an important role in the enhancement of 
entropy production in a fluid system that possesses dynamic 
instability. Results obtained from this study are summarized, 
and a few remarks are presented concerning time evolution of 
nonlinear dynamic phenomena under different external 
conditions. This study is an extention of our previous work on 
thermodynamic properties of dynamic fluid systems by Ozawa 
and Shimokawa [23].  
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ABSTRACT 
A basic expression for entropy production due to irreversible flux of heat or momentum is formulated together with balance 
equations for energy and momentum in a fluid system. It is shown that entropy production always decreases with time when 
the system is of a pure diffusion type without advection of heat or momentum. The minimum entropy production (MinEP) 
property is thus intrinsic to a pure diffusion-type system. However, this MinEP property disappears when the system is subject 
to advection of heat or momentum. When the rate of advection exceeds the rate of diffusion, entropy production tends to 
increase over time. A simple stability analysis shows that the rate of change of entropy production is proportional to the growth 
rate of an arbitrary external perturbation. The entropy production increases when the perturbation grows in the system under a 
dynamically unstable state, whereas it decreases when the perturbation is damped in the system in a stable state. The maximum 
entropy production (MaxEP) can therefore be understood as a characteristic feature of systems with dynamic instability. 
Implications of the result for time evolution of nonlinear dynamic phenomena under different external conditions are discussed 
from this thermodynamic viewpoint.  
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LINEAR DIFFUSION 

Let us consider a fluid system in which several irreversible 
processes take place. These processes can be molecular 
diffusion of heat under a temperature gradient, molecular 
diffusion of momentum under a velocity gradient, or diffusion 
of a chemical component under a gradient of density of the 
chemical component. All these diffusion processes contribute 
to an increase in entropy of the total system consisting of the 
fluid system and its surroundings. A general expression for the 
rate of entropy production per unit time by these irreversible 
processes is given by 
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where 
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˙ "  is the rate of entropy production, Ji is the i-th 
diffusive flux density, Xi is the gradient in the corresponding 
intensive variable that drives the flux, and the integration is 
taken over the whole volume of the system (e.g. [18]). If the 
flux density is heat, momentum, or a chemical component, the 
corresponding intensive variable is temperature (1/T), velocity 
(–v/T), or chemical potential (–µ/T) respectively. It should be 
noted that the diffusive flux Ji does not, in principle, include a 
flux due to advection (i.e. coherent motion of fluid), which is 
intrinsically a reversible process 1 . However, advection 
significantly enhances the local gradient of the intensive 
variable at the moving front, and hence entropy production is 
also enhanced. We will see how entropy production can 
change with and without advection.  

Heat Diffusion 

As the simplest example, let us discuss diffusion of heat 
under temperature gradient in a fluid system. In this case, Eq. 
(1) is 
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where Jh is the diffusive heat flux density due to heat 
conduction, T is the temperature and Lh is the kinetic 
coefficient relating the diffusive heat flux and the temperature 
gradient: Jh = Lh ∇(1/T) = –λ ∇T, with λ = Lh/T2 being the 
thermal conductivity in Fourier’s law. In Eq. (2) we have 
assumed linearity between the diffusive heat flux and the 
temperature gradient.  

We can show that the entropy production due to heat 
diffusion [Eq. (2)] is a monotonically decreasing function of 
time when the intensive variable (T) is fixed at the boundary of 
the system and when there is no advective heat transport in the 
system. Taking the time derivative of Eq. (2), and assuming a 
constancy of Lh in the temperature range of the system (dLh/dt 
= 0), we get 
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1 One can include a reversible flux due to advection in the balance 
equation of entropy, but it results in no contribution to entropy production 
after the integration over the whole volume of a fluid system (see, e.g., 
[24], Sec. 49; [13], Sec. 2.4).  

This expression leads, with integration by parts, to  
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where n is the unit vector normal to the system boundary and 
directed to outward, and A is the surface bounding the system. 
The first surface integral varnishes when the temperature is 
fixed at the boundary (i.e. ∂T/∂t = 0). Using Fourier’s law (Jh = 
–λ ∇T) and assuming the uniformity of λ in the system (∇λ = 
0), the second volume integral leads to  
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Equation (5) shows that the rate of change of entropy 
production is a function of the heat diffusion rate (λ ∇2T) and 
the rate of change of temperature (∂T/∂t). The heat diffusion 
rate is related to the balance equation for internal energy (e.g. 
[25]) as 
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where ρ is the fluid density, cv is the specific heat at constant 
volume, v is the fluid velocity, p is the pressure and Π  is the 
viscous stress. This equation shows that the rate of temperature 
increase is caused by the sum of the rates of heat advection, 
heat diffusion, cooling by volume expansion and viscous 
heating. Substituting λ∇2T from Eq. (6) into Eq. (5), and 
assuming a constancy of cv in the fluid system (dcv/dt = 0), we 
get 
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If we consider a situation with no convective motion (v = 0), 
Eq. (7) reduces to  
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where the suffix stat denotes the static state with no motion. 
The rate of change of entropy production is negative in this 
static case, because ρ and cv are positive definite. Equation (8) 
shows that entropy production due to pure heat conduction 
tends to decrease with time, and reaches a minimum in the 
final steady state (∂T/∂t = 0) provided there is no convective 
motion in the fluid. This tendency was first suggested by 
Prigogine [16], and is called the minimum entropy production 
(MinEP) principle. While several attempts have been made to 
extend this principle to a general one including dynamic 
motion, the results remain controversial and inconclusive [17, 
18]. As we shall see in a later section, when advection due to 
dynamic motion is nonzero, the local rate of entropy 
production can either increase or decrease, depending on the 
rate of heat advection (v·∇T); the sign of 
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d ˙ " h /dt becomes 
indefinite and even positive in some cases.  
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Momentum Diffusion   

A similar result can be obtained for the diffusion of 
momentum due to viscosity under a velocity gradient. Suppose 
that a viscous fluid with a uniform viscosity is flowing in a 
system with a constant temperature T. In this case, entropy 
production due to momentum diffusion is given by  
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Here, the numerator represents the scalar product of the 
viscous stress tensor and the velocity gradient, and is identical 
to the heating rate due to viscosity per unit volume per unit 
time in the fluid. Assuming a linear relation between the 
viscous stress and the velocity gradient, we can drive the time 
derivative of the rate of entropy production after a few 
manipulations2: 
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By a sequence of transformations similar to those from Eq. (3) 
to Eq. (5), we get 
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where µ is the viscosity of the fluid. Here we have assumed 
that velocity is fixed at the boundary (∂v/∂t = 0). The diffusion 
rate of momentum [µ ∇2 v + µ∇(∇⋅v)/3] is related to the 
balance equation of momentum ⎯ the Navier–Stokes equation 
⎯ as 
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Substituting Eq. (12) into Eq. (11) and eliminating the 
momentum diffusion rate, we get after a few transformations  
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Here we have assumed incompressibility (∇⋅v = 0) in Eq. (13). 
If we further assume a situation with no advection of 
momentum, then (v⋅∇)v = 0; that is, there is no velocity 
gradient along the flow direction, corresponding to a laminar 
flow in the Stokes approximation. In this specific laminar flow 
case, we get 
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2 Assuming linearity, Π :∇v = [2µ (∇v)s – (2/3)µ(∇⋅v)δ]:[(∇v)s + (∇v)a] = 
2µ (∇v)s:(∇v)s – (2/3)µ(∇⋅v)2, with δ  denoting the unit tensor, and Ts and 
Ta denoting symmetric and asymmetric parts of a tensor T. Then, 
∂(Π :∇v)/∂t = 2[2µ (∇v)s – (2/3)µ(∇⋅v)δ]:[∇(∂v/∂t)]s = 2 Π :∇(∂v/∂t).  

where the suffix lam denotes the laminar flow with no 
momentum advection. The rate of entropy production in an 
incompressible laminar flow tends to decrease with time and 
reach a minimum in the final steady state (∂v/∂t = 0). This 
result shows another aspect of MinEP for a laminar flow. In an 
isothermal condition, this tendency is akin to that of minimum 
dissipation of kinetic energy in a slow incompressible steady 
flow suggested by Helmholtz [26] and Rayleigh [27]. However, 
as we shall see in the next section, when advection of 
momentum is nonzero (i.e. turbulent flow), the sign of 
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becomes indefinite, and the entropy production can either 
decrease or increase depending on the rate of advection 
determined by the flow pattern produced in the fluid system.  

NONLINEAR ADVECTION  

We now discuss the effect of advection of heat or 
momentum on entropy production in a fluid system. The 
advection process is a typical nonlinear process since it is 
described as the product of the velocity and gradient of an 
intensive variable, which is also a function of the velocity. A 
fundamental difficulty arises from the presence of this 
nonlinear term in solving the balance equation of energy or 
momentum [Eq. (6) or (12)]. Exactly the same difficulty arises 
from this advection term in solving the equation of entropy 
production. We do not know, in a deterministic sense, how the 
rate of entropy production will change once advection 
becomes a dominant process in the transport of heat or 
momentum. However, advection of heat or momentum 
generally increases the local gradient of temperature or 
velocity at the moving front, which results in an enhancement 
of entropy production. Here we discuss the conditions under 
which advection enhances entropy production, using the 
general equations of entropy production [Eqs. (5) and (11)] as 
follows.  

Heat Advection 

Let us go back to the example of entropy production due to 
heat diffusion. With the presence of convective motion, the 
MinEP condition [Eq. (8)] cannot be justified since it requires 
v = 0. Even in this case, Eq. (5) for the rate of change of 
entropy production remains valid. Assuming a constancy of cv 
(dcv/dt = 0) in Eq. (6), and substituting the rate of change of 
temperature (∂T/∂t) into Eq. (5), we get 
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where the suffix adv denotes the presence of heat advection 
and κ = λ/ρcv is the thermal diffusivity. The approximation in 
Eq. (15) corresponds to an assumption that the cooling rate by 
volume expansion (∇⋅v) and the heating rate by viscous 
dissipation (Π :∇v) are negligibly small compared with 
diffusive heating (κ∇2T) and advective cooling (v⋅∇T). Under 
this assumption, we can get a sufficient condition for the 
increase of entropy production (
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d ˙ " h, adv /dt ≥ 0) as 
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Condition (16) means that, when advective cooling (v⋅∇T) is 
greater than diffusive heating (κ∇2T), the local temperature 
decreases further (∂T/∂t ≤ 0) because of Eq. (6), and thus 
entropy production increases because of Eq. (5). Alternatively, 
when advective heating (–v⋅∇T > 0) is greater than diffusive 
cooling (–κ∇2T > 0), the local temperature increases further 
(∂T/∂t ≥ 0) because of Eq. (6), and thus entropy production 
increases because of Eq. (5). These conditions generally hold 
true during the development of convective motion (∂v/∂t > 0) 
in a fluid system whose Rayleigh number is larger than the 
critical value for the onset of convection. The rate of entropy 
production thus tends to increase with time and reaches a 
maximum value through the development of convective 
motion, as suggested from previous studies [5, 6]. Moreover, it 
is known from numerical simulations that a state of convection 
tends to move to a state with higher rate of entropy production 
when the system has multiple steady states and the system is 
subject to external perturbations [8, 9, 28]. These results are 
consistent with condition (16) under which entropy production 
increases with time through the development of convective 
motion in a system with dynamic instability.  

One can see from condition (16) that entropy production 
can decrease with time when the heat advection rate is smaller 
than the heat diffusion rate, i.e., ⎥v⋅∇T⎥ ≤  ⎥κ∇2T⎥. Such a 
situation can be realized in the relaxation period of a 
convection system towards a steady state, or in a convection 
system whose boundary temperature is unbounded so that the 
mean temperature gradient becomes smaller through the 
development of convective motion. One such example is 
thermal convection of a fluid system under fixed heat flux at 
the boundary. Entropy production as well as the overall 
temperature contrast at the boundary decreases with the onset 
of convection in this case (e.g. [29]). A quantitative analysis on 
the reduction of entropy production using Eq. (16) would 
therefore be attractive. Here it should be noted that the 
decrease of entropy production in this case is not in direct 
contradiction to the stability criterion of MaxEP, because 
relative stability of each steady state should be compared under 
the same boundary forcing condition, i.e., the same 
temperature contrast at the boundary characterized by the same 
Rayleigh number.  

Momentum Advection  

We can obtain a similar result for entropy production due to 
momentum diffusion. With the presence of advection of 
momentum [(v⋅∇)v ≠ 0], the MinEP condition [Eq. (14)] 
cannot be justified. Even in this case, Eq. (11) for the rate of 
change of entropy production remains valid. Assuming 
incompressibility of fluid and substituting the rate of change of 
velocity from Eq. (12) into Eq. (11), we get 
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where the suffix adv denotes the presence of momentum 
advection and ν = µ/ρ is the kinematic viscosity. We can then 

find a sufficient condition for the increase of entropy 
production (
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d ˙ " h, adv /dt ≥ 0) as  
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where e = ∇2v/⎥∇2v⎥ is the unit vector in the direction of ∇2v. 
Condition (18) means that, when advective export of 
momentum [(v⋅∇)v] plus pressure deceleration [∇p/ρ] in the e 
direction is greater than diffusive import of momentum ⎥ν∇2v⎥, 
the local velocity in that direction decreases further because of 
Eq. (12), and thus entropy production increases because of Eq. 
(11). Alternatively, when advective import of momentum 
[–(v⋅∇)v] plus pressure acceleration [–∇p/ρ] in the –e direction 
is larger than diffusive export of momentum ⎥ν∇2v⎥, the local 
velocity increases further because of Eq. (12), and thus entropy 
production increases because of Eq. (11). It is known that 
advection of momentum is negligibly small in laminar flows 
whereas it is considerably large in turbulent flows. Thus, this 
condition generally holds true during the development of 
turbulent motion in a fluid system whose Reynolds number is 
larger than the critical value for the onset of turbulence. The 
rate of entropy production thus tends to increase to a maximum 
value through the development of turbulent motion [5]. Malkus 
[30] and Busse [31] suggested that the observed mean state of 
turbulent shear flow corresponds to the state with the 
maximum rate of momentum transport by turbulent motion. 
Malkus [32] also showed that velocity profiles estimated from 
maximum dissipation of kinetic energy due to the mean 
velocity field and a smallest scale of motion at the system 
boundary resemble those of observations. Since the dissipation 
rate is proportional to the entropy production rate, these results 
are consistent with condition (18) under which entropy 
production increases with time towards a maximum value 
when the system is in a state of dynamic instability.  

One can also see from this condition (18) that entropy 
production can decrease with time when the momentum 
advection is less than the rates of diffusion and acceleration by 
the pressure gradient: [(v⋅∇)v + ∇p/ρ]⋅e ≤  ⎥ν∇2v⎥. Such a 
condition can be realized in the relaxation period of a turbulent 
fluid system, or in a fluid system whose boundary velocity is 
unbounded so that the momentum advection becomes less 
significant than the sum of momentum diffusion and pressure 
acceleration. Examples include turbulent shear flow under a 
fixed shear stress and turbulent pipe flow under a fixed 
pressure gradient. Entropy production as well as the overall 
velocity gradient is known to decrease with the onset of 
turbulence in these cases [33, 34]. Again, the decrease of 
entropy production in these cases is not in direct contradiction 
to the stability criterion of MaxEP, because relative stability of 
each steady state should be compared under the same boundary 
forcing condition, i.e., the same velocity contrast applied to the 
entire system characterized by the same Reynolds number.  

It should be noted that the condition [(16) or (18)] is a 
sufficient condition rather than a necessary and sufficient 
condition for 
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d ˙ " adv /dt ≥  0 ⎯ entropy production for the total 
system can increase even if local entropy production decreases 
in some places. In order to get the exact condition for 
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d ˙ " adv /dt 
≥ 0, we need to treat the integral equation [(5) or (11)]. In what 
follows we shall deal with the integral equation based on the 
concept of linear stability analysis.  
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Stability Analysis 

Suppose that a fluid system is subjected to a small 
disturbance. The disturbance is considered to be so small that 
its decomposition into spatial and temporal contributions may 
be possible. In this case, arbitrary small disturbances of 
temperature and velocity can be expanded into infinite Fourier 
series, whose components take the general forms:  
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where δT and δv are the disturbances of temperature and 
velocity, δT0 and δv0 are their amplitudes, k = 
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kx
2 + ky
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the wave number, and pk is the complex growth rate of the 
disturbance of the wave number k. When the real part of pk is 
negative for all k, the fluid system is stable with respect to the 
perturbation. The onset of instability is characterized by a 
critical condition beyond which the real part of pk becomes 
larger than zero (pk

(r) > 0) at a particular wave number (kc). The 
critical condition must be determined by solving the governing 
equations [(6) and (12)] with appropriate boundary conditions. 
For a fluid layer heated from below, the critical condition is 
expressed by the Rayleigh number: Ra > Ra*,  where Ra* is 
the critical value beyond which instability is manifested [35]. 
In the case of a fluid layer (thickness d) between two rigid 
boundary surfaces, it is known that Ra* ≈ 1708 and kc ≈ 3.12/d 
(cf. [24, 25]), as illustrated in Fig. 1.  

We shall then examine the behavior of entropy production 
at the onset of convective instability. Substituting the 
temperature disturbance Eq. (19) into Eq. (5), we get  
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where the suffix dis(k) denotes the presence of a disturbance 
with the wave number k. One can see from Eq. (21) that the 
rate of change of entropy production by the disturbance is 
proportional to the growth rate pk because all other factors [k2, 
λ, (δT/T)2] are positive definite. If pk

(r) is negative, then the 
disturbance is damped and entropy production thereby 
decreases3. This condition corresponds to the stable state with 
Ra < Ra* (Fig. 1). By contrast, when Ra exceeds the critical 
value Ra*, pk

(r) becomes larger than zero at the certain wave 
number kc, and entropy production starts to increase at the 
onset of convective instability. A similar result can be obtained 
for entropy production due to momentum diffusion under 
velocity gradient. By substituting Eq. (20) into Eq. (11), the 
rate of change of entropy production is shown to be 
proportional to pk. It is generally known that the onset of 
instability of such a system is determined by the Reynolds 
number: Re [36]. When Re becomes larger than a critical value 
(Re > Re*), pk

(r) of a certain wave number becomes positive 
and entropy production starts to increase. These results are 
consistent with the findings in the preceding sections that 
entropy production tends to increase when the system is in a 
state of dynamic instability.  

                                                             
3 The imaginary part of pk is zero when Ra > 0 in this case (cf. [24, 25]).  

 

Fig. 1. Relation between the Rayleigh number Ra and the 
dimensionless wave number a ≡ k d. The sold line corresponds to the 
marginal state for the onset of instability (cf. [24, 25]). Entropy 
production tends to decrease with time when Ra is less than the 
critical value: Ra < Ra*. Entropy production starts to increase at the 
onset of instability when Ra > Ra*.   

SUMMARY 

In this paper, we have discussed some general 
characteristics of entropy production in a fluid system. We 
have shown that entropy production always decreases with 
time when the system is of a pure diffusion type without 
advection of heat or momentum. Thus, the minimum entropy 
production (MinEP) property is intrinsic to a system of a pure 
diffusion type; e.g., heat conduction in a static fluid or 
momentum diffusion in laminar flow. However, this MinEP 
property is no longer guaranteed when the system is in a 
dynamically unstable state. In this state, entropy production 
tends to increase by the growth of the advection rate over the 
diffusion rate of the corresponding extensive quantity. The 
hypothesis of maximum entropy production (MaxEP) 
suggested as a selection principle for multiple steady states of 
nonlinear non-equilibrium systems [1, 6, 13–15, 21–23] can 
therefore be seen to be a characteristic feature of systems with 
nonlinear dynamic instability.  
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