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INTRODUCTION 

 

 For a system in contact with a heat bath, symmetry of the 

probability distribution of entropy production in the steady 

state is known as the fluctuation theorem. Crook’s fluctuation 

theorem compares probability distributions for the work 

required in the original process with the time-reversed one. 

The probabilistic approach reached the broader appeal due to 

advances in experimental techniques for tracking and 

manipulation of single particles and molecules [1-7].  

An overdamped motion x(τ) of a system in contact with a 

heat bath and a single continuous degree of freedom can be 

described by the Langevin equation: ( , )x F x    .The 

systematic force F(x,λ) can arise from a conservative potential 

and/or be applied to the system directly as a nonconservative 

force , while  is the stochastic force, which is not affected by 

a time-dependent force, and  is a positive constant. The 

Langevin dynamics generates trajectories x(τ) starting at x0. 

For an arbitrary number of degrees of freedom, x and F 

become vectors. The Langevin equation is the generic 

equation of motion for a single fluctuating thermodynamic 

quantity such as the concentrations of the chemical species in 

the vicinity of equilibrium [6-8]. 
 Definition and quantification of information have created 

broad discussions. ‘Information system’ with its role in living 

systems is a constantly evolving field [2,6]. This short review 

addresses some cirtical discussions on the associaton of 

information theory with fluctuation theorem and entropy 

production in living systems. 

 

FLUCTUATION THEOREM 

 

 The fluctuation theorem relates the probability p(στ) of 

observing a phase-space trajectory with entropy production 

rate of στ over time interval τ, to that of observing a trajectory  

with entropy production rate of –στ  
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where kB is the Boltzmann constant. This result describes how 

the probability of violations of the second law of 

thermodynamics becomes exponentially small as τ or the 

system size increases. FT relates the work along 

nonequilibrium trajectories to the thermodynamic free energy 

differences, and applicable to single molecule force 

measurements. The FT depends on the following assumptions. 

The system is finite and in contact with a thermal bath. The 

dynamics are required to be stochastic, Markovian, and 

microscopically reversible. The probabilities of the time-

reversed paths decay faster than the probabilities of the paths 

themselves and the thermodynamic entropy production arises 

from the breaking of the time-reversal symmetry of the 

dynamical randomness. Since the statistics of fluctuations will 

be different in different statistical ensembles. 
 Crook’s FT can be used to determine free energies of 

folding and unfolding processes occurring in nonequilibrium 

systems. For that, the unfolding and refolding process need to 

be related by time-reversal symmetry, i.e. the optical trap used 

to manipulate the molecule must be moved at the same speed 

during unfolding and refolding [3,5,6]. 
 In processes that are microscopically reversible, Crook’s FT 

predicts a symmetry relation in the work fluctuations for 

forward and reverse changes a system undergoes as it is 

driven away from thermal equilibrium by the action of an 

external perturbation. A consequence of Crook’s FT is 

Jarzynski’s equality: exp( / ) exp( / )B BG k T W k T   . 

However, for processes that occur far from equilibrium the 

applicability of Jarzynski equality is hampered by large 

statistical uncertainty arising from the sensitivity of the 

exponential average to rare events [3]. 
 In the absence of the initial of final correlations, entropy 

production satisfies the integral of FT (or the Jarzynski 

 

FLUCTUATION THEOREM, INFORMATION AND BIOLOGICAL SYSTEMS 
 

Yaşar Demirel 

 

Department of Chemical and Biomolecular Engineering, University of Nebraska Lincoln, Lincoln, NE 68588 

ABSTRACT 

Fluctuation theorems in the presence of information as well as the definition and quantification of information have created 

broad discussions and are constantly evolving. The fluctuation theorem can quantify the hysteresis observed in the amount of 

the irreversible work of unfolding and refolding of a macromolecule in nonequilibrium regimes. It also describes how the 

probability of violations of the second law of thermodynamics becomes exponentially small as the time or the system size 

increases. Functional information may lead to self-organizing capabilities of living systems, while instructional information is 

a physical array. The informational entropy is applicable to describe of objects of any nature. Developed dissipative structures 

are capable of degrading more energy, and of processing complex information through developmental and environmental 

constraints. Within this trend, control information is defined as the capacity to control the acquisition, disposition, and 

utilization of matter, energy, and information flows in purposive processes. On the other hand, maximum entropy production 

and the fluctuation theorem are seen as the properties of maximum entropy distributions.. This review brings out some critical 

turning points in describing living systems with the help of fluctuation and information theories. 

55



 

equality): exp( ) 1   where ..  is the ensemble average 

over all microscopic trajectories. In the presence of 

information (I) processing with initial and final correlations, 

the integral FT with energy dissipation and energy cost of 

information exchange becomes [5] 
 

exp( ) 1I       (2) 

 

where I is the change in the mutual information. Convexity 

of exp exp( )x x  leads to I    [5]. With the 

correlation remaining after a feedback control (Irem) by Y on 

X, Eq. (2) becomes  
 

remexp( ( ) 1I I     so fbI I     (3) 

 

where remI I  may be an upper bound of the correlation 

that can be used.  
 The detailed FT in the presence of information processing is  
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with the constraint [ , ] 0p x y   (x and y are initial phase-space 

points), pb and pf are the joint probability distributions of the 

backward and forward processes, respectively, and ( )I 

shows the total entropy production of the composite system 

XY and the baths. Here system x evolves from x to x’ along a 

path xf in such a manner that depends on the information 

about y, which does not evolve in time [5].  
 FT allows a general orthogonality property of maximum 

information entropy (MIE) to be extended to entropy 

production (EP). Maximum entropy production (MEP) and 

the FT are generic properties of MIE probability distributions. 

Physically, MEP applies to those macroscopic fluxes that are 

free to vary under the imposed constraints, and corresponds to 

the selection of the most probable macroscopic flux 

configuration [9,10]. The constrained maximization of 

Shannon information entropy (H) is an algorithm for 

constructing probability distributions from partial 

information. MIE is a universal method for constructing the 

microscopic probability distributions of equilibrium and non-

equilibrium statistical mechanics. The distribution of the 

microscopic phase space trajectories over a time  satisfies 

p∝exp(σ/2kB).  

 

INFORMATION THEORY 

 

 Information may be defined as the capacity to reduce 

statistical uncertainty in the communication of messages 

between a sender and a receiver. Consider the number of ways 

in which N distinguishable entities can be assigned to M 

distinguishable states such that there are ni entities in state i  
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Maximum probability is related to maximum entropy in the 

limit of large N and ni and the asymptotic result from 

Stirling’s approximation ( ln ! lnN N N ) yields  
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where the occupation frequency of state i is: pi = ni/N [10]. 

 In Shannon’s theory, entropy represents the amount of 

uncertainty one particular observer has about the state of this 

system [11]. This uncertinty is not information. For a variable 

X with the x1, x2,.., xN of its N posible states, the probability of 

finding X in state xi would be pi and the Shannon’s entropy H 

of X is ( ) ln
N

i ii
H X p p  . If nothing is known about X, 

we have ( ) lnH X N , which is the maximum value that 

H(X) can be; this occurs if all the states are equally likely pi = 

1/N. However, for example, if X = x5 then the uncertainty 

about X becomes smaller, and therefore H(X)  represents the 

quantity of the closest description of X. The probability 

distribution using prior knowledge or measurements can teach 

us something about a system. The difference between the 

maximal and the actual entropy after our measurements or 

analysis is the amount of information we have for the system. 

As it mesaures the difference of uncertainty, information is a 

relative quantity [11]. 
 If we define another random variable Y with its states y1, 

y2,..,yM and probabilities p1, p2,..,pM, then the joint entropy 

H(X,Y) measures our uncertainty about the joint system XY in 

N·M states. If X and Y are somehow connected, such as two 

molecules that can bind to each other, the information that one 

molecule has about the other is  
 

( : ) ( ) ( ) ( )I X Y H X H Y H XY      (7) 

 

Here ‘:’ shows that information is symmetric; X and Y equally 

know each other. If the state of Y is known, then the so called 

‘conditional entropy’ becomes 
 

( / ) ( ) ( )H X Y H XY H Y     (8) 

 

For independent variables: ( ) ( ) ( )H XY H X H Y  . With the 

conditional entropy, Eq. (7) becomes 
 

( : ) ( ) ( / )I X Y H X H X Y     (9) 

 

Eq. (9) shows that information measures deviation from 

independence that is the amount by which the entropy of X or 

Y is reduced by knowing the other (Y or X) [11]. 

 Maximization of the information entropy (IE) determines 

the probability of a particular state of the system. This leads to 

the relation between the probability of a nonequilibrium 

process and the number of microscopic trajectories [12,13].  
 

Information and Thermodynamics 

 

 Maximum entropy and maximum entropy production are 

two essential properties in equilibrium and nonequilibrium 

thermodynamics, respectively. MEP may be an organizational 

principle applicable to physical and biological systems. 

Various derivations of MEP by using the MIE procedure by 

Jaynes [14] exist in the literaure [2]. In these derivations the 

IE is not defined by a probability measure on phase space, but 

on path space for the stationary nonequilibrium systems [10]. 
 Consider M sites with a variable ni(t) (i = 1,2,.,M) at each 

site with t = 0,1,.,. The flux (time asymetric) occurring 

56



 

randomly at every time step, Jij =  Jji from i to j depends on a 

parameter cij = cji, such that Jij (t) =  cij with stochastic sign. 

A miscroscopic path a is a set of values  cij so that: 

, , ,( 1) ( ) ( )i a i a ij aj
n t n t J t    . The path dependent time 

average is , (1/ ) ( )ij a ijt
J J t   and ni(0) does not depend on 

the complete path. With the miscroscopic path dependent 

probability pa, the path ensemble averages are 

,ij a ij aa
J p J . By using Jayne’s information theory and 

maximizing path information entropy 
 

lnI a aa
S p p      (10) 

 

with the constraints 

1 aa
p      (11) 

,(0) (0)i a i aa
n p n     (12) 

,ij a ij aa
N p J      (13) 

 

the most likely probability on path space is estimated as 

 

1
expa ap A

Z
      (14) 

 

where Nij is the numerical value of the time and path 

ensemble average of the flux Jij, Aa the path action: 

,n (0)a i ia ij ij aij i
A n J    in which i and nij = nji are 

the Lagrange multipliers of constraints (12) and (13), 

respectively, and Z is the partition function [2,9,14].  

However, a trajectory of a quantity possesed by a system 

may fluctuate wildly (far from equilibrium) or weakly; than 

they would not have the same probabilities as long as they 

have the same initial and final states. Here a path trajectory is 

a sequence of p over some time interval: 
 

[ (0), ( ), (2 ),.., ( )]a p p dt p dt p Mdt    (15) 

 

where M = /dt. And dt is the coarse graining corresponding 

to the time scale of experimental observations [8]. 
 The partition and constitutive (phenomenological) equation 

of motion have the relations 
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The forward and backward components of the time and 

ensemble averaged fluxes are 
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where     and   2 ln /f b
ij ij ij ij ij ijm X c c X N N  .  

 The entropy production of a microscopic path a is [2] 
 

a a a ij ija ij
p X N       (19) 

 

By using Eq. (14) in Eq. (10), the maximum information 

entropy as a function of the forces becomes 

 

 ,max ( ) ln ( ) ( ) ln ( )IS X Z X A X W A X    (20) 

 

where  ( )W A X  is the density of paths.  

 The entropy curvature (response) matrix is 
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
The probability distribution for the time averaged flux is 
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Combining the equation above with the FT yields [2] 
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In near equilibrium regime, the maximum path information is  

 
2( )

,max ( ) ln( ) ln 2 / 2M M
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The first part on the right side of the equation above is the 

logarithm of the total number of paths for uniform probability 

distribution, while the second term is the entropy production. 

In the MEP, the assumption was that the number of paths W 

should be an increasing function of the averaged action [10]. 

Here for higher entropy production, the SI is minimum [2].  
 MEP principle states that if thermodynamic forces Xi are 

preset, then the true thermodynamic flows Ji satisfying the 

condition 0i ii
J X    yield the maximum value of the 

(J). This can be written using the Lagrange multiplier   

 

[ ( ) ( ( ) )] 0j k k i i Xi
J J J X        (25) 

 

and at fixed forces, the relationship between the fluxes and 

forces become 
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and indicates that the relationship between the thermodynamic 

forces and fluxes can be both linear and nonlinear [12]. 
 The same entropy production can be both maximum and 

minimum depending on the constraints used in the entropy 

production variation. However, it is widely published that the 

MEP principle may be a critical link in the explanation of the 

direction of the biological evolution under the imposed 

constraints of the environment [9,10,12,13]. If X is fixed, the 

MEP leads to maximum J that is the selection of fastest 

process. MEP principle has proved to be valuable for 

understanding and describing of various nonequilibrium 

processes in physics, biology, and environment. The local 

equilibrium of a nonequilibrium system and the representation 

of the EP as a bilinear form of flows and forces are a 
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mandatory condition for the use of MEP principle [11,14]. 
 In the cortex, populations of neurons continuously receive 

input from other neurons, interpret it their ongoing activity, 

and generate output destined for other neurons. This 

information processing and transmission is limited by the 

repertoire of different activated configurations available to the 

population. The extent of this repertoire may be quantified by 

its entropy H characterizing the information capacity as the 

upper limit on aspects of information processing of the 

population. When the information transmitted from the input 

to the output by a population that has only two states in its 

repertoire (H = 1 bit), then regardless the information the 

input contains, the output information content cannot exceed 

1 bit. Therefore, a network with low entropy population may 

limit information transmission. Activity in the cortex depends 

on the ratio of fast excitatory E to inhibitory I synaptic signals 

to neurons. This E/I ratio remains fixed at an average in 

various events during highly fluctuating activity levels, yet a 

small E/I raio, caused by weak axcitation drive, may reduce 

the correlations as well as the overall level of activity [16].  
 For a number of unique binary patterns, pi the probability 

that pattern i occurs, the entropy of the set of patterns is  
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i ii

H p p
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Eq. (27) estimates the occurrence probability for each pattern. 

Maximization of entropy may be an organizing principle of 

neural information processing systems [16]. 

The information capacity IC in binary units may be 

expressed as a function of the probability p 
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where  is the number of possibilities, po is the probability at 

equilibrium (i.e., no knowledge), and p is the probability 

when some information are available about the system. 

Information here is used as a measure of structure [1,7].  
 

BIOLOGICAL SYSTEMS 

 

Ribonucleic acid (RNA) translates the genetic codes in the 

nucleic acids of deoxyribonucleic acid (DNA). The codes 

consisting of four different bases (nucleotides) are adenine 

(A), guanine (G), cytosine (C) and thymine (T, DNA only) or 

uracil (U, RNA only). During the gene expression, RNA 

serves as the template for the translation of genes into proteins 

by transferring amino acids to the ribosome to form proteins, 

which may undergo posttranslational conformational changes, 

folding, and association with other polypeptide chains. All 

these steps can be regulated, therefore, the dynamical object 

of a gene is to produce functional, folded, and chemically 

modified protein [17]. 
 

Information and Biological Systems 

 

 DNA is a code, and codes from sequence alone do not 

reveal information. The nonconditional entropy for DNA 

sequence or proteins is about two bits per base; a random 

protein would have log2(20) = 4.32 bits of entropy per site. 

Due to repetitions, pair, and triplet correlations the actual 

entropy would be lower [11]. This entropy per symbol only 

allows us to quantify our uncertainty about the sequence 

identity; it will not reveal the ‘function’ of the genes.  
 In equilibrium thermodynamics, isolated systems have the 

maximum entropy and there are no correlations; hence there is 

no information. The information as the amount of correlations 

between two systems stored in living system (biological 

genomes) points out that they are far away from equilibrium. 

Consequently, information theory becomes a part of 

nonequilibrium thermodynamics in living cells. Information 

measures the amount of entropy shared between two systems; 

so it is the information that one system has about the other. if 

it cannot be specified what the information is about, then it 

would be entropy. Also informations enables us to make 

predictions about other systems; only in reference to another 

ensemble entropy can become information. Therefore, what is 

described by the correlations between the seqences stores 

information not the sequence itself. On the other hand, what 

information a genomic sequence represents depends on the 

interpreter environment. If a sequence means someting it can 

create a function necessary for its environment [11,17].  

 The information theory introduced ‘functional information’ 

that leads to self-organizing capabilities of living systems, and 

‘instructional information’ that is a physical array. However, 

linkages with the field of semiotics established a much more 

compatible approach to biological information [17]. Within 

this trend ‘control information’ is defined as the capacity to 

control the acquisition, disposition, and utilization of matter, 

energy, and information flows functionally. 

 Each position on the genome is four-base code and the 

uncertainty at each position is two bits; then the maximum 

entropy becomes 

 

max 2 2
, , ,

( ) log ( ) log (4) 2 bits
i G C A T
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since p(i) = ¼. The actual entropy is obtained from the actual 

probabilities pj(i) for each position j on the sequence. In N 

sequences, we have ( ) ( ) /j jp i n i N  by counting the number 

of nj(i) occurences of nucleotide i at position j (this will be 

done for all positions j = 1,..,M on the sequence length M). 

When we ignore correlations between positions j, the 

information stored in the sequence becomes 
 

max 2  bitsI H H M H       (31) 
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 The thermodynamics of protein structures implies that 

sequence and structure are related. If a structural entropy of 

proteins H(str) is obtained for a given chain length and for a 

given environment, the the mutual entropy between structure 

and sequence becomes [11] 
 

(seq:str) (seq) (seq/str)I H H     (32) 

 

where H(seq) is the entropy of sequences of lenth M and 

H(seq/str) is the entropy of squences given the structure. If the 

environment requires a certain structure that will be functional 

in that environment then (seq/str) (seq/env)H H . Then 

(seq:str)I  is approximately equal to the physical complexity. 

Assuming that any given sequence produces an exact 

structure: H(str/seq) = 0, and Eq. (32) becomes 
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(seq:env) (seq:str) (str)I I H     (33) 

 

Therefore, thermodynamic entropy of a protein structure is 

limited by the amount of information about the environment 

coded by the sequence. This may imply that sequences that 

encode more information about the environment may be more 

functional. 

One of the consequences of the Human Genome project 

has proved that ‘biology is an informational science’ [16,17]. 

The communication in living cells is based on the signals, 

such as electromagnetic-light, mechanical-touch, and 

chemical, received. In the signal-transduction pathway, a 

signal on a cell surface converted into a specific cellular 

response in a series of functional steps [16]. This suggests that 

information is conceived as the communication of a form 

from object to interpreter through the sign. The evolution of 

ways of storing, transmitting, and interpreting information can 

be seen a major step in the increased capacity for collective 

behavior and robustness in living systems [4,6,7]. 
 In semiotic understanding of living systems, interpreters of 

signs and information will often be an interpreter-dependent 

objective process. Genes should be regarded as signs in DNA, 

which can only have any effect on a cell function through a 

triadic-dependent process. The object of sign in DNA is a 

functional, folded, and chemically configured protein 

production; when a particular gene product is necessary, a 

signal from the environment activates the expression of a 

certain gene. The cell as an interpreter alters its internal states 

triggered by a collective signal transduction pathway to 

establish the boundary conditions to processes and perform 

someting functional with the genetic material [17].  

 

Coupled Biological Systems and Information  

 

Biochemical reactions coupled with diffusion of species can 

lead to molecular pumps and biochemical cycles in living 

systems. Here, the coupling refers that a flux occurs without 

its primary thermodynamic driving force, or opposite to the 

direction imposed by its primary driving force. This is 

possible only if a process is coupled with another spontaneous 

process and is consistent with the second law that states that a 

finite amount of organization may be obtained at the expense 

of a greater amount of disorganization in a series of coupled 

spontaneous processes. An example to that is the adenosine 

triphosphate (ATP) synthesis coupled to the respiratory 

electron transport. The ATP synthesis, in turn, is matched and 

synchronized to cellular ATP utilization. This shows a 

functional process leading to organized structures where the 

ATP synthesis ( < 0) has been made possible and the whole 

coupled processes satisfy the condition 0  [7,19-21]. 
The general approach for incorporating thermodynamics 

into the information theory has been to derive probability 

distributions for nonequilibrium steady states by employing 

the variational approach. However, composing the appropriate 

constraints to be used in the variational principle is not clear, 

since there is no definite extremum quantity to characterize 

the state space of such steady nonequilibrium states. In the 

vicinity of equilibrium only, the linear phenomenological laws 

may be useful in that respect [8]. Therefore a natural question 

is that how useful such an approach would be to describe the 

information processeing in functionally coupled and self-

organized biochemical cycles of living systems that are 

mainly far from equilibrium. The probabilistic measure of 

information derived from Jaynes information theory 

formalism of statistical mechanics is mainly indifferent to 

meaning [10]. 

The unified theory of evolution attempts to explain the 

origin of biological order as a manifestation of the flows of 

energy and information on various spatial and temporal 

scales. Genes originates the information to form the required 

enzymes, regulatory and structural proteins. The genome is 

the source of cellular codes; also any cellular structure such as 

lipids and polysaccharides may store and transmit 

information. Beside these, thermodynamic forces in the form 

of transmembrane gradients of H+, Na+, K+, Ca2+ and 

consequent electric potential cause significant displacements 

from equilibrium, and are therefore, potential sources of 

information. Genome-protein system may be a component of 

a large ensemble of cellular structures, which store, encode, 

and transmit the information [6,7,17].   
The use of maximum entropy formalism in biology is 

growing [4,18] in detecting expression patterns in signal 

transduction. At the maximum entropy, the probabilities of the 

different proteins are not equal; each protein will be present in 

proportion to its partition function, which is the effective 

thermodynamic weight of a species at thermal equilibrium.  

 Le Chatelier principle may be applied to analyze how a 

protein-signalling networks at equilibrium returns to its 

equilibrium state after being slightly perturbed. For a single 

cell or small cell colony, cell to cell perturbations are small, 

while the unperturbed state of a single cell may be unstable in 

the presence of many other cells. Experiments permits 

observations of the covariance in the fluctuations and 

evolution of these fluctuations of different proteins when a 

single cell is perturbed in the presence of other cells. The 

information theory helps analyze these covariances to 

understand the network of interacting proteins [18]. 

 The composite immediate object of a protein coding gene is 

the sequence of amino acids of a polypeptide, which can be 

folded in different ways in different cellular contexts and 

represents dynamical objects. So sign that is a sequence of 

nucleotides in DNA determines object that is a sequence of 

amino acids in a polypeptide through interpretant that is a 

range of possibilities of reconstruction of sequence of amino 

acids required by the environment (cell). 
 Dewar [4] suggests that MEP is the unifying optimization 

for living systems and ecosystem function, in which entropy 

production might be a general objective function. When a 

system is away from equilibrium, the nonequilibrium state of 

MEP is the most probable as it can be realized 

microscopically in a greater number of ways than any other 

nonequilibrium state. In this sense, MEP is a statistical 

principle, rather than a physical principle open to 

experimental validation. MEP may predict optimal plant 

behavior from the perspective of natural selection as well as 

offers a novel statistical reinterpretation of that behavior that 

is the survival of the likeliest. 

For a multicomponent fluid system under mechanical 

equilibrium with n species and Nr number of chemical 

reactions and diffusion, the rate of energy dissipation due to 

local rate of entropy production is [19.20]  

 

 , ,( ) 0i i T P i ij rji i jV
T J dV         J  (34) 

 

where Ji the vector of mass fluxes, i the chemical potential 

of species i, and A the affinity i iA    . The local mass 
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balance of chemical species i from the continuity equation 

 

,
i

i ir ri r

w
J

t
 


  


j    (35) 

 

For a steady state system, we have ,i ij rji j J j  allowing 

the dissipation to be expressed in terms of affinity 
Assuming that we have N number of linear flux-force 

system expressed in matrix form: J = LX , Onsager’s 

reciprocal relations states that the coefficient matrix L is 

symmetrical. The L will have N×N elements and the number 

of cross coefficients would be (N2N)/2, which may be on and 

off based on the biochemical path and its environment. In the 

absence of pertinent symmetries or invariances, all types of 

cross-couplings are possible and lead to nonvanishing cross 

coefficients. If the structure of the system is invariant with 

respect to some or all of the orthogonal transformations, then 

the invariance will eliminate certain cross-couplings and their 

cross-coefficients will vanish.  

Thermodynamic coupling may lead to self organized and 

(N2N)/2 number of posibility of coupled-uncoupled 

structures with N biochemical reactions depending on the 

environmental interpretations. This, in turn, brings out the 

challenge of implementing the trajectories belonging two or 

much more coupled processes (recognizing each other) with 

different inital and end nonequilibrium states into the 

fluctuationg and information theory.   
 

CONCLUSIONS 

 

 Shannon’s theory can define both entropy and information 

and should be used to quantify the information content of 

sequences by distinguishing information-coding parts from 

random parts in ensemble of genomes. It can also be used in 

investigating protein-protein interactions and the association 

of enzymes and proteins with their binding sites. Also, 

information theory based biomolecule design may maximize 

the information shared between the target and biomolecule, 

such as drug, ensembles. The use of information and entropy 

in thermodynamically coupled processes in fluctuation theory 

may be helpful further understanding the concept of 

functionality in dissipative and self-organized structures of 

living systems.  
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