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1. INTRODUCTION 

Systems in equilibrium strictly follow the laws of 
thermodynamics [1]. Despite the disordered motion of large 
numbers of molecules, the system can be characterized by a few 
variables accounting for average properties. Thermodynamics 
also applies to systems outside equilibrium, in the local 
equilibrium regime in which the volume elements are 
considered small thermodynamic systems in equilibrium. This 
hypothesis is fundamental in the formulation of 
non-equilibrium thermodynamics [2].  

Non-equilibrium thermodynamics is restricted to the linear 
response domain in which the response of the system is linear in 
the perturbation exerted to remove it from equilibrium. 
Moreover, this theory performs a macroscopic description in 
terms of average values not accounting for the presence of 
fluctuations. Whereas the linear approximation holds for 
transport processes such as heat conduction and mass diffusion, 
even in the presence of large gradients [3], it is not appropriate 
for describing activated processes in which the system 
immediately enters the nonlinear domain. Small systems [4], 
such as single molecules in a thermal bath, in which fluctuations 
and nonlinearities can be very important, are beyond the scope 
of this theory. 

We show that a probabilistic interpretation of 
non-equilibrium thermodynamics which uses the concept of 
local equilibrium at the mesoscale [5] sets the basis of a theory 
able to analyze irreversible processes in the presence of 
fluctuations. The theory (Mesoscopic Non-equilibrium 
Thermodynamics [6], [7]) obtains the Fokker–Planck equation 
as a diffusion equation for the probability and the nonlinear 
relationships between activation rates and proper affinities of 
activated processes. The situations that can be studied with this 
formalism include, among others, slow relaxation processes, 
barrier crossing dynamics, chemical and biochemical reactions 
(see Fig. 1), entropic transport, active transport, dissipative 
self-assembly and single molecules and molecular motors [7]. 

Figure 1: A chemical reaction can be treated as a diffusion process 
through a potential barrier that separates the initial and final states of 
the reaction which correspond to the minima of the potential. (a) 
Transformations of the molecules of a biochemical cycle viewed as a 
diffusion process in a free energy landscape. The configurations are 
described by means of two reaction coordinates γ and β. (b) In each 
reaction, the molecular structure of a substance transforms 
progressively until it reaches its final conformation. 

 
These processes are, in general, nonlinear and influenced by 

the presence of fluctuations.  
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2. THERMODYNAMICS AND MESOSCOPIC 

DYNAMICS OF SMALL-SCALE SYSTEMS 

A reduction of the observational time and length scales of a 
system usually implies an increase in the number of degrees of 
freedom which have not yet equilibrated and that therefore 
exert an influence in the overall dynamics of the system. The 
nonequilibrated degrees of freedom could be the velocity of a 
particle, the orientation of a spin, the size of a macromolecule 
or any coordinate or order parameter whose values define the 
state of the system in a phase space. The will be denoted by 

means of the set of coordinates   ( { }i ). 

At the mesoscopic level, the characterization  of the state of 
the system is performed through the knowledge of the 
probability density  .  The statistical expression of the entropy 
of the system in terms of this probability can be expressed by 
the Gibbs entropy postulate [2, 6] 
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where 
eqS  denotes the entropy  when the degrees of 

freedom   are in equilibrium. The equilibrium probability 

density ( )eqP   can be related to the minimum reversible work 

required to create that state [4] through the expression  
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Here Bk  is Boltzmann’s constant, and T  is the 

temperature of the heat bath. The minimum work can in general 
be expressed as  

 

 W y Y    (3) 

 

where y  is an intensive parameter and Y  its conjugated 

extensive variable. This general form stands for mechanical, 
electrical, magnetic, surface work, etc., performed on the 
system [4].  

The expression of the minimum reversible work (3) reduces 
to the different thermodynamic potentials.  For instance, for the 
case of constant temperature, volume and number of particles, 
the minimum work coincides with the Helmholtz free energy. 
The statistical mechanics definition of the entropy is therefore 
crucial to connect thermodynamics with  the mesoscopic 

description in terms of the probability distribution ( )P t  .  

The dynamics of the mesoscopic degrees of freedom can be 
analyzed from the statistical mechanics definition of the 
entropy. Taking variations in Eq. (1), one obtains 
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Conservation of the probability density in   space implies 

that it obeys the continuity equation 
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where ( )J t   is a current in the space of mesoscopic 

coordinates.  
To derive the expression of this current, we take the time 

derivative in equation (4) and use the continuity equation (5) to 
eliminate the probability time derivative. After a partial 
integration, one then arrives at the expression of the mesoscopic 
entropy production [6]   
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This quantity expresses in the form of current-force pairs, 

the latter being the gradients in the space of mesoscopic 
variables. We will now assume a linear dependence between 
current and force and establish the linear relationship  
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where ( ( ))L P   is an Onsager coefficient [2], which in 

general depends on the probability ( )P   interpreted as a state 

variable in the thermodynamic sense and on the mesoscopic 
coordinates  .  

The kinetic equation follows by substituting Eq. (7) into the 
continuity equation (5):  
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where the diffusion coefficient is defined as  
 

 
( )

( ) Bk L P
D

P





   (9) 

 
This equation, which in view of Eq. (2) can also be written as 
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is the Fokker-Planck equation for the evolution of the 

probability density in  -space.  

Under the conditions for which the minimum work is given 

by the Gibbs free energy G , W G H T S       , 

where H  is the enthalpy, this equation transforms into the 
Fokker-Planck equation for a system in the presence of a free 
energy barrier: 
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A particularly interesting situation which will be discussed 

in more detail in Section 3, is the case of a purely entropic 
barrier, often encountered in soft-condensed matter and 
biophysics.  
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Mesoscopic nonequilibrium thermodynamics provides a 

general formalism able to analyze the dynamics of systems 
away from equilibrium from the knowledge of the equilibrium 
probability. In this way, by knowing the equilibrium 
thermodynamic potential of a system, one could derive the 
kinetic equation. 

The mesoscopic entropy production can also be obtained 
from a generalized chemical potential that account for the 
additional mesoscopic variables. We may then assume that the 
evolution of these degrees of freedom is described by a 
diffusion process and formulate the corresponding Gibbs 
equation 
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which resembles the corresponding law proposed in 

nonequilibrium thermodynamics for a diffusion process in 

terms of the mass density of particles. Here ( )   plays the 

role of a generalized chemical potential conjugated to the 

distribution function ( )P t  Comparison of the Gibbs 

equation (12) with Eq. (4), where the variations of the 
equilibrium entropy are given by 
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and 
eq  is the value of the chemical potential at 

equilibrium, yields the expression of the generalized chemical 
potential 
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or alternatively, using Eq. (2), 
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In this reformulation, the “thermodynamic force” driving 

this general diffusion process is 
1T     , and the entropy 

production is given by 
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This expression coincides with the entropy production of a 

diffusion process over a potential landscape in the space of the 
mesoscopic coordinates. This landscape is conformed by the 
values of the equilibrium energy associated to each 
configuration  . The treatment of a diffusion process in the 

framework of nonequilibrium thermodynamics can then be 
extended to the case in which the relevant quantity is a 
probability density instead of a mass density. This fact shows 
the close connection between entropy and stochastic dynamics. 

3. AN EXAMPLE: ACTIVATED PROCESSES 

In this Section, we will apply our general formalism to the 
study of the kinetics of activated processes. We will show how 

the Fokker-Planck equation can be obtained from a diffusion 
process of the probability compatible with the statistical 
formulation of the second law. We will also illustrate how to 
derive the nonlinear equations for the activation rate in terms of 
the affinity of the process. 

Activated processes are frequently modeled by a particle 
crossing a free energy barrier that separates two 
well-differentiated states located at the minima at each side of 
the barrier. Processes such as chemical reactions, adsorption, 
nucleation, thermal emission in semiconductors, and active 
transport through biological membranes, share these features 
and, therefore, are generically referred to as activated 
processes.  

These processes are  essentially different from the linear 
transport processes described by nonequilibrium 
thermodynamics. The latter constitute the instantaneous 
response to an applied external force or gradient and may take 
place  even at very low values of the force. Since activated 
processes need of a minimum of energy to proceed, the regime 
in which they may be observed is essentially nonlinear. This 
difference becomes even more evident when we contrast the 
form of Fourier, Fick, or Ohm laws, in which the corresponding 
currents are proportional to the conjugated thermodynamic 
forces or gradients, with the exponential Arrhenius laws for the 
rates in activated processes.  

To better illustrate this point, let us consider a general 
process for which a system passes from state 1 to state 2 via 
activation. Instances of this process can be a chemical reaction 
in which a substance transforms into another, an adsorption 
process in which the adsorbing particle goes from the 
physisorbed to the chemisorbed state, or a nucleation process in 
which the metastable liquid transforms into a crystal phase. 
Nonequilibrium thermodynamics describes the process only in 
terms of the initial and final positions, obtaining a linear 
behaviour of the current in terms of the affinity which only 
agrees with the law of mass action for small values of the 
affinity. If we consider the process at shorter time scales, the 
state of the system instead of jumping from 1 to 2, progressively 
transforms by passing through successive molecular 
configurations. These configurations can be characterized by a 
reaction coordinate  . At these time scales, one may assume 

that the reaction coordinate undergoes a diffusion process 
through a potential barrier separating the initial from the final 
states (see Fig. 1).  

At the time scales of interest, the system is mostly found in 

the states 1 and 2, which correspond to the minima at 1  and 

2 , respectively. In the quasi-stationary limit,  when the energy 

barrier is much higher than the thermal energy and intra-well 
relaxation has already taken place, the probability distribution 
is strongly peaked at these values and almost zero everywhere 
else. Under these conditions, the Fokker-Planck description, 
leads to a kinetic equation in which the net reaction rate satisfies 
the mass action law.  

The current obtained from the mesoscopic entropy 
production (16) can be rewritten in terms of the local fugacity 

defined along the reaction coordinate ( ) exp ( ) Bz k T     

as  
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which can be expressed as 
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where BD k L z   is the diffusion coefficient. We now 

assume that D  is constant and integrate from 1 to 2  to obtain 
the nonlinear kinetic law for the averaged current 
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This equation can also be expressed as 
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where J  is the averaged rate 0 1( )BJ Dexp k T    and 

1 2A     is the corresponding affinity. We have then 

shown that a Fokker-Planck equation, linear in probabilities 

and in the gradient of [ ( )]P   , accounts for a non-linear 

dependence in the affinity. The scheme presented has been 
successfully applied to different classical activated processes, 
like chemical reactions, nucleation, active transport in ion 
channels, and molecular motors, to obtain the corresponding 
kinetic laws. 

4. CONCLUSIONS 

In this article, we have shown how to extend the use of 
thermodynamic concepts into the mesoscopic domain where 
fluctuations and nonlinearities play an important role. The 
probabilistic interpretation of thermodynamics together with 

probability conservation laws can be used to obtain kinetic 
equations for the mesoscopic degrees of freedom. 

The approach we have presented starts from the mesoscopic 
equilibrium behavior and adds all the dynamic details 
compatible with the second principle of thermodynamics and 
with the conservation laws and symmetries of the system. From 
the knowledge of the equilibrium properties of a system, it is 
straightforward to obtain Fokker-Planck equations for its 
dynamics. The coefficients entering the dynamic equations can 
be obtained from experiments or microscopic theories. 

We have shown explicitly the applicability of the 
mesoscopic nonequilibrium thermodynamics to study the 
kinetics of activated processes showing that the formulation of 
local equilibrium at small scales leads to the nonlinear kinetic 
equations that govern those processes. 
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