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1 INTRODUCTION 

Since the eighties, optimization of energy systems, mainly 
engine and reverse cycle machines, has been reconsidered 
starting with the paper of F. Curzon and L. Ahlborn [1]. 

In a recent book [2], A. BEJAN has reconsidered the 
important problem of maximization of power with heat engine 
models associated to heat transfer irreversibilities 
(endoreversible models). 

He explains that for these models maximum power is 
equivalent to minimum entropy generation rate (corresponding 
to GOUY-STODOLA) theorem [3]. He also stresses that the 
method is well know in the engineering literature [4], if new 
one for physicist [5, 6, 7]. 

More precisely he points out, that in these last papers [5, 6, 
7], maximum power and minimum entropy generation rate are 
two distinct optimization criteria for power plants. An 
example was given in [2] for coincidence of these two 
objectives. 

We propose here to reconsider these two approaches and 
try to enlighten on simple model of power plants, but 
irreversible one, the conditions of equivalence between the 
two objectives, maximum of power, and minimum of entropy 
generation. 

Influence of various system configurations are analyzed. 
Consequences are discussed, and generalization of the 
proposed method allows to clarify the subject and to precise 
the equivalence conditions regarding other important 
objectives. The results illustrated here from a simple 
pedagogical point of view, can be completed regarding recent 
published papers [8 - 10]. Paper [8] is a general review, that 
can be particularized to reverse cycle machines [9, 10]. 
Reference [11] reports on the energy and exergy optimization 
of combined heat and power systems. Reference [12] 

considers two examples of Exergy Optimization too including 
"Thermofrigopump". 

The two papers [13, 14] are more fundamental and are 
related to new upperbounds of what we named Optimal 
Thermodynamics, as well as on reconsideration of criteria in 
order to optimize irreversible thermomechanical heat systems. 

2 CHAMBADAL MODEL OF POWER PLANT 

This model from 1957 is the first one proposed, and it uses 
a sensible heat source. This source is a finite size one, due to 
the fact that heat is transferred through an imposed mass flux 

Hm
•

, with a constant calorific PHC value, so that : 

 

PHHH CmC
••

=     (1) 

 
Regarding figure 1 and the converter, we use 

thermodynamics convention 






 ><
••

0;0 HCQW . The 

studied case is focused on steady states. 
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Figure 1. Chambadal power plant model 
 

2.1 Characterization of the converter 

The method of heat transfer used for heat exchangers HEX 

is the ( )NTU,ε  method, in the reported cases. The proposed 

model is an extended one of the model reported by A. Bejan 
[2], but with internal irreversibilities of the converter. 

These irreversibilities are mainly represented by the created 

dissipation rates inside the converter CS
•

. This rate is the sum 
of all dissipation rates appearing in the converter. For 
Novikov, it is only related to expander irreversibilities. More 
generally, the prevailing irreversibilities are related to 
mechanical losses in the converter (associated to fluid flow 
and solid friction). For others it is related to heat short circuit 

between hot and cold side of the converter. If HiQ& represents 

this rate, for a linear law it comes : 
 

( )LSHliHi TTLQ −=
•

    (2) 

 
The corresponding created entropy rate is : 
 

( )
LSH

LSH
liHi

TT

TT
KS

2−=
•

   (3) 

 

It is to be noted that HiS
•

 depends on HT  and LST  

The energy and entropy balances of the converter are : 
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with  HiHHC QQQ
•••

−=    (6) 

 HiLLC QQQ
•••

−=    (7) 

 
Accordingly to Chambadal hypothesis, we suppose perfect 

heat transfer at the source side such that : 
 

( )HHsiHH TTCQ −=
••

   (8) 

 

It means that 1,0 == εHHS TT  (consequently hot side 

heat transfer area becomes infinite). This equilibrium 
hypothesis is adopted for simplicity and pedagogical purpose. 

Combining (4 to 8) it is easy to get the general relation of 
the pover of the plant to maximize : 
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It is to be precised here that CS
•

could depend on the 

temperature difference accross the converter (as )3(,iHS
•

), 

so that we note it ( )HC TS
•

. 


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•

WMAX  is obtained for a TH variable value 

satisfying : 
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The same methodology is applied to the total internal 

entropy created inside the converter iS
•

, according to : 
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By combination of (5-7) with (11) it comes : 
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The minimum of iS
•

, min ( iS
•

), must consequently satisfy 
: 
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The only physical solution of equation (13) is LSH TT = , 

and  CS
•

constant. It means that the converter does not deliver 
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power, and CS
•

 must be nul. Consequently minimum entropy 
created in the converter does not provide maximum power, 
obtained through condition (10).  

If CS
•

is a constant (or for the endoreversible case), the 

following optimal temperature condition *
HT  is obtained 

regarding the maximum of power : 
 

liH

LSliHSiH

LSH

KC

TKTC
TT

+

+= •

•

*   (14) 

 

We retrieve the nice radical, if 0K li =  

 
 

2.2 Characterization of the system 

As can be seen on Figure 1, the system consist of the 
converter, and the hot heat exchanger (boiler in the case of the 
power plant). The external fluid is the flue gas, whose energy 
comes from external adiabatic hot heat source (nuclear ; 
combustion ; solar). The sensible heat of the flue gas is partly 
transferred to the converter as was indicated before (section 
2.1). 

The energy and entropy balances of the system are : 
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Relation (15) is identical to relation (4). Equation (5) 

remains too as a constraint. So )(
•

−WMAX does not change, 

nor the first law efficiency (or others) for the system. 
Simply the created entropy inside the system comprises 

now the entropy due to the heat transfer between the source 
hot fluid and the converter. Combining (5-11) with (16) it 
comes : 
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min )( SS
•

 is obtained for HT satisfying : 
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This equation differs from (10). Consequently the 

maximum of power of the system does not correspond to min 
of entropy generated inside the system. 

It is relatively easy to show, that this result is not affected, 
if we add direct external linear heat loss between the hot 
source and heat sink of the system. 

 
2.3 Characterization of the system in the environnement 

Referring again to Figure 1, and supposing adiabaticity 
between the finite heat source and the environment, it appears 

a transiting heat rate HoQ& such that : 

( )00 TTCQ HHH −=
••

                                        (19) 

This heat rate could be used for combined heat and power 
(CHP), eventually in organic Rankine Cycle (ORC) or others 
[12]. 

It corresponds the following exergy rate : 
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Hot fluid as reference. 

The energy and entropy balances of the system in the 
environment becomes from the hot fluid point of view : 
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We renew here that if 0HQ
•

 could be valorized, it is the 

same for  LQ
•

, if  TLS differs from T0. HSQ
•

 corresponds to 

the imposed heat rate consumption (constraint related to the 
fluid mass rate and THSi, T0). 

The MAX(-
•

W ) is always furnished by the equation 
corresponding to (10), but the value of the efficiency at 
maximum power differs, due to change in energy expanses 

HSQ
•

. 

To simplify, we suppose that TLS is identical to T0, the 
ambient temperature. This hypothesis remains consistent with 
the Chambadal model of power plant. 

Using (5-8, 22) it comes after some calculations the 

condition for min 0

•
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This equation is identical to (10) due to the fact that TLS = 

T0. In that case MAX(-
•

W ) corresponds to min (0

•
S ), created 

entropy rate for the system hot fluid in the environment. 
 

Heat source as reference 

The energy and entropy balance of the system in contact 
with the heat source at THsi (thermostat) and the ambient cold 
sink at TLS = T0 becomes now (21) and (24). 
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We have always  
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Using (5-8, 24) it comes after calculations, the condition 

for min ( 00

•
S ). We obtain again the equation (23), identical to 

(10) with TLS = T0. MAX(-
•

W ) corresponds too to min (00

•
S ), 

created entropy rate between the thermostat THSi , necessary to 
produce the hot fluid, and the environment at T0. 

 
3 DISCUSSION AND CONCLUSIONS 

This paper has reconsidered the optimizations regarding 
maximum power of a thermomechanical engine, and minimum 
entropy generation  rate for steady state configurations. 

The convenient model of Chambadal power plant has been 
choosen, but extended, taking particularly account of internal 
irreversibilities of the converter (Carnot engine). 

It has been proved that these internal irreversibilities 
depend on TH  temperature. An example has been developed 
regarding heat losses between hot (TH) and cold (TLS) side of 
the converter. 

 

3.1 Comparison of MAX(-
•

W ) condition with min iS
•

, 
total internal entropy created inside the converter 

These two conditions differ. Min ( iS
•

) occurs for a plant 
that does not deliver power (TH = TLS). 

The maximum power condition leads to TH* for the 
endoreversible converter  

liH
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= •

•

*  

This value gives a generalized form of the nice radical. 
 

3.2 Comparison of MAX(-
•

W )  condition with min ( SS
•

), 
total entropy created within the system 

The condition for min ( SS
•

) (18) differs from the one 

corresponding  to MAX(-
•

W ) (10), even for endoreversible 

system, where min ( SS
•

) corresponds to the thermodynamic 
equilibrium situation (TH = THSi). 

 

3.3 Comparison of MAX(-
•

W )  condition with the 
minimum of total entropy created for the system in the 
environment 

In that case, it appears a transiting heat rate 0HQ
•

. This 

heat rate, as the one rejected at the cold sink (LQ
•

 at LST ) is 

supposed degraded, as done by A. Bejan. But in fact, it could 
be valorized (through CHP system, ORC system or others). 

If not, it contributes effectively to entropy generation for 

both heat fluxes ( 0HQ
•

 from TH, to T0 ; LQ
•

from TLS, to T0). 

Reported calculations are relative to the common case 
where TLS equal T0. 

It has been shown that, whatever is the reference (hot fluid, 

or heat source), MAX(-
•

W ) is associated  to the min of 
generated entropy rate. It comes for the endoreversible 
converter, the same relation as in a section (3.1) with TLS = T0. 

 
3.4 Conclusions 

Maximization of power, or minimization of entropy 
generation are equivalent, if we consider the system in his 
environment. This is confirmation of the Gouy  Stodola 
theorem. But it supposes that all rejected heat are not 
valuable. This must be reconsidered and is an actual challenge 
[11, 12]. 

Regarding the converter and the system in itself, the two 
objectives are not identical. 

If maximization of power is a clear objective function, 
regarding entropy is not so easy. We have shown here that 
results differ, if considering entropy of the converter, or 
system in the environment (including hot fluid, or hot source). 

Preceding results obtained in the literature have been 
precized and extended, clarifying the existing controversy. 
These results remains to combine, to existing ones [8, 14]. 
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