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EXTENDED ABSTRACT 
 

Functions, not dynamical equations, are the definitive mathematical objects in equilibrium thermodynamics. However, more than one 
function is often described as “the” equation of state for any one physical system. Usually these so named equations only capture incomplete 
physical content in the relationships between thermodynamic variables, while other equations, no less worthy of the name equation of state, go 
inconsistently by other names. While this approach to terminology can be bewildering to newcomers, it also obscures crucial properties of 
thermodynamic systems generally. We introduce specific principal equations of state and their complements for ideal gases, photons, and 
neutrinos that have the complete thermodynamic content from which all other forms can be easily deduced. The Gibbs equation and the Gibbs-
Duhem equation, 

 

 

 
 

can be solved to yield these principal and complementary principal equations of state, 
 

 
 

 
These principal equations of state make properties like the second law of thermodynamics and local thermodynamic equilibrium completely 

visual (see the figure). The second law requires that the principal equation of state function is convex (bandshell-like surface) and that it scales 
linearly with the amount of material (green rays). This requirement must obviously also be satisfied by approximate equations of state. 
Superposition of states (S(r1) + S(r2)) along with the convexity provides the entropy generation resulting from equilibration of the states (short 
thick vertical red line). 

 
Further, these principal equations of state are the foundation of thermodynamic geometry from which bounds on the exergy lost in a process 

or the entropy generated in the process can be derived. These bounds, e.g. 
 

 
 

are stronger than the conventional bounds stating that the losses must be non-negative, ∆A≥0, and they factor nicely into a thermodynamic 
distance L from initial to final state based on equilibrium quantities, a factor ε describing the relaxation time when the system is disturbed, and 
finally the duration τ allowed for the process. This is possible only when the complete set of independent extensive variables is used. 

 
Whereas the principal equation of state is given in terms of all the extensive variables of the system, the complementary principal equation of 

state is formulated in the set of intensive variables only. One loses the property of system scale in these variables, but that makes them naturally 
suited for envisioning the distinction between global and local thermodynamic equilibrium. All local equilibria of a system would occur at a 
single point for a particular physical system in global thermodynamic equilibrium. But out of equilibrium, when local equilibrium still makes 
sense, the local equilibria spread out to become a cloud of points. The extent of that cloud naturally defines a quality for global equilibrium in 
any system purported to be in equilibrium overall. 
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Figure.  Equilibrium surface S(U,V) (shaded bandshell-like surface). The green rays emanating from the origin represent equivalent 
equilibrium states, differing only in magnitude, e.g. states r1 and 2r1. The vector c (thick blue line) is a chord connecting the two equilibrium 
points 2r1 and 2r2 on the equilibrium surface but otherwise being under the surface and thus passing through non-equilibrium states. The 
equilibrated mixture of r1 and r2 is indicated as S(r1 + r2) and the entropy produced in the equilibration is shown as the thick red line. 
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DESIGN AS SCIENCE 

 

 Design in nature is the main theme in science today.  It 

began with geometry and mechanics, which are about designs 

(configurations), their principles, and the contrivances made 

based on designs and principles.  Science has always been 

about the human urge to make sense out of what we discern:  

numerous observations that we tend to store compactly as 

“phenomena” and, later, as much more compact “laws” that 

account for the phenomena. 

 To see the position of design in nature as a subject in 

physics, it is necessary to recall that thermodynamics rests on 

two laws that are both “first principles”.  The first law 

commands the conservation of energy in any system.  The 

second law commands the presence of irreversibility (i.e. the 

generation of entropy) in any system.  The permanence and 

extreme generality of the two laws are consequences of the 

fact that in thermodynamics the “any system” is a black box.  

It is a region of space, or a collection of matter without 

specified shape and structure.  The two laws are global 

statements about the balance or imbalance of the flows (mass, 

heat, work) that flow into and out of the black box. 

 Nature is not made of boxes without configuration.  The 

systems that we identify in nature have shape and structure.  

They are resoundingly macroscopic, finite size, and 

recognizable as sharp lines drawn on a different background.  

They have patterns, maps, rhythms and sounds.  The very fact 

that they have names (river basins, blood vessels, trees) 

indicates that they have unmistakable appearances.  

 In my 1997 thermodynamics book [1], I pointed out that 

the laws of thermodynamics do not account completely for the 

systems of nature, even though scientists have built 

thermodynamics into thick books in which the two laws are 

just the introduction.  The body of doctrine is devoted to 

describing, designing and “improving” things that seem to 

correspond to systems found in nature, or can be used by 

humans to make life easier.  Nowhere is this more evident 

than in the method of Entropy Generation Minimization [2, 3] 

where design is recognized as “thermodynamics”, even 

though neither of the two laws accounts for the natural 

occurrence of “design” and “design evolution” phenomena. 

 If physics is to account for the systems of nature, then 

thermodynamics must be strengthened with an additional self-

standing law (i.e., with another first principle) that covers all 

phenomena of design occurrence and evolution.  To achieve 

this, I added to physics the constructal law [1, 4], which states 

briefly that  

 

“For a finite-size system to persist in time (to live) its 

configuration must change such that it provides easier 

access to its currents” [1, 4].   

 

 The constructal law is a definition of life in the broadest 

possible sense:  to be alive, a system must be able to flow and 

to morph in time so that its currents flow more and more 

easily.  Live are the water streams in the river basins and the 

streams of animal mass flowing on the landscape, which are 

better known as animal locomotion and migration.  Live are 

the animate and the inanimate systems that flow, move, and 

change configuration.  The constructal law commands that the 

changes in configuration must occur in a particular direction 

in time (toward designs that allow currents to flow more 

easily).  The constructal law places the concepts of “design” 

and “evolution” centrally in physics. 

 The Constructal Law is a field that is expanding rapidly 

in physics, biology, technology and social sciences.  The field 

was reviewed in 2006 [5, 6], and now it is expanding even 

more rapidly.  No less than 13 books have been published on 

the Constructal Law since 2006 [5-19].  In April 2013, the 

entry “constructal” on ISI revealed an h index of 39 and a 

 

CONSTRUCTAL LAW: DESIGN AS PHYSICS 
 

Adrian Bejan 

Duke University, Department of Mechanical Engineering and Materials Science 

Durham, North Carolina 27708-0300, USA 

ABSTRACT 
A law of physics is a concise statement that summarizes a phenomenon that occurs everywhere in nature.  A phenomenon is a 

fact, circumstance or experience that is apparent to the human senses and can be described.  The phenomenon summarized by 

the constructal law is the occurrence and evolution of designs in nature.  The phenomenon is the time direction of the movie of 

design evolution.  The direction is universal, toward configurations and rhythms (designs) that flow and move more easily, for 

greater access, over time.  Based on its record, the constructal law accounts for the design phenomenon and also for all the 

phenomena associated ad-hoc with final-design (destiny) statements of “optimality” (min, max) that have been proposed.   

Most notably, the constructal law accounts for the contradictory final-design statements of minimum entropy production and 

maximum entropy production, and minimum flow resistance and maximum flow resistance.  On the earth’s surface, the design 

in nature phenomenon facilitates access for everything that flows, spreads and is collected:  river basins, atmospheric and 

ocean currents, animal life and migration, and our civilization (the evolution of the “human and machine species”). 
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total number of 7000 citations.  On Google Scholar, the word 

“constructal” yielded more than 2,300 titles. 

 

DESIGN AND EVOLUTION: ANIMATE AND 

INANIMATE  

 

 The constructal law of design in nature constitutes a 

unified view of design evolution.  It predicts evolution in all 

the domains in which evolutionary phenomena are observed, 

recorded and studied scientifically: animal design, river 

basins, turbulent flow, dendritic crystals, animal movement, 

athletics, technology evolution and global design.  Some of 

the most common animate and inanimate systems that we 

predicted with the constructal law are sketched in Fig. 1. 

 Evolution means design modifications, in time.  How 

these changes are happening are mechanisms, and mechanism 

should not be confused with law.  In the evolution of 

biological design, the mechanism is mutations, biological 

selection and survival.  In geophysical design, the mechanism 

is soil erosion, rock dynamics, water-vegetation interaction, 

and wind drag.  In sports evolution, the mechanism is 

training, recruitment, mentoring, selection, and rewards.  In 

technology evolution, the mechanism is liberty, freedom to 

question, innovation, education, trade, theft and emigration. 

 What flows through a design that evolves is not nearly as 

special in physics as how the flow system generates its 

configuration in time.  The “how” is the physics principle—

the constructal law.  The “what” are the mechanisms, and they 

are as diverse as the flow systems themselves.  The “what” 

are many, and the “how” is one.   

 Having “impact” on the environment is synonymous with 

having design in nature.  To flow means to get the 

surroundings out of the way.  There is no part of nature that 

does not resist the flows and movements that attempt to get 

through it.  Movement means penetration, and its name differs 

depending on the direction from which the phenomenon is 

observed.  To the observer of river basins, the phenomenon is 

the emergence and evolution of the dendritic vasculature.  To 

the observer of the landscape, the phenomenon is erosion and 

the reshaping of the earth’s crust.   

 This mental viewing of design generation and 

environmental impact as a unitary design in nature is 

universally applicable.  Think of the paths of animals, versus 

the river-like paths and burrows dug into the ground.  Think 

of the migration of elephants, versus the toppling of trees.  

The patterns of social dynamics go hand-in-glove with impact 

on the environment.  

   

 
 

Figure 1  The larger are more efficient, faster, live longer and 

travel farther lifetime: vehicles, animals, rivers and the winds. 

 
 

Figure 2  Everything that moves on earth is driven.  It moves 

because an engine dissipates its work output into a brake.  

 

 Animal locomotion is “guided locomotion”, with 

design―it is efficient, economical, safe, fast and purposefully 

straight.  This is the constructal design of animal and human 

locomotion, and it is the complete opposite of Brownian 

motion.  The constructal design of animal locomotion is much 

more complicated and perfected than the thermodynamics of 

balancing two work efforts, one on the vertical (lifting 

weight) and the other on the horizontal (getting the 

environment out of the way), which led to the discovery of the 

allometric relation between all animal speeds, body 

frequencies and body mass [20-24]. 

 The movement of the body weight on alternating legs is 

equivalent to the view of walking and running as falling-

forward locomotion.  The legs are the two spokes of the 

human wheel [25] from which the other spokes are missing, 

and which make the animal wheel the lightest wheel. 

 The constructal design of all urban movement is such 

that, at all length scales, the time needed to travel short and 

slow is roughly the same as the time needed to travel long and 

fast. The need to “travel short and long” to move on a 

territory (area, volume) was the example with which the 

constructal theory of design in nature began in 1996 [4].  This 

continued with explaining why the design of the Atlanta 

airport is efficient, and why the designs of new airports are 

evolving toward the Atlanta design [26, 27].   

 In the Atlanta design, the short and slow is walking along 

the concourse, and the long and fast is riding on the train.  In 

the city design, at the smallest scale the time balance is 

between walking from the house to the car and riding on the 

small street.  At the next scale, the balance is between riding 

on streets (short, slow) and avenues (long, fast), and so on to 

larger scales: avenues and highways, highways and intercity 

train and air travel, short flights and long flights, all the way 

to the scale of the globe.  We have applied this principle to the 

design of the infrastructure (inhabited spaces) for fastest and 

safest evacuation of pedestrians, from crowded areas and 
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volumes [28, 29]. 

 The slow and short are many, and the fast and long are 

few.  The design of all movement on earth, animate and 

inanimate (river basins, eddies of turbulence, animal life, 

trucks on the roads, airplanes in the air, streets in the city) is 

one design: few large and many small [20, 30]. 

 The effect of life is measurable in terms of the mass 

moved over distances during the life time of the flow system 

 (Fig. 2).  The work required to move any mass on earth 

(vehicle, river water, animal mass) scales as the weight of that 

mass time the distance to which it is moved horizontally, on 

the landscape.  It is this way with the life of the river basin 

and the animal, and it is the same with the life of man, family, 

country and empire.  The economic activity of a country is all 

this movement—mass (people, goods) moved to distances.  

Because every movement is proportional to the amount of 

fuel burned in order to drive it, the entire economic activity on 

a territory must be proportional to the amount of fuel 

consumed on that territory.  This view predicts that the annual 

GDP of a country should be proportional to the amount of 

fuel burned in the country (i.e. the useful energy generated 

and destroyed) [31].  This is confirmed by the economics data 

plotted in Fig. 3. 

 Animals have been spreading in space, in this 

unmistakable time direction dictated by the constructal law:  

from sea to land, and later from land to air [32].  The 

movement of the human & machine species evolved in the 

same direction, from small boats with oars on rivers and along 

the sea shore, to the wheel and vehicles on land, and most 

recently to aircraft.   

 The same movie (because this is what the occurrence and 

evolution of design is, a time sequence of images) shows that 

speeds have been increasing in time, and will continue to 

increase.  For the same body mass, the runners are faster than 

 

 
 

Figure 3   Economic activity means movement, which comes 

from the burning of fuel for human needs.  This is 

demonstrated by the annual GDP of countries all over the 

globe, which is proportional to the fuel burned in those 

countries (data from International Energy Agency. Key World 

Energy Statistics, 2006).  In time, all the countries are moving 

up and to the right, on the bisector. 

 

the swimmers, and the fliers are faster than the runners.  This 

movie is the same as the evolution of inanimate mass flows, 

for example, the river basins.  Under the persisting rain, all 

the channels morph constantly, to flow more easily. 

 Spreading and collecting flows occupy areas and volumes 

that have S-shaped history curves predicted with the 

constructal law [33-35].  Design is the speed governor of 

nature.  None of the changes observed in politics, history, 

sociology, animal speed and river speed are spinning out of 

control.  None of the expansions feared in geography, 

economics and urbanism are slamming into a brick wall. 

 

CONSTRUCTAL LAW VERSUS FINAL DESIGN  

 

 The constructal law is not a statement of optimization, 

maximization, minimization, or any other mental image of 

“final design” or “destiny”.  The constructal law is about the 

direction of evolution in time, and the fact that design in 

nature is not static:  it is dynamic, ever changing, like the 

images in a movie at the cinema.  This is what design and 

evolution are in nature, and the constructal law captures them 

completely.  Evolution never ends. 

 There have been many proposals of final-design in 

science, but each addresses a narrow domain, and, as a 

consequence, the body of optimality statements that have 

emerged is self-contradictory, and the claim that each is a 

general principle is easy to refute.  Here are the best known 

statements: 

 

 (i) Minimum entropy generation and maximum efficiency 

are used commonly in engineering. 

 (ii) Maximum entropy generation is being invoked in 

geophysics. 

 (iii) Maximum “fitness” and “adaptability” (robustness, 

resilience) are used in biology. 

 (iv) Minimum flow resistance (fluid flow, heat transfer, 

mass transfer) is invoked in engineering, river 

mechanics and physiology. 

 (v) Maximum flow resistance is used regularly in 

physiology and engineering, e.g. maximum resistance 

to loss of body heat through animal hair and fur, or 

through the insulation of power and refrigeration 

plants, the minimization of fluid leaks through the 

walls of ducts, etc. 

(vi) Minimum travel time is used in urban design, traffic, 

transportation. 

(vii) Minimum effort and cost is a core idea in social 

dynamics and animal design. 

(viii) Maximum profit and utility is used in economics. 

(ix) Maximum territory is used for rationalizing the 

spreading of living species, deltas in the desert, and 

empires. 

(x) Uniform distribution of maximum stresses is used as an 

“axiom” in rationalizing the design of botanical trees 

and animal bones. 

(xi) Maximum growth rate of flow disturbances 

(deformations) is invoked in the study of fluid flow 

disturbances and turbulence. 

(xii) Maximum power was proposed in biology and is used 

in physics and engineering. 

 

 This list is incomplete.  Even though the optimality 
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statements are contradictory, local, and disunited on the map 

of design in nature, they demonstrate that the interest in 

placing design phenomena deterministically in science is old, 

broad and thriving.  One example is flow of stresses 

phenomenon [36] that accounts for the emergence of solid 

shape and structure in vegetation, skeleton design, and 

technology.  The flow of stresses is an integral part of the 

design-generation phenomenon of moving mass more and 

more easily on the landscape [11, 30].   

 Another example is the contradiction between minimum 

and maximum of entropy generation [see (i) and (ii) above], 

which was resolved based on the constructal law in 2006 [26].  

The flowing nature is composed of systems that move as 

engines connected to brakes.  In time, the “engines” of nature 

acquire configurations that flow more easily, and this means 

that they evolve toward less entropy generation, and more 

production of motive power per unit of useful energy (exergy) 

used.  At the same time the “brakes” of nature destroy the 

produced power, and this translates into their evolution 

toward configurations that dissipate more and more power.  

The principle is not the maximum or the minimum, or the fact 

that the “engine + brake” constitution of nature (Fig. 2) brings 

them together.  The principle is the design evolution of 

“engine” configurations in the time direction dictated by the 

constructal law and the design evolution of “brake” 

configurations in the same direction over time. 

 To think that design evolution means “evolution toward 

patterns of least resistance” is, at best, a metaphor.  What 

“resistance” when walking in total freedom alone on the 

beach?  What “resistance” when sitting down on the train in 

the Atlanta airport, and wanting to arrive at your gate faster?  

What “resistance” when searching for a cheaper ticket 

between Atlanta and Hong Kong?  What “resistance” when 

the lucky animal finds food and we find oil?  What 

“resistance” when the snowflake grows freely as a daisy 

wheel of trees?  Furthermore, what is “least” (or maximum, 

minimum) about any design?  Who is to know that the urge to 

have an even better design has reached the end?  Who is the to 

know that a final design exists? 

 Resistance is a concept from electricity (voltage divided 

by current), which was introduced subsequently in fluid 

mechanics (pressure difference divided by mass flow rate) 

and heat transfer (temperature difference divided by heat 

current).  In pedestrian and animal movement the current is 

obvious: it is the flow rate of human mass through a plane 

perpendicular to the flow path.  Not obvious is the 

“difference” (voltage, pressure, temperature) that drives the 

pedestrian flow.   

 I faced these questions squarely when I composed the 

constructal law in 1996 [1, 4], and this is why I summarized 

the design-in-nature phenomenon with a statement of all 

physics that is universally applicable, without words and such 

as resistance and static end-design (optimum, min, max), cf. 

Section 1.  Yet, in our morphing movement (i.e., life) on 

earth, we rely on thoughts such as greater access, more 

freedom, go with the flow, shorter path, less resistance, longer 

life, less expensive and greater wealth.  These ideas guide us, 

like the innate urges to have comfort, beauty and pleasure.   

 The constructal law empowers the mind to fast-forward 

the design evolution process.  This is in fact what the human 

mind does with any law of physics—the mind uses the law to 

predict features of future phenomena.  Knowing ahead is also 

an expression of the constructal law [32], because all animal 

design is about moving more and more easily on the 

landscape, and this includes the phenomenon of cognition – 

the urge to get smarter, understand and remember faster, so 

that the animal can get going and place itself out of danger.  

Relying on the constructal-law direction to fast-forward the 

design is useful.  

 

CONSTRUCTAL LAW VERSUS SECOND LAW 

 

 The constructal law, the first law, and the second law are 

first principles.  The constructal law is a useful reminder of 

not only what is missing in thermodynamics (the design & 

evolution principle) but also of what is present.   

 For example, we often read that the second law states that 

“entropy must increase”, and that the “classical” laws of 

thermodynamics pertain to “equilibrium states”.  Many even 

teach that thermodynamics should be called thermo“statics”.  

Such statements are unrecognizable from a point of view 

rooted in thermodynamics.  Here is the correct statement of 

the second law, made by two of its three original proponents 

in 1851-1852 (the other was Rankine) [26]: 

 

Clausius: No process is possible whose sole result is the 

transfer of heat from a body of lower 

temperature to a body of higher temperature. 

Kelvin: Spontaneously, heat cannot flow from cold 

regions to hot regions without external work 

being performed on the system. 

 

Note that the second law says absolutely nothing about 

“equilibrium states”, “entropy”, “classical”, and “statics”. 

 Like any other law of physics, the second law of 

thermodynamics is a concise summary of observed facts.  A 

law unifies phenomena (the observed facts).  The second-law 

phenomenon is irreversibility.  The correct summary of the 

phenomenon of irreversibility is due to Clausius and Kelvin 

above, and to others who made demonstrably equivalent 

statements (for a review, see Ref. [1]).  The only relevant 

question about the second law statement is whether it is 

correct.  The evidence is massively in support of answering 

“yes”, based on all the machines that have been built by 

engineers successfully because they relied on the second law 

of thermodynamics of Rankine, Clausius, and Kelvin.  These 

machines are every day futuristic (not “classical”), they are 

full of life and motion (not in “equilibrium”), and are dynamic 

(not “static”).   

 The constructal-law phenomenon is the occurrence of 

design and evolution in nature.  The constructal law 

recognizes the natural tendency of evolution toward “easier 

access in time”.   The word “access” means the opportunity to 

enter and move through a confined space such as a crowded 

room.  This mental viewing covers all the flow design and 

evolution phenomena, animate and inanimate, because they 

all morph to enter and to flow better, more easily, while the 

flow space is constrained.  This is why “finite-size” is 

mentioned in the statement of the constructal law (Section 1).  

See also the comments on flow resistance, at the end of 

Section 3. 

 If the reader has a particular flow system in mind, say, air 

flow in lungs or electricity in lightning, then the reader can 

express the evolutionary design toward easier access in terms 

of locally appropriate variables and units.  Yet, the fluid flow 

terminology of the lungs has no place in the analysis of the 
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flow of electricity as a lightning tree, and vice versa.  What is 

the same in both examples is the first principle:  the evolution 

of design toward easier access, through changes in flow 

configuration in a finite-size system.  

 

CONSTRUCTAL THERMODYNAMICS:  

PHYSICS AND BIOLOGY  
 

 The constructal law is universally valid, as physics,  

precisely because it is not a statement of optimality and final 

design [all the optimization statements have failed: see again 

(i) – (xii) in Section 1].  A new law does not have to be stated 

in mathematical terms (e.g., thermodynamic variables, units).  

For example, the second law of thermodynamics was stated in 

words, as a mental viewing, not as a mathematical formula 

(see the Clausius and Kelvin statements).  The 

mathematization of the second law statement (and of 

thermodynamics) came later.  The same evolution occurred in 

constructal theory.  The 1996 statement of the constructal law 

was followed in 2004 by a complete mathematical 

formulation of constructal-law thermodynamics [37], Fig. 4. 

 The constructal law is a contribution to physics and 

evolutionary biology because it simplifies and clarifies the 

terminology that is in use, and because it unifies it with the 

biology-inspired terminology that is in use in many other 

fields such as geophysics, economics, technology, education 

and science, books and libraries [38].  This unifying power is 

both useful and potentially controversial because it runs 

against current dogma. 

 For example, the constructal designs of the river basin, 

the tree distribution in the forest, the animal distribution and 

“animal flow” on the landscape, and all the other “few large 

and many small” designs such as the food chain, demography 

and transportation are viewed as whole architectures in which 

what matters is the better and better flow over the global 

system.  In all such architectures, the few large and many 

small flow together.  They collaborate, adjust, and collaborate 

again toward a better flowing whole, which is better for each 

subsystem of the whole.  This holistic view of design 

phenomena represents two new steps: 

 First, the concept of “better” is defined in physics terms, 

along with direction, design and evolution (cf. the constructal 

law).  In biology, this step unveils the concept of random 

events and mutations (“changes”, from this to that, from here 

to there) as a mechanism akin to river bed erosion, periodic 

food scarcity, plagues, scientific discovery, etc., which make 

possible running sequences of changes that are recognized 

widely as evolution.  This step places in physics the biology 

terms of natural selection, freedom to change and adapt, 

survival, and the idea that there are better designs. 

 Second, the constructal view of design and evolution runs 

against the negative tone of biology-inspired terms that have 

invaded the scientific landscape, for example, winners and 

losers, zero sum game, competition, hierarchy, food chain, 

limits to growth, etc.  No, in the big picture, the few large and 

many small evolve together, in order to survive and to be able 

to move more mass on the landscape together.  The few large 

do not and cannot eliminate the many small.  Their balanced 

multiscale design gets better and better, for the benefit of the 

whole flowing system.  Contrary to this apparent conflict with 

standard interpretations of evolutionary biology, what is 

“good” in biology is good in constructal theory and all the 

domains of design science that the constructal law covers. 

 The constructal law is predictive, not descriptive.  This is 

the big difference between the constructal law and other views 

of design in nature.  Previous attempts to explain design in 

nature are based on empiricism:  observing first, and 

explaining after.  They are backward looking, static, 

descriptive and at best explanatory.  They are not predictive 

theories even though some are called “theory”, e.g., 

complexity theory, network theory, chaos theory, power laws 

(allometric scaling rules), “general models”, and optimality 

statements (minimum, maximum, optimum). 

 With the constructal law, complexity and scaling rules 

are discovered, not observed.  Complexity is finite (modest), 

and is part of the description of the constructal design that 

emerges.  If the flows are between points and areas or 

volumes, the constructal designs that are discovered are tree-

shaped networks.  The “networks” are discovered, not 

observed, and not postulated.  Networks, scaling rules and 

complexity are part of the description of the world of 

constructal design that emerges predictively from the 

constructal law. 

 Constructal “theory” is not the same as constructal “law”.  

Constructal theory is the view that the constructal law is 

correct and reliable in a predictive sense in a particular flow 

system. For example, reliance on the constructal law to 

predict the evolving architecture of the snowflake is the 

constructal theory of rapid solidification. Using the 

constructal law to predict the architecture of the lung and the 

rhythm of inhaling and exhaling is the constructal theory of 

respiration.   

 The law is one, and the theories are many―as many as 

the phenomena that the thinker wishes to predict by invoking 

the law.  

 

 
 

Figure 4  The evolution and spreading of thermodynamics during the past two centuries (after Ref. 2, Diagram 1, p. viii). 
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INTRODUCTION 

Energy systems play a crucial role in the development of 
our societies, by providing some of the essential services, 
going from electricity generation to comfort conditioning and 
transport. Gradual awareness of the global environmental 
impacts, and concerns for resources with the fast growing 
world population reinforce the need for increased efficiency 
and cleaner systems. This can be achieved not only by 
improving individual processes but also by an increased use 
of systems integrating several complementary technologies 
and simultaneously providing several different services. 
Combined cycles, energy integration as well as co- or tri-
generation or post-treatment have become fairly common 
terms. Furthermore the optimisation of these complex systems 
during the operation is often not sufficient anymore and life 
cycle analysis, including the fabrication and the dismantling 
or the recycling of components, is more and more requested. 
The increased number of parameters and constraints exceed 
the human capabilities if the significant potential of modern 
information technology is not better exploited. 
Thermodynamics as the key engineering science, in this 
highly technological energy era, is to account for this 
development in order to contribute to more sustainable energy 
solutions. 

ENTROPY AND EXERGY IN A LIFE CYCLE 
PERSPECTIVE 

Basic approaches 

From the early major contributions of the 19th century key 
players like Carnot, Clausius and later Gouy, the quest to 
reduce the entropy creation in energy conversion systems has 
been a constant concern. Accounting for the physical 

environment in which these systems are embedded has been 
further acknowledged by the development of the exergy 
theory in its various forms. Bejan [1] and Reistad et al. [2] 
emphasized the need for a trade-off between the 
irreversibilities of heat transfer, friction and, for the latter, of 
the embedded energy of components like heat exchangers in 
particular. This was later illustrated by Staine [3] for the case 
of shell-in-tube heat exchangers as can be seen in Fig 1. In 
this case the designer is faced with the option of increasing 
the heat exchange area and to distribute the heat exchange 
area so as to reduce the pressure drop for a given duty.  

 

Fig.1 Extended exergy optimisation of a heat exchanger 
 
The black block of the second raw of Fig. 1 corresponds 

with the minimum of the overall exergy losses. This can then 
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be applied to all heat exchangers of an integrated energy 
system. 

Linnhof et al. [4] simplified the 2nd Law practical 
application to account for economic factors by developing 
clever graphical representations and systematic rules for the 
energy targeting and design of integrated industrial processes. 
The so-called pinch technology, often wrongly opposed to 
exergy or mathematical programming approaches, did bring 
efficient tools to the engineers. An example of composites 
applied to a plaster panel drying process is shown in Fig. 2. 

 
 
Fig. 2 Composites of a plaster drying process [3, 5] 
 

 
  
Fig. 3 Extended composite representation including the 3 

main exergy losses (heat transfer T, friction r, fabrication f 
and heat transfer to the cold utility Tsf) 

Staine [3, 6] proposed an extension of the latter to 
simultaneously consider the three main irreversibilities (heat 
transfer, friction and fabrication losses) as shown in Fig. 3. 

He also introduced a formalism and a graphical 
representation highlighting the electrical balance of the 
process or site considered. Fabrication losses can be 
expressed in terms of power (Watts) by using the ratio of the 
total embedded energy divided by the expected lifetime of the 
equipment. This method allows to approach the 
thermodynamic optimum. In this representation the total area 
of the coloured zones is proportional to the exergy losses.  

Fig. 2 and Fig. 3 show the composites corresponding to the 
present situation with a gas boiler satisfying the heating 
energy needs for drying. As can be observed there is little 
overlap of the curves, so the potential for energy recovery 
within the process is minimal. In Fig. 3 the coloured areas are 
increased compared to Fig. 2 since they include the exergy 
losses of the gas boiler that were not shown in Fig. 2. 
Moreover the topping diagram illustrates the electricity 
consumption of the auxiliaries (fan, pump) and the 
corresponding exergy losses. In this representation the pseudo 
Carnot factor is adapted so that the coloured areas represent 
those losses. 

 
Fig. 4 Composites of the plaster drying process retrofitted 

with a heat pump and a gas cogeneration engine. 
 
Fig. 4 and Fig. 5 show the result of the proposed retrofit 

consisting of replacing the boiler by a cogeneration gas 
engine and an industrial heat pump. As shown by the coloured 
areas of Fig. 5, the exergy losses of the retrofitted system 
could be reduced by 40%. The topping diagram of Fig. 5 
shows the increased electricity consumption of the electrical 
heat pump with its corresponding area of exergy losses. The 
right part beyond a pseudo-Carnot factor of 1 represents the 
exergy losses of the gas engine. The empty box on the left of 
a pseudo-Carnot of 1 indicates the power supplied by the 
engine, which balances the electrical needs of the plant. 
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The power of this thermodynamic approach, which 

accounts for the exergy of fabrication, is its capability to 
identify a meaningful lower bound of the optimum pinch. 
This lower bound is more realistic than the bound, which 
would result from an ideal reversible approach. Taking into 
account the embedded exergy is not entirely sufficient and the 
economic optimised solution accounting for all factors such as 
transport, marketing cost and so on, will be different. 
However, the thermodynamic optimum, including the 
embedded exergy, is more robust in function of time, since it 
does not depend on the variable economic conditions. With 
that approach the decision maker has a narrower range of 
optima. He knows that, in case of an increase of energy costs, 
the real optimum will move closer to the thermodynamic one. 

 
 
Fig. 5 Extended composite view of the drying process 

retrofitted with a heat pump and a cogeneration engine 
 
The embedded exergy is becoming more important when 

analysing the true potential of many concepts proposed 
recently to recover the exergy of waste heat. Some of these 
concepts claim the possibility to recover energy from streams 
with temperature differences as low as a few tens of °C. This 
remark is related in particular to thermoelectric devices, or to 
osmotic concepts not based on natural fluids. 

The power of thermodynamics should also be used to 
clearly rank future energy conversion paths, as shown by 
Agrawal and Singh [7] for the conversion from solar energy 
to biofuels. 

Emissions and their impacts are more difficult to account 
for by thermodynamics alone. While there usually is a direct 
link between efficiency and global warming emissions for 
fossil based systems, it is less obvious for local pollutants. 
This is due to the fact that there is no direct link between the 
entropy of a substance, like NOx, and the effects that these 
pollutants have on health. Moreover the existing level of the 
local pollution at a given implementation site has a role to 
play on the conditions imposed on the implementation of new 
energy systems. This can be accounted for by pollution 

factors as proposed by Curti [8]. However, such local 
pollution factors cannot be visualized in a thermodynamic 
diagram such as the extended composite diagram. Therefore 
optimisation tools have to come into play.  

Many attempts have been made to apply gradient based 
linear mixed integer algorithm to complex integrated energy 
systems, including economic and environmental factors as 
shown, for example, in the papers of von Spakovsky [9] and 
Valero et al. [10]. For solution spaces highly non linear and 
potentially non contiguous, such approaches had difficulties 
to identify and distinguish the global optimum from the local 
optima. Fortunately progress made in the late 90ies in the so-
called non deterministic approaches, like those based on 
genetic algorithms, did provide a significant step forward to 
deal with these problems. Moreover, the gradual availability 
of cheap clusters of processors reinforced the possibilities of 
treating large integrated system problems. It became possible 
to do it without having to rely on the decomposition in sub-
problems, with the associated difficulties of energy or exergy 
costing in order to keep the coherence of the system. 
Thermodynamics had reached limits, which progresses in 
information technology helped to bypass. The results from 
superstructure based mono-objective optimisation like used 
by Curti et al.[8], or Pelster et al. [11] demonstrated the power 
of these combined approaches for district heating as well as 
for power plants with or without CO2 separation.  Olsommer 
et al. [12] extended the scope by also including reliability 
factors with the passive and/or active redundancy that often 
have to be accounted for in real projects. For these studies, 
thermodynamics, including pinch analysis, was still a vital 
tool. But it was used, at first to build a coherent 
superstructure, and lateron for the interpretation of the results. 
Some genetic algorithms proved to be so powerful that no 
complex decomposition was needed anymore. Cost functions, 
which could also deal with the step functions of a library of 
real component of different scale could be used.  

 

 
 
Fig. 6 Concept of Pareto curves applied to energy systems 

(the dotted points correspond to optimal solutions 
 
Mono-objective optimisation with genetic algorithm was a 

lengthy and inefficient process. This was corrected by the 
emergence of multi-objective algorithm of practical relevance 
for the engineering of energy systems, such as the algorithm 
QMOO briefly described in Molyneaux et al. [13]. 
Knowledge gained during the computer search is kept and the 
results can be expressed by the optima distributed along a 
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Pareto curve in function of two main decision parameters, like 
efficiency and costs. The thermodynamicist is then better 
equipped to discuss the relevant trade-offs with the 
stakeholders. 

Another way to structure the information, essentially for a 
faster numerical treatment, is to work with pre-optimised 
functions of technologies by using the concept of performance 
typification of those technologies that can be considered in a 
superstructure. This was illustrated by Li et al. [14,15] in 
examples of power plants, with or without cogeneration. Thus 
the knowledge of the purely thermodynamic performances 
that do not depend on economics, could be saved without 
repeating the calculation for each change of economic 
conditions. 

Multi-objective optimisation was also applied by Pelet et 
al. [16] and coupled with a LCA data basis to optimize the 
retrofit of the energy system of a remote community. Here 
again thermodynamics was used to better define the 
superstructure of the integrated system including Diesel 
generators, Organic Rankine Cycles with thermal storage, 
solar thermal or Photovoltaic panels. 

Accounting for reactive phenomena 

 
Fig. 7 Representation of the irreversible oxidation using a 

van’t Hoff box and a mechanistic model [17] 
Present energy conversion from fuel is mainly done 

through reactive phenomena with quasi-complete oxidation, 
like in the boilers or combustion chambers of power plants or 
of engines, without CO2 separation. Among new concepts 
aiming at efficiency improvement let us cite the partial 
oxidation (gasification) and/or the electrochemical conversion 
that take place in fuel cells. CO2 separation can be reached by 
either conditioning the combustible mixture directly 
upstream, or in the system through mass transfer in a 
membrane, or downstream in the tail pipe through sorption 
techniques. In such cases, a proper account of the exergy 
terms is essential to be able to define appropriate performance 
factors. 

The representation of the reversible combustion using the 
van't Hoff box and turbomachines, as shown in Borel and 
Favrat [17], is useful (Fig. 7). Thanks to the specific semi-
permeable membranes, both the components of the reactive 
mixture and of the oxidation products can be separated. Small 
changes on one side of the box could induce the change of 
direction of the flows, hence the reversible feature of this 
setup made for one fuel and one oxidizer and resulting in two 
products. 

One additional compressor illustrates the diffusion exergy 
involved in the uptake of oxygen diluted in the atmosphere. 
Two additional turbines (or expanders), one for each 
oxidation product, illustrate the diffusion exergy, which could 
be recovered by expanding the gases to the same partial 
pressure they have in the atmosphere. 

The cartoon representation of Fig. 8 illustrates the exergy 
pit showing the specific coenergy (j= u+Pav-Tas) of 
substances. The thermo-mechanical equilibrium dead state 
relative to the environment (Pa,Ta) is shown at the bottom of 
the pit. The physico-chemical equilibrium with the 
environment is represented by the lower sub-pits (physico-
chemical dead states) corresponding to each of the oxidation 
products (here CO2 and H2O). Some of the different 
technologies for house heating are represented as well and the 
small characters represent the units of mass. The significant 
drop of exergy level of the direct electrical heating or of the 
simple boiler heating are clearly shown. Cogeneration and 
electrical heat pumps are also represented. These various 
representations are useful, in particular for the education of 
students, but also as a reminder for engineers in the practice, 
who too often consider exergy with scepticism. 

 

 
 
Fig. 8 Schematic representation of the exergy pit with the 

illustration of some technologies for heating 

ANALYSIS OF ADVANCED ENERGY CONVERSION 
SYSTEMS 

Trying to stay in the upper part of the exergy pit is partly 
made possible by direct electricity conversion using 
electrochemical phenomena. The solid oxide fuel cell (SOFC) 
is a good example since the solid electrolyte is also inherently 
a separator of the oxygen and nitrogen from the air. This 
feature is fully exploited in the concept developed by 
Facchinetti et al. [18] in which CO2 is finally separated 
without exergy penalty. 

The so-called SOFC-GT hybrid cycle used couples an 
atmospheric pressure SOFC with a sub-atmospheric Brayton 
cycle in which the water vapor is condensed at the lower 
pressure level (Fig. 9). This allows not only a lower 
compressor power for the compressor of the Brayton cycle, 
but also an easy separation of the CO2. In such a concept, 
energy integration with optimized heat exchangers is a key to 
reaching electrical efficiencies in decentralized plants higher 
than 70%, which is higher than those of centralized power 
plants. In such a case the definition of the effectiveness (First 
Law efficiency) is not obvious when pure O2 is supplied to the 
burner to facilitate CO2 separation. In Equation (1) we 
propose a hybrid approach where the exergy of diffusion of 
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oxygen in air is added to the denominator instead of trying to 
introduce an effectiveness of separation in the sense of the 
First Law. 

 
ε =

EFC
− + EGT

−

MF
+Δhi

0 + MO2
+ edO2

0    (1) 

The definition of the exergy efficiency is more 
straightforward as follows: 

 
η =
EFC
− + EGT

− + MCO2
− edCO2

0

MF
+Δhi

0 + MO2
+ edO2

0   (2) 

 
Fig.9 Concept of hybrid SOFC-GT with CO2 separation 

[18] 

 
Fig.10 Composite curves corresponding to the integration 

of a hybrid SOF-GT unit 

Energy storage 

Thermodynamics is important for evaluating and 
optimising energy storage systems. Powertrains of vehicles 
concepts, including compressed air or liquid nitrogen, have 
been explored in recent years. Often, thermodynamics, and in 
particular exergy analysis, allows to quickly evaluate the 
potential from these forms of storage, independently from the 
details of the mechanical device or thermodynamic cycles 
used. The difference between the coenergy of the fluid 
contained in the tanks and the coenergy of the environment 
(atmosphere) gives an indication of the maximum work, 
which can be extracted by the drivetrains. Using this criterion 
Iglesisas et al. [20] compare, on an exergy basis, different 
drive trains and storage systems. They show how difficult and 
challenging it is to meet some of the claims of autonomy of 
compressed air or liquid nitrogen cars. However, the global 
picture, when comparing with standard gasoline or Diesel 
vehicles, should include the emissions. Then, the so-called 
environomic optimisation for given duties should be made 
using advanced algorithm. 

Stationary electricity storage systems are more and more 
needed with the growth of wind and solar power. This 
application is less demanding in terms of power density and 
weight. Compressed air storage, often coupled with thermal 
storage or fossil fuel use, can be considered and have been 
analysed by Kim et al. [21]. The same paper also compares 
these concepts with concepts using thermodynamic cycles 

that can be operated in power mode when electricity is needed 
and in heat pump mode when cheap or excess electricity 
needs to be stored. Once again, detailed thermoeconomic 
optimisation for superstructure defined by thermodynamics, 
allows the identification of better designs as shown by 
Morandin et al. [22]. 

CONCLUSION 

Thermodynamics is essential for the design and the 
operation of more sustainable systems. However, it is 
important to realize its limitations. The recent advent of 
powerful MINLP optimisation algorithms based on 
evolutionary algorithm provides the necessary complement to 
tackle the more holistic considerations needed for modern 
energy systems. The main challenge is to combine detailed 
thermodynamic models of processes with full system 
integration. 

NOMENCLATURE  

Symbol Quantity SI Unit 
   
 E−  Exiting exergy rate 

(mechanical or 
electrical power) 

W 
 

  e Specific exergy J/kg 
   
 J Coenergy (exergy 

of a substance) 
J 
 

 j Specific coenergy J/kg 
M −  Exiting mass flow 

rate 
kg/s 
 

M +  Entering mass flow 
rate 

kg/s 

Δhi
0  Lower heating 

value 
J/kgF 

Δk0  Exergy value J/kgF 

GT Gas turbine  
SOFC Solid Oxide Fuel 

Cell 
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1 INTRODUCTION 

Since the eighties, optimization of energy systems, mainly 
engine and reverse cycle machines, has been reconsidered 
starting with the paper of F. Curzon and L. Ahlborn [1]. 

In a recent book [2], A. BEJAN has reconsidered the 
important problem of maximization of power with heat engine 
models associated to heat transfer irreversibilities 
(endoreversible models). 

He explains that for these models maximum power is 
equivalent to minimum entropy generation rate (corresponding 
to GOUY-STODOLA) theorem [3]. He also stresses that the 
method is well know in the engineering literature [4], if new 
one for physicist [5, 6, 7]. 

More precisely he points out, that in these last papers [5, 6, 
7], maximum power and minimum entropy generation rate are 
two distinct optimization criteria for power plants. An 
example was given in [2] for coincidence of these two 
objectives. 

We propose here to reconsider these two approaches and 
try to enlighten on simple model of power plants, but 
irreversible one, the conditions of equivalence between the 
two objectives, maximum of power, and minimum of entropy 
generation. 

Influence of various system configurations are analyzed. 
Consequences are discussed, and generalization of the 
proposed method allows to clarify the subject and to precise 
the equivalence conditions regarding other important 
objectives. The results illustrated here from a simple 
pedagogical point of view, can be completed regarding recent 
published papers [8 - 10]. Paper [8] is a general review, that 
can be particularized to reverse cycle machines [9, 10]. 
Reference [11] reports on the energy and exergy optimization 
of combined heat and power systems. Reference [12] 

considers two examples of Exergy Optimization too including 
"Thermofrigopump". 

The two papers [13, 14] are more fundamental and are 
related to new upperbounds of what we named Optimal 
Thermodynamics, as well as on reconsideration of criteria in 
order to optimize irreversible thermomechanical heat systems. 

2 CHAMBADAL MODEL OF POWER PLANT 

This model from 1957 is the first one proposed, and it uses 
a sensible heat source. This source is a finite size one, due to 
the fact that heat is transferred through an imposed mass flux 

Hm
•

, with a constant calorific PHC value, so that : 

 

PHHH CmC
••

=     (1) 

 
Regarding figure 1 and the converter, we use 

thermodynamics convention 






 ><
••

0;0 HCQW . The 

studied case is focused on steady states. 
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FEIDT Michel 
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ABSTRACT 
In a recent book, A. Bejan has reconsidered the important problem of maximization of power with heat engine 
models associated to heat transfer irreversibilities (endoreversible models). 
He explains that for these models maximum power is equivalent to minimum entropy generation rate 
(corresponding to Gouy-Stodola theorem). He also stresses that the method is well known in the engineering 
literature [4], if new one for physicist [5, 6, 7]. More precisely, he points out, that in these last papers [5, 6, 7], 
maximum power and minimum entropy generation rate are two distinct optimization criteria for power plants. 
An example was given in [2] for coincidence of these two objectives. We propose here to reconsider these two 
approaches ant try to entlighten on simple Chambadal power plant model, but irreversible one, the conditions of 
equivalence between the two objectives, maximum of power, and minimum of entropy generation. 
influence of various system configurations are analyzed. Consequences are discussed, and generalization of the 
proposed method allows to clarify the subject and to precise the equivalence conditions or not regarding other 
important objectives. 
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Figure 1. Chambadal power plant model 
 

2.1 Characterization of the converter 

The method of heat transfer used for heat exchangers HEX 

is the ( )NTU,ε  method, in the reported cases. The proposed 

model is an extended one of the model reported by A. Bejan 
[2], but with internal irreversibilities of the converter. 

These irreversibilities are mainly represented by the created 

dissipation rates inside the converter CS
•

. This rate is the sum 
of all dissipation rates appearing in the converter. For 
Novikov, it is only related to expander irreversibilities. More 
generally, the prevailing irreversibilities are related to 
mechanical losses in the converter (associated to fluid flow 
and solid friction). For others it is related to heat short circuit 

between hot and cold side of the converter. If HiQ& represents 

this rate, for a linear law it comes : 
 

( )LSHliHi TTLQ −=
•

    (2) 

 
The corresponding created entropy rate is : 
 

( )
LSH

LSH
liHi

TT

TT
KS

2−=
•

   (3) 

 

It is to be noted that HiS
•

 depends on HT  and LST  

The energy and entropy balances of the converter are : 
 

0=++
•••

LCHC QQW     (4) 

0=++
•

••

C

LS

LC

H

HC S
T

Q

T

Q
   (5) 

 

with  HiHHC QQQ
•••

−=    (6) 

 HiLLC QQQ
•••

−=    (7) 

 
Accordingly to Chambadal hypothesis, we suppose perfect 

heat transfer at the source side such that : 
 

( )HHsiHH TTCQ −=
••

   (8) 

 

It means that 1,0 == εHHS TT  (consequently hot side 

heat transfer area becomes infinite). This equilibrium 
hypothesis is adopted for simplicity and pedagogical purpose. 

Combining (4 to 8) it is easy to get the general relation of 
the pover of the plant to maximize : 

 

( ) 

















−






 −−









−

=






−
•••

•

CLSHiHSHiH

H

LS

STQTTC

T

T

MAXWMAX

1

        (9) 
 

It is to be precised here that CS
•

could depend on the 

temperature difference accross the converter (as )3(,iHS
•

), 

so that we note it ( )HC TS
•

. 








−
•

WMAX  is obtained for a TH variable value 

satisfying : 
 

0

1 2
2

=






 +−

∂
∂−







 +

•

•
•

liH

H
LSLSliHSiLSH

KC

T

cS
TTKTTC

TH  (10) 

 
The same methodology is applied to the total internal 

entropy created inside the converter iS
•

, according to : 
 

0=++
•

••

i

LS

L

H

H S
T

Q

T

Q
    (11) 

 
By combination of (5-7) with (11) it comes : 
 

( ) ( )HC

HLS
LSHlii TS

TT
TTkS

••
+







−−= 11

  

      (12) 
 

The minimum of iS
•

, min ( iS
•

), must consequently satisfy 
: 

 

0
1

2
=

∂
∂+








−

•

H

C

H

LS

LS
li T

S

T

T

T
K    (13) 

 

The only physical solution of equation (13) is LSH TT = , 

and  CS
•

constant. It means that the converter does not deliver 

17



 

power, and CS
•

 must be nul. Consequently minimum entropy 
created in the converter does not provide maximum power, 
obtained through condition (10).  

If CS
•

is a constant (or for the endoreversible case), the 

following optimal temperature condition *
HT  is obtained 

regarding the maximum of power : 
 

liH

LSliHSiH

LSH

KC

TKTC
TT

+

+= •

•

*   (14) 

 

We retrieve the nice radical, if 0K li =  

 
 

2.2 Characterization of the system 

As can be seen on Figure 1, the system consist of the 
converter, and the hot heat exchanger (boiler in the case of the 
power plant). The external fluid is the flue gas, whose energy 
comes from external adiabatic hot heat source (nuclear ; 
combustion ; solar). The sensible heat of the flue gas is partly 
transferred to the converter as was indicated before (section 
2.1). 

The energy and entropy balances of the system are : 
 

0=++
•••

LH QQW     (15) 

0ln =++
•

•
•

S

LS

L

H

HSi
H S

T

Q

T

T
C    (16) 

 
Relation (15) is identical to relation (4). Equation (5) 

remains too as a constraint. So )(
•

−WMAX does not change, 

nor the first law efficiency (or others) for the system. 
Simply the created entropy inside the system comprises 

now the entropy due to the heat transfer between the source 
hot fluid and the converter. Combining (5-11) with (16) it 
comes : 

 

( ) C

HLS
LSHli

H

HSi

H

HHSi
HS

S
TT

TTK

T

T

T

TT
CS

•

••

+







−−+









−−=

11

ln

   (17) 

 

min )( SS
•

 is obtained for HT satisfying : 

 

0
2

=+
∂
∂+++−

•••

LSH

C

H

H

H

LSliHSiH

T

Kli

T

S

T

C

T

TKTC
 

      (18) 
 
This equation differs from (10). Consequently the 

maximum of power of the system does not correspond to min 
of entropy generated inside the system. 

It is relatively easy to show, that this result is not affected, 
if we add direct external linear heat loss between the hot 
source and heat sink of the system. 

 
2.3 Characterization of the system in the environnement 

Referring again to Figure 1, and supposing adiabaticity 
between the finite heat source and the environment, it appears 

a transiting heat rate HoQ& such that : 

( )00 TTCQ HHH −=
••

                                        (19) 

This heat rate could be used for combined heat and power 
(CHP), eventually in organic Rankine Cycle (ORC) or others 
[12]. 

It corresponds the following exergy rate : 

( ) 







−−=

••

0
000 ln

T

T
TTTCE H

HHX                   (20) 

Hot fluid as reference. 

The energy and entropy balances of the system in the 
environment becomes from the hot fluid point of view : 

0=++
•••

LSHS QQW     (21) 

0ln 0

00

=++
•

•
•

S
T

Q

T

T
C LSHSi

H                              (22) 

with 0HHHS QQQ
•••

+=  

  

        0HLLS QQQ
•••

−=  

We renew here that if 0HQ
•

 could be valorized, it is the 

same for  LQ
•

, if  TLS differs from T0. HSQ
•

 corresponds to 

the imposed heat rate consumption (constraint related to the 
fluid mass rate and THSi, T0). 

The MAX(-
•

W ) is always furnished by the equation 
corresponding to (10), but the value of the efficiency at 
maximum power differs, due to change in energy expanses 

HSQ
•

. 

To simplify, we suppose that TLS is identical to T0, the 
ambient temperature. This hypothesis remains consistent with 
the Chambadal model of power plant. 

Using (5-8, 22) it comes after some calculations the 

condition for min 0

•
S  : 

( )
H

HC

liHSiH

H
T

TS
TTKTTC

T ∂
∂

−




 +
•

•

0
2

002

1
  

0=






 +−
•

liH KC                                                 (23) 
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This equation is identical to (10) due to the fact that TLS = 

T0. In that case MAX(-
•

W ) corresponds to min (0

•
S ), created 

entropy rate for the system hot fluid in the environment. 
 

Heat source as reference 

The energy and entropy balance of the system in contact 
with the heat source at THsi (thermostat) and the ambient cold 
sink at TLS = T0 becomes now (21) and (24). 

000

0

=++
•

••

S
T

Q

T

Q LS

HSi

HS                                         (24) 

We have always  

0HHHS QQQ
•••

+=   

0HLLS QQQ
•••

−=  

Using (5-8, 24) it comes after calculations, the condition 

for min ( 00

•
S ). We obtain again the equation (23), identical to 

(10) with TLS = T0. MAX(-
•

W ) corresponds too to min (00

•
S ), 

created entropy rate between the thermostat THSi , necessary to 
produce the hot fluid, and the environment at T0. 

 
3 DISCUSSION AND CONCLUSIONS 

This paper has reconsidered the optimizations regarding 
maximum power of a thermomechanical engine, and minimum 
entropy generation  rate for steady state configurations. 

The convenient model of Chambadal power plant has been 
choosen, but extended, taking particularly account of internal 
irreversibilities of the converter (Carnot engine). 

It has been proved that these internal irreversibilities 
depend on TH  temperature. An example has been developed 
regarding heat losses between hot (TH) and cold (TLS) side of 
the converter. 

 

3.1 Comparison of MAX(-
•

W ) condition with min iS
•

, 
total internal entropy created inside the converter 

These two conditions differ. Min ( iS
•

) occurs for a plant 
that does not deliver power (TH = TLS). 

The maximum power condition leads to TH* for the 
endoreversible converter  

liH

LSliHSiH

LSH

KC

TKTC
TT

+

+
= •

•

*  

This value gives a generalized form of the nice radical. 
 

3.2 Comparison of MAX(-
•

W )  condition with min ( SS
•

), 
total entropy created within the system 

The condition for min ( SS
•

) (18) differs from the one 

corresponding  to MAX(-
•

W ) (10), even for endoreversible 

system, where min ( SS
•

) corresponds to the thermodynamic 
equilibrium situation (TH = THSi). 

 

3.3 Comparison of MAX(-
•

W )  condition with the 
minimum of total entropy created for the system in the 
environment 

In that case, it appears a transiting heat rate 0HQ
•

. This 

heat rate, as the one rejected at the cold sink (LQ
•

 at LST ) is 

supposed degraded, as done by A. Bejan. But in fact, it could 
be valorized (through CHP system, ORC system or others). 

If not, it contributes effectively to entropy generation for 

both heat fluxes ( 0HQ
•

 from TH, to T0 ; LQ
•

from TLS, to T0). 

Reported calculations are relative to the common case 
where TLS equal T0. 

It has been shown that, whatever is the reference (hot fluid, 

or heat source), MAX(-
•

W ) is associated  to the min of 
generated entropy rate. It comes for the endoreversible 
converter, the same relation as in a section (3.1) with TLS = T0. 

 
3.4 Conclusions 

Maximization of power, or minimization of entropy 
generation are equivalent, if we consider the system in his 
environment. This is confirmation of the Gouy  Stodola 
theorem. But it supposes that all rejected heat are not 
valuable. This must be reconsidered and is an actual challenge 
[11, 12]. 

Regarding the converter and the system in itself, the two 
objectives are not identical. 

If maximization of power is a clear objective function, 
regarding entropy is not so easy. We have shown here that 
results differ, if considering entropy of the converter, or 
system in the environment (including hot fluid, or hot source). 

Preceding results obtained in the literature have been 
precized and extended, clarifying the existing controversy. 
These results remains to combine, to existing ones [8, 14]. 
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EXTENDED ABSTRACT 

 
Surface chemistry, both thermal and electrochemical, is very important in many energy applications including catalysis, fuel cells, membrane 

reactors, reformers, etc. However, accurate mechanisms describing its kinetics have not been widely developed. In situ spectroscopic 

measurements to determine the reacting species and reaction rates are often rare and incomplete. Frequently one must rely on macroscopic 
measurements (permeation fluxes) or device performance (I-V curve in fuel cells) in which surface processes play an important role. Models 
relating the device performance to the surface chemistry are formulated in terms of partial differential equations describing the interaction 
between different modes of transport and chemistry in both the homogeneous and heterogeneous phases using the mean-field approximation. The 
source terms are assembled using multistep reaction kinetics (microkinetics) often involving adsorption/desorption, charge transfer, incorporation 
into bulk and the corresponding species. The choice of the intermediate molecules in the microkinetics mechanism, and the corresponding 
reaction steps, is often guided by prior knowledge or some ab initio calculations. Individual reactions (forward and backward) must satisfy 
thermodynamic consistency (although this is not always done). Estimating the unknown kinetics parameters is done by matching the solution to 
the available data over a reasonable range of operating conditions. I will discuss couple of recent examples from our work on solid oxide fuel cell 
[1,4,5] and ion-transport membranes [2,3]. 
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EXTENDED ABSTRACT

All energy transformation processes occurring in reality are irreversible and in many cases these irreversibilities must be included in a realistic
description of such processes. Especially the quantification of the losses occuring in technologically relevant processes is an important goal.
Endoreversible thermodynamics provides a non-equilibrium approach towards this goal by viewing a system as a network of internally reversible
(endoreversible) subsystems exchanging energy in an irreversible fashion. All irreversibilities are confined to the interaction between the subsystems.

Although the performance limits of reversible processes like the Carnot efficiency provide upper bounds for real irreversible processes they are
usually not good enough to be a useful guide in the improvement of real processes. Real heat engines, for example, seldom attain more than a
fraction of the reversible Carnot efficiency.

The concept of ‘endoreversibility’ has proven to be a powerful tool for the construction of models with the desired qualities. Endoreversible
systems basically are composed of internally reversible subsystems with (irreversible) interactions between them. The losses due to the finite times
or rates of processes are located in the interactions alone. A proper modelling of the transport equations between the subsystems allows to quantify
the dissipation associated with the energy exchange. The hypothesis of endoreversibility simplifies the expenditure for the analysis essentially. This
concept of ‘endoreversibility’ has been successfully applied to a wide variety of thermodynamic systems and led to remarkable results [1, 2].

An important problem in the analysis of endoreversible systems is how to deal with the time dependence of process variables and parameters,
i.e. how the dynamics of a system evolves during a process. This problem has first been investigated in relatively simple models, which lacked the
richness in technological detail of sophisticated engine models. However, while it was this approach which made insights into thermodynamic path
optimization feasible, endoreversible thermodynamics as a general theory provides a framework to deal with thermodynamical systems at all levels
of detail and is thus a universal approach also ranging to very elaborate and complex models [3].

We here present an example of such a treatment. It is the analysis of a SI (spark ignition) engine, which is optimized in efficiency under
the constraints given by CO2-emission commitments and legislation all over the world. The goal is to improve the efficiency of the SI engine
significantly, while of course the exhaust emissions must not become worse.

One known approach is to reduce the gas exchange losses using fully variable valve trains on the intake side of the combustion engine. OptiVent
is another approach [4]. It is a patented new way controlling the mass air flow in the cylinder of a combustion engine using opening valves during
the compression phase of a four stroke engine, see fig. 1. This technology requires a wider range of variability on the valve train components of
the engine especially for opening the valves more than one time during a cycle. In addition it is necessary to combine this technology with direct
injection to avoid fuel losses in the exhaust system of the engine. Chemnitz University of Technology and the West Saxon University of Applied
Sciences in Zwickau performed numerical investigations on the potential of the OptiVent engine control and combustion system, using a fully
variable valve train on the exhaust valves of the engine. We present results from numerical simulations based on the endoreversible description of
the OptiVent principle, see figs. 2 and 3. These simulations show the potential of the new OptiVent-way of air mass control, thus enabling us to
progress towards developing a running engine and putting it on a test bench.
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Figure 1. The OptiVent method makes use of adjusting the amount
of compressed air in the cylinder by a second opening of the exhaust
valve, here shown as “Exhaust2”.
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EXTENDED ABSTRACT 

 
Gas heated reformers of length L which all produce the same amount of hydrogen have been investigated, for varying inlet temperature T0. 

By analysing various stationary states of operation formulated by optimal control theory, we find numerical support for the hypothesis of 
minimum entropy production, namely that the state of operation with constant entropy production, and also in some cases constant thermal 
driving force, are good approximations to this most energy efficient state of operation [1], see Fig. 1. 

 
 

Figure 1: The local entropy production for the reference gas heated reformer (solid line), the optimal cases with fixed T0  and L (upper dashed 
line), free T0 and fixed L (dash-dotted line) and free T0 and L (lower dashed line). All cases have heat transfer by convection, radiation and 

conduction. 
 
This result applies for non-linear transport equations and conditions for which there exist no rigorous mathematical description of the most 

energy efficient state [2]. Clearly there is a need for an extended mathematical analysis. Based on the theoretical and numerical results we 
proceed to formulate a set of guidelines to aid in energy efficient reactor design, which can be used once the best available heat transfer 
coefficients have been obtained. The optimal reactor design depends on the relative size of the heat transfer coefficient for heat transfer across the 
tubular reactor wall and typical heat transfer coefficients in heat exchangers. Very efficient heat transfer across the reactor tube wall favours a 
design consisting of an adiabatic pre-reactor followed by a tubular reactor section exchanging heat. Very poor heat transfer across the reactor 
tube wall favours a design consisting of one or more adiabatic reactor stages with interstage heating/cooling in dedicated heat exchangers. We 

discuss how the guidelines add to proposals in the literature and help define central optimization variables and boundary conditions. 
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INTRODUCTION 

Entropy production analysis has been promoted as being 
an important tool for identifying where major losses in a 
system occur, as a design tool to identify system 
improvements and as a measure of sustainability.  The 
process with the lower entropy production rate is the more 
sustainable one because it converts one form of energy into 
another useful form more efficiently.  However, use of this 
second law based tool is not widespread at a practical level 
because of its complexity and subtleties. There are numerous 
examples of reporting entropy production rates as part of 
energy analysis of a system performance in the literature[1-7], 
but there are few instances where decisions to implement 
design modifications are based on reducing entropy 
production rates [8,9]. In these reported investigations, the 
developments of the entropy production analysis of a 
particular device or process are the key outcomes of the 
investigation.  However, in most cases issues related to heat 
flows and the associated entropy flows are not described.  The 
system boundaries are not defined to allow the total entropy 
production of the delivered product to be identified.  For 
example, [5] provide a complete and thorough second law 
analysis of a reverse osmosis desalination plant starting with 
the power input to the pumps.  They do not include the 
entropy production associated with the production of this 
power that would allow a direct comparison with competing 
renewable energy desalination technologies.  This 
inconsistency in system definition prevents a direct 
comparison of the entropy production with other competing 
technologies and of its use as a measure of sustainability.  

The examples discussed in this presentation are intended to 
highlight cases involving renewable energy sources, 
specifically solar energy, where including entropy production 
into the analysis leads to a better understanding and potential 

improvements of the system. They also illustrate the 
fundamental information misconceptions by practitioners that 
are limiting the accurate and productive use of the second 
law, especially as a means of integrating energy system 
solutions and addressing sustainability concerns.  These 
examples include formulating the entropy production analysis 
for renewable energy systems, their integration with 
traditional systems and comparing them to nonrenewable or 
fuel driven resources.   

The transient entropy term is one feature of the entropy 
production analysis that is neglected in most of the previous 
reported studies.  Renewable energy sources are variable in 
nature and systems involving them usually include an energy 
storage device such as thermal storage device or batteries as 
well as energy stored in the energy collection device itself.  
Neglecting the transient entropy term leads to erroneous 
predictions of entropy production during the startup and time 
immediately after the renewable energy source has ended 
when the stored energy in the system continues to produce 
useful output.  For example, Modaresifar [8,9] demonstrates 
that fresh water is produced in a solar desalination device 
after sunset due to the stored thermal energy in the device.   

The quasi-steady state analysis, which is commonly used 
in solar thermal energy simulations, especially in the first law 
analysis, may not be accurate in the second law analysis.  
Using daily simulations to avoid these transient effects [9] 
may not lead to an accurate prediction of the entropy 
production in these systems and its use as a measure of the 
sustainability.  Additionally, one has also lost the opportunity 
to fully understand the device process and to possibly 
improve it when using the daily integrated results.  

 A generalized system with the same physical 
characteristics as that of a solar thermal collector will be used 
to investigate the effects of the transient entropy property 
changes and energy storage on its performance.  The system 
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will be simplified and the incident solar radiation will be 
represented by a parabolic function so that a closed form 
solution can be developed to investigate the second law 
characteristics.   A quasi-steady state and transient solution 
will be obtained to measure of the accuracy of the quasi-
steady state solution.  The subtleties of describing the heat 
flows associated with this type of analysis are discussed 
during this development.  The results of this demonstration 
will be extended to a more complex problem involving a 
solution, salt and water that is involved in the solar 
desalination process.  This demonstration emphasizes the use 
of entropy production rates as a measure of the sustainability 
of competing systems. 

DEVELOPMENT:. 

Generalized Solar System 

The generalized system used to investigate the effect of the 
transient entropy property term is shown in Figure 1 and 
includes the energy storage terms for the device, ESr and the 
working fluid, ESwf.  The absorbed incident solar radiation 
entering the system and the heat loss from the solar thermal 
device is shown. 

 

 
Figure 1 System sketch for the generalized solar thermal 

device and its associated energy flows. 
 
The energy for the system shown in Figure 1 is: 
 

ehrmLOSSQSwfESrESOLQihrm  )(      (1) 

 
The heat loss, QLOSS, and energy storage terms for the device, 
ESr, and the working fluid, ESwf, are related to the average 
temperature of the system.  For the purpose of this analysis, it 
is assumed that the mass flow rate, mr, is sufficiently large 
that the spatial variation of the temperature through the 
system is a linear function and equals the arithmetic average 
of the inlet and outlet temperatures, Ti and Te, respectively.  
Introducing the equation of state and the definition of the 
energy storage terms and rearranging Eq. (1) yields: 
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Where Ti =T∞= ambient temperature = constant. 
    
   The generalized function for the incident solar radiation is a 
parabola with the maximum value at solar noon and zero 

value at sunrise and sunset.  The function is normalized with 
respect to day length, td.  
          
   QSOL = 4Qs,peak[(t/td)-(t/td)

2]                 (3) 
 
Qs,peak equals the peak incident solar radiation for the day,  
W/m2, and td equals the day length, hours.  Eq. (3) applies for 
time between sunrise and sunset. 
 
   The solution to Eq. (2) for the time period between sunrise 
and sunset when the initial condition is that the device and 
enclosed fluid are at the ambient temperature is: 
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   At sunset, the exit temperature is above the ambient and 
inlet temperature even though there is no incident solar 
radiation. The transient response continues under this 
condition until the solar device cools to the ambient 
temperature.  Modifying Eq. (2) for zero incident solar 
radiation and solving for the exit temperature yields the 
following: 
 

)](2exp[))(( dttCiTdteTiTeT            (10) 

 
Where Te(td) is the exit temperature calculated from Eq. (3) at 
time equal to the day length, sunset.  
 
   The collected useful energy rate for the device is related to 
the change in the enthalpy of the working fluid mass flow 
rate. 
 

))(( iTeTwfcrmuseq             (11) 

 
   The Transient simulation model is described above using 
Eqs. (3-11) and represents a closed form solution for the 
behavior of the system.  The quasi-steady state simulation 
model is based on the same system definition.  However, the 
energy storage terms are neglected.  This is equivalent to 
setting the first time derivative in Eq. (2) to zero.  The exit 
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temperature based on the quasi-steady state model is 
determined from resulting equation. 
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   The collected useful energy rate for the quasi-steady state 
model is determined using Eq. (11) with the exit temperature 
calculated with Eq. (12). 

Entropy Production Rate for Generalized Solar System 

  The system definition for the entropy balance for the 
generalized solar energy system is show in Figure 2.  This 
system is modified from that shown in Figure 1 to reflect the 
entropy flow associated with the heat flows.  This 
modification also reflects a basic second law question that is 
not commonly mentioned when new practitioners are 
introduced to the second law and entropy production rate.  
That question is “Is the heat flow used in another process to 
produce a useful energy output or is it allowed to reach 
equilibrium with the surroundings without doing useful 
work?” The location of the system boundary and what 
devices are included in it are determined based on the answer 
to this question.  In the present case, the heat flow input from 
the sun should be viewed as coming from the sun and the 
system boundary for this energy flow should be at the 
temperature of the sun.  This feature is shown in Figure 2 as 
the dotted line extension the original system definition.  Using 
this approach includes the irreversibility of this thermal 
transport to the defined system.   For the entropy flow 
associated with the heat loss from the solar thermal device the 
system boundary is defined at the ambient temperature 
because no attempt is made to use this energy flow in another 
process.  By defining the system in this manner one avoids 
the complicated integral involved in evaluating the entropy 
flow of a heat flow at a variable temperature and it insures 
that all sources of entropy production related to the process 
are included in the analysis. 

 
Figure 2 System sketch for the generalized solar thermal 

device and its associated entropy flows.  The system definition 
has been modified from that shown in Figure 1. 
 
   The entropy balance for this system is: 
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Introducing the T-ds equation to relate the entropy change to 
the temperatures for an incompressible working fluid and for 
a constant pressure process yields: 
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The entropy production rate for the quasi-steady state model 
neglects the transient entropy property terms. 
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The above developments were used to calculate the exit 
temperature, collected useful energy rate and entropy 
production rate for a typical day in July for the Boston, 
Massachusetts, USA region.  The peak solar energy for the 
day was 918.5 w/m2 and the day length was 15 hours with 
sunrise at 430 hours.  The results are discussed later. 

Solar Desalination Process Model 

   The system shown in Figure 3 illustrates schematically a 
tray design solar desalination. The system description and the 
model development are described in detail in [8, 9] and is not 
repeat here.  In this tray design, a film of salty water is placed 
in thermal contact with absorber plate using trays mounted to 
its rear surface and the condensing surface is placed in a 
shaded region to minimize it temperature.  The condensing 

surface is inclined at an angle of 40⁰ in order to allow the 

condensed water vapor to flow down into the fresh water 
trough.  In this solar distillation design, an absorber plate is 
thermally isolated from the environment using a glazing 
surface that is transparent to the incident solar radiation. 
Water trays are in contact with the rear surface of the 
absorber plate and are inclined to provide gravity flow 
through the collector.  The trays have a fin efficiency of 0.97 
and a combined surface area greater than the absorber plate 
area.  In this configuration, the glazing surface is separated 
from condensing surface that is the common configuration of 
most solar distillation units.  

 
Figure 3 schematic diagram of the solar still analyzed in this 
work.  The incident solar radiation is absorbed on the 
absorber plate.  The evaporated water vapor is condensed on 
the shaded rear surface where the freshwater is collected. 

 
In addition to minimizing the condensing surface 

temperature, this configuration also avoids reducing the solar 

 

 

 

27



 
energy incident on the absorber surface due to condensation 
or frost formation in the winter months on the glazing surface.  
The brackish water inlet is to the side of the collector and 
feeds the water trays as shown in the rear view section of 
Figure 3.  The volume surrounding the water trays and 
bounded by the condensing plate is defined as the chamber. 
Fresh water is condensed by maintaining the chamber above 
its dew point temperature and the condensing plate below it. 
The fresh water accumulates on the condensing plate and is 
collected at the outlet as shown.  The heated, concentrated 
salty water flows out of the trays as shown.  

The amount of fresh water produced is calculated using the 
condensation rate that is based on the condensation heat flow. 
The set of coupled equations based on the energy balance on 
the absorber plate, water in the trays, chamber and 
condensation plate are solved using an explicit integration 
procedure. The evaporation and condensing process are 
included in this model and require the determination of the 
chamber’s relative humidity and partial pressure of the water 
vapor.  The energy balance equations for the water in the 
trays, plate and condensing surface are recast into a temporal 
finite difference form and are solved over the day length in 
time steps of 1 sec. to allow a stable solution. The mass flow 
rate of the fresh water produced equals the condensation mass 
flow rate. The mass of freshwater produced is calculated by 
integrating the condensation flow over time.  A Matlab 
program was written using these relationships to calculate the 
temperatures of the absorber plate, water, chamber, and glass 
surface as a function of the incident solar radiation and 
ambient air temperature [8,9] . 

The second law analysis of the tray design solar distillation 
device performed by Modaresifar [9] was an exergy analysis.  
Modaresifar [9] based his analysis on two system defintions 
that are summarized in Figure 4. Using his exergy destruction 
term and the defined dead state temperature allows his 
analysis to be restated in terms of the entropy production rate.  

 

 
 

Figure 4 Schematic diagram of exergy balance for a solar 
distillation system.  The dashed line boundary defines a 
system in which all inflows and outflows all occur at the dead 
state.  The “product approach” system is the central block 
with the exergy destruction, ex|D, indicated.  

 
 The second law exergy balance for the system defined by 

the dashed line in Figure 4: 
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Where the inflow (brine) and the outflows are treated as a 
solution of salt and water.  This approach is taken to 
accurately describe the irreversibility of the separation 
process to obtain the freshwater.  The details of this 
development are given in [8,9] and are not repeated here.  The 
primary focus of this work is the transient exergy term and its 
effect on the calculated entropy production rate.  In [9] the 
daily average exergy destruction and second law efficient 
were determined and it was argued that over the course of the 
day the transient system exergy term would go to zero 
because the device returned to its original state.  As will be 
seen in the result section this is not true, for this system and 
for the generalized solar thermal system.  Modaresifar [9] also 
illustrates the difference between the dashed line system in 
Figure 4 and the “product approach” which neglects the 
exergy destroyed when the hot outflows are allowed to reach 
equilibrium with the dead state without attempting to use 
them for other purposes.  The large difference between the 
second law efficiency of these two system is an effective 
argument for introducing a waste heat recovery heat 
exchanger.  The addition of the heat exchanger does 
significantly improve the performance and is discussed 
below.  

RESULTS 

Generalized Solar System 

The prediction of the exit temperature from the solar 
thermal device, the entropy production rate and the useful 
collected energy rates are determined for a typical day in July 
for the Boston, Massachusetts, USA location using the 
formulations described above are discussed below.  The 
calculations were based on a parabolic description of the 
incident solar radiation with a peak incident solar radiation of 
981.5 w/m2 and a day length of 15 hours.  A comparison of 
the parabolic function used in this analysis and the predicted 
incident solar radiation using the method of Masters [10] is 
given in Figure 5.  The idealized parabolic function is in 
general agreement with the functional trend of the incident 
solar radiation, but yields slightly large values.  These 
differences are acceptable for the purpose of the present  

 
 
Figure 5 The comparison of the idealized parabolic 

function used to describe the incident absorbed solar 
radiation to that predicted for July 15 in the Boston, 
Massachusetts, USA region. 
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analysis in order to take advantage of the closed form solution 
and it is the relative comparison of simulation models that is 
discussed. 

The idealized daily incident solar radiation model was 
introduced into the quasi-steady state and Transient 
simulation to calculate the collected useful energy rate shown 
in Figure 6.  The first observation is that there is little 
difference in the collected useful energy rate between the two 
models which is consistent with the commonly used Frist law 
models.  The total collected useful energy over the day for the 
quasi-steady state simulation is 55.6 MJ while that for the 
Transient simulation is 55.7 MJ, a 0.12% increase.  This 
graph is included because the results are those commonly 
desired and are the basis of most economical, reduced fuel 
consumption and carbon emission calculations.   

 
Figure 6 The comparison of the collected useful energy 

rate as a function of time of day between the quasi-steady 
state and transient simulations. 

 
The fluid exit temperature for the quasi-steady state and 

transient simulations are compared in Figure 7.  As expected 
there is little difference between the models and the  

 
Figure 7 The comparison of the fluid exit temperature from 

the solar thermal collector as a function of time of day 
between the quasi-steady state and transient simulations. 

 

 
commonly used approximation of neglecting the device’s 
energy storage term is supported.  One can discern a slight 
difference where the quasi-steady state simulation predicts a 
slightly higher exit temperature during the time before solar 
noon (12 hrs) and a slightly lower exit temperature for the 
time between solar noon and sunset.  However, these 
differences are not significant and are well within the 
uncertainty of the simulation accuracy.  

In Figures 8 and 9 details of the fluid exit temperature near 
solar noon and at sunset are illustrated.  In Figure 8 the slight 
difference from the quasi-steady state simulation predicting a 
higher value than that of the transient simulation before solar 
noon and then reversing the trend is more easily observed.  
The more significant difference between the two simulations 
occurs at sunset where the transient model predicts an 
exponential type temperature response to the ambient 
temperature while the quasi-steady state model abruptly 
reaches the ambient temperature at sunset (Figure 9).  The 
increased fluid exit temperature predicted by the transient 
model is a result of converting the energy stored in the device 
to useful energy collected.  A similar energy conversion 

Figure 8 The comparison of the fluid exit temperature from 
the solar thermal collector as a function of time of day 
between the quasi-steady state and transient simulations near 
the time of solar noon. 

Figure 9 The comparison of the fluid exit temperature from 
the solar thermal collector as a function of time of day 
between the quasi-steady state and transient simulations near 
the time of sunset. 
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is not included in the quasi-steady state model.  Again, the 
differences between these first law simulations are not 
significant and the results are consistent with the common 
approach used in the field. 

In Figure 10 the entropy production rate as a function of 
the time of day are compared for the two simulations.  These 
results are significantly different and illustrate that the quasi-
steady state simulation predicts a larger entropy production 
rate than that for the transient model by a maximum of 7.4%.  
The integrated daily entropy production for the quasi-steady 
state simulation is 0.20 MJ while that for the transient 
simulation is 0.18 MJ, a 7.3% decrease.  These results suggest 
that if one is comparing entropy production rates between two 
competing solar thermal designs or solar radiation collection 
devices (solar thermal vs photovoltaics) one should include 
the transient entropy property term.  In the present 
comparison, Figure 10, the shown difference suggests that the 
commonly used approximation to neglect the energy storage 
term that is justifiable for the first law analysis is not 
justifiable for the second law analysis. The inherent transient 
nature of renewable energy sources suggests that daily 
analysis and simulation of its second law performance should 
use the transient model. 

 
Figure 10 The comparison of the entropy production rate 

as a function of time day between the quasi-steady state and 
Transient simulations. 

 
The reason for this difference has to do with the entropy 

flow out of the system with the heat loss term.  In the actual 
device and the transient simulation  model the heat loss term 
is lower during a larger part of the day because part of the 
incident solar radiation is converted into internal energy of 
the device and is later converted to useful collected energy in 
the working fluid.   This energy conversion path is ignored in 
the quasi-steady state results.  The second law analysis should 
be used to compare different devices or systems for 
sustainability in order to determine the best use of the energy 
resource.  The change in the system definition between the 
first and second law analysis described in the development 
section serves two purposes.  First, it reflects that the heat loss 
term is not converted into a useful energy output and, second, 
it simplifies the heat transfer analysis.  The heat flow into the 
system at the high temperature of the sun incorporates its high 
energy quality and simplifies the analysis.  The need to define 
the ultimate use of an energy outflow from the system, 
especially a heat flow, is an inherent feature of the system 
redefinition procedure is a subtlety that needs to be discussed 

when practitioners are first introduced to these second law 
concepts.  It is also important to use this procedure when 
energy systems are discussed for their sustainability or for 
means to improve their performance. 

Solar Desalination Process 

The impact of assuming a quasi-steady state approximation 
for the second law for a solar desalination device is 
investigated in this section.  As discussed in the Development 
section the production of freshwater is usually modeled using 
a transient first law analysis because of the nonlinear 
relationships between the temperature of the device and the 
evaporation and condensation rates.  However, as mention 
previously most of the reported second law analyses of the 
solar desalination process use an effective parameter 
approach and not the salt and water solution, a brine solution, 
approach reported for the reverse osmosis or MFS processes 
[5,11,12,13].  Modaresifar [9] follows the brine solution 
approach to describe properly the irreversibility associated 
with separating the salt from the water.  However, [9] does 
not include the transient entropy property term in the analysis 
and uses a daily average to describe the irreversibility and 
exergy destruction because the system returns to its initial 
condition over the course of the day and the integrated 
transient entropy production term is assumed to be zero.  As 
seen from the previous section, this is not necessarily true 
since there is a difference in the daily entropy production 
between the quasi-steady state and transient simulations.  The 
need for an accurate second law analysis in Modaresifar’s [9] 
investigation was to determine design improvements and to 
compare the sustainability as measured by the second law of 
the solar and reverse osmosis desalination processes. 

The transient effect of the First law simulation of the solar 
desalination devices reported are clearly illustrated in Figure 
11, which is a plot of the brine temperature as a function of 
the time of day [9].  The functional form of the incident solar 
radiation for this analysis is similar to that reported in Figure 
5 and one has a peak solar radiation at solar noon, 12.0 hours 
and zero incident solar radiation at sunset, 20.0 hours.  In 
Figure 11 the maximum temperatures occur well after solar 
noon and there is an elevated temperature after sunset. 

Figure 11. Comparison of the water and condensing 
temperatures  between the pool evaporation and tray design 
solar desalination units.  The performance for the July design 
days are shown.  Taken from [9]. 
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In Table 1 the results of the second law analysis for the 

Tray Design desalination device are summarized for the waste 
heat recovery and no recovery sytem configuration.  The 
performance for the different system definitions are also 
summarized. 

 
Table 1 Comparison of the Summary of second law 

performance measures of the Tray Design solar desalination 
device for the quasi-steady state and transient simulations. 

   

In the second row, the simulation approach for the second 
law analysis is identified for the two different solar 
desalination processes under consideration, the waste heat 
recovery and no recovery designs.  The first process is the no 
recovery process in which the hot, concentrated brine is 
discharged into the water source and the inlet is from the 
large available brine source, usually the ocean.  The second 
process is the recovery process that includes a heat exchanger 
that uses the hot concentrated brine to preheat the entering 
cold brine.  Both processes are transient simulations using the 
first law, but a quasi-steady state and a transient model are 
used to calculate the daily entropy production parameter and 
the results are reported in the marked separate columns. 

Two system definitions are used to report the second law 
efficiency.  In the fourth row, the “product approach” 
corresponds to the system defined at the exit of the solar 
desalination unit as shown in Figure 4 in the Development 
section.  Using the “product approach” system definition one 
is neglecting the availability flow carried by the hot brine and 
fresh water.  This is not a rigorous application of the second 
law because one is not asking the question “what can I do 
with this outflow” and one is not following the entropy and 
availability flows to their final equilibrium states. This is a 
common mistake because from a first law design perspective 
this system definition is perfectly adequate.  It should be 
noted that the second law efficiency predicted for this system 
is greater than that reported for the correct second law 
definition where all outflows are tracked to their final 
equilibrium state as reported in the fifth row.  Modaresifar, 
[9] used this system to identify the potential gain if the hot 
brine were used to preheat the entering cold brine. 

The second process, the recovery process, introduces the 
heat exchanger and follows all the outflows to equilibrium 
with the surroundings.  This complete system definition was 
used and is the reason that the “product approach” cells are 
left unreported, “NA”. 

From the table it is clear that neglecting the transient 
entropy property term leads to under estimating the second 
law performance in all cases.  Modaresifar [9] uses these 
results to argue that the second law performance can identify 
the sources of entropy production and indicate means of 
reducing it.  However, this argue is valid in this case because 

the same assumption, neglecting the transient entropy 
property term, was made in both simulation models.  The 
more accurate estimate using the transient simulation model 
indicates that the performance measured by both the second 
law efficiency and the daily entropy production are higher 
than that predicted by quasi-steady state model.  This 
difference becomes important when one wants to compare the 
predicted performance of a solar desalination process to 
competing operations such as reverse osmosis or MSF plants. 

In the reverse osmosis (RO) plants reported in the literature 
the second law efficiencies are in the range of 4%to 4.5%. 
Aljundi [5] reported 4.1% for a plant in Jordan, Cerci has the 
4.3 % for the second law efficiency in a plant in California [6] 
and Y.Cengel reported 4.2 % for a MSf desalination plant [7]. 
The second law efficiency is calculated from the exergy of 
products divided by the input power exergy.  When one 
compares the calculated performance of the solar desalination 
process using the transient model one finds that it is higher 
than for these other processes.  

This comparison is not a valid because the second law 
calculations in literature use the input exergy as the power 
input that is needed for the pumps, not at the primary energy 
input point. The entropy production in producing the input 
power is not included in the reported second law efficiency 
calculations for the (RO) process.  The comparison between 
the solar and (RO) processes is not consistent because the 
input energy source for the (RO) process is not the primary 
energy input source as it is for the solar processes.   A. 
Rashad [14] showed that a thermal power plant has a second 
law efficiency of less than 50% in all conditions of loading. 
The performance of the primary power source must be taken 
into account to calculate equivalent second law parameters in 
order to get accurate comparison, especially when using the 
entropy production or second law efficiency as a measure of 
the sustainability of the processes. 

CONCLUSION 

   An investigation of the transient system entropy property 
term, entropy storage, for a solar thermal and desalination 
device was performed.  The objective was to illustrate the use 
of entropy production rates as a means of comparing 
alternative energy solutions and as a measure of their 
sustainability. The solar thermal analysis was based on a 
generalized system with a functionally correct form of the 
incident solar energy that yielded a closed form solution. To 
satisfy the above objectives one needs accurate calculation of 
entropy production rates.  It was confirmed that neglecting the 
energy storage terms is a valid approximation for the first law 
analysis, but not for the second law analysis where entropy 
storage terms are significant for both systems investigated .  
For a generalized solar thermal system neglecting the entropy 
storage terms introduced a maximum difference in the 
entropy production rate of 7.4%   and a difference of 7.3% in 
the daily average.   Similar differences were observed for the 
solar desalination process.  It was shown that by adding a 
waste heat recovery device the desalination system’s entropy 
production rate decreased for the same energy input and 
resulted in a better performing system. In the solar 
desalination process the difference between including the 
entropy storage terms leads to a second law performance that 
is greater than that for the reverse osmosis process, the chief 
competitor.  It was also demonstrated that modifying the 
system definition between the first and second law analysis 
simplifies the analysis and provides the practitioner a 
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framework to include all entropy production parameters 
associated with the process. This framework also provides 
design insight as to means of improving the system 
performance and sustainability.  The results demonstrate that 
for variable energy sources such as renewable energy 
systems, the second law analysis provides a measure of the 
sustainability of competing system and that the entropy 
storage terms should be included in the analysis. 

 
 

ACKNOWLEDGMENT 

The authors thank the College of Engineering at 
Northeastern University and the College of Engineering and 
Technology at Wentworth Institute of Technology for 
supporting this research.   

NOMENCLATURE  

b0,b1,b2 Solution parameters defined by Eqs.(7-9) 
C1, C2 Constant defined by Eqs, (5) and (6) 
C3 Integration Constant   K 
cD           Specific heat of device   J/(Kg K) 
CL  Overall heat transfer factor  W/K 
Cwf    Specific heat of working fluid  J/(Kg K) 

ex|D     Exergy destroyed    W 
ex,B      Exergy of brine at outlet    J/Kg 
ex,f       Exergy of freshwater produced  J/Kg 
ex,in      Exergy of brine at inlet    J/Kg 
ex,qcond Exergy carried by condensation heat flow W 
ex,qloss    Exergy carried by heat loss  W 
ex,QSOL Exergy of incident solar radiation  W 
ex,sys    Exergy of device and working fluid J/Kg  
ex,B      Exergy of brine at inlet    J/Kg 
ESr       Energy Storage term for the device  J/s 
ESwf      Energy Storage term for the working fluid J/s 
hi Enthalpy at device inlet   J/Kg 
he Enthalpy at device exit   J/Kg 
mr Mass flow rate of working fluid  Kg/s 
mD Mass of device    Kg 
mwf Mass of working fluid in device  Kg 
QLOSS Heat loss from device   W 
QSOL Incident solar radiation on device  W 
Qs,peak Peak incident solar radiation on device W 
quse Collected useful energy rate  W 
se Entropy at device exit   J/(Kg K) 
si Entropy at device inlet   J/(Kg K) 
SD Entropy of device   J/K 
Swf Entropy of working fluid in device  J/K 
Tave Average temperature of device  K 
Te Exit temperature from device  K 
Ti Inlet temperature to device  K 
TSUN Temperature of the sun   K 
td Daylength    hr 
(τα) Transmission-absorption coefficient for 

solar collector 
σP Entropy production rate   J/s 

REFERENCES 

[1] Hepbasli, A., A key review on exergetic analysis and 
assessment of renewable energy resources for a sustainable 
future, Renewable and Sustainable Energy Reviews 12, pp. 
593–661, 2008. 

[2] Romero-Ternero, V., Garcia-rodriguez, L. & Gomez-
Camacho, C., Thermoeconomic analysis of Wind Powered 
Seawater Reverse Osmosis Desalination in the Canary 
Islanda,  Desalination, Vol. 186, pp. 291-298, Elsevier, 2005 . 
[3] Garcia-Rodriguez and Gomez-Camacho, Exergy analysis 
of the SOL-14 Plant, Desalination 137, pp. 251-258, 2001. 
[4] Tiwari, G.N., Dimri, V., Chel, A., 2009, Parametric study 
of an active and passive solar distillation system: Energy and 
exergy analysis, Desalination 242, pp.1-8, 2009. 
 [5] Aljundi, I.H., Second-law analysis of a reverse osmosis 
plant in Jordan, Desalination, vol. 239, pp. 207-215, , 2009. 
[6] Cerci, Y., Exergy analysis of a reverse osmosis 
desalination plant in California, Desalination, vol. 142, pp. 
257-266, 2002. 
 [7] Kahraman, N. and Cengel, Y., Exergy analysis of a MSF 
distillation plant, Energy Conv. Mgmnt, Vol. 46, pp. 2625-
2636,2005. 
[8] Modaresifar, M., Zenouzi,,M. & Kowalski, G.J., 
Exergetic Performance Comparisons of Solar Desalination 
Devices and Reverse Osmosis Processes, Proceedings of  the 
ASME-ESFuelCell2012 Conference in San Diego, July 23-
26, 2012 (ESFuelCell2012-91517) , 2012. 
[9] Modaresifar, M., Zenouzi,,M. & Kowalski, G.J. Exergy 
Analysis for Solar Desalination Devices and Processes, To be 
presented at Proceedings of the ASME 2013 7th International 
Conference on Energy Sustainability & 11th Fuel Cell 
Science, (Engineering and Technology Conference 
ESFuelCell2013), July 14-19, 2013. 
 [10] Masters, G.M., Renewable and Efficient Electric Power 
Systems, Wiley, Hoboken, NJ, 2004.  
[11] Sharqawy, M.H., Lienhard V, J.H., Zubair, S.M., 
Formulation of Seawater Flow Exergy using Accurate 
Thermodynamic Data, Proceedings of the ASME-
IMECE2010, November pp12-18, Vancouver, British 
Columbia, Canada, IMECE2010-40915, 2010. 
[12] Sharqawy, M.H., Lienhard V, J.H., Zubair, S.M., On 
Exergy Calculations of Seawater with Applications in 
Desalination Systems, International Journal of Thermal 
Sciences, vol 50, pp187-196, 2011.  
 [13] Nafiz Kahraman, Yunus A.Cengel, Exergy analysis of a 
MSF distillation plant, Energy Convers Management, Vol. 
16, Issues 15-16, pp. 2625-63, 2005. 
 [14] A. Rashad and A.EI Maihy, Energy and Exergy 
Analysis of a Steam Power Plant in Egypt, 13th International 
Conference on Aerospace Sciences & Aviation Technology, 
ASAT- 13,  May 26 – 28, 2009. 
 
 
 

 

32



 
 
 
 
 
 
 
 
 

PANEL B 
 

NON-EQUILIBRIUM THERMODYNAMICS:  
THE VARIOUS APPROACHES AND THEIR REASONS 

 
 
 

33



12th Joint European Thermodynamics Conference 
Brescia, July 1-5, 2013 

 

 

 

MESOSCOPIC NON-EQUILIBRIUM THERMODYNAMICS 
 

Dick Bedeaux, Signe Kjelstrup 
 

Department of Chemistry, NTNU, 7491 Trondheim, Norway 
 
 
 
 

EXTENDED ABSTRACT 

 
Classical thermodynamics is a theory for a collection of molecules in equilibrium. What happens if the number of molecules in the system 
becomes smaller and smaller, and the system boundaries reflect conditions further and further away from equilibrium? Can we still use 
thermodynamics? In our work we have found that the answer is yes. The field of non-equilibrium thermodynamics can be extended to 

mesoscopic systems and describe in a systematic manner even molecular behavior far from equilibrium conditions. Using the concept of internal 
variables along the reaction coordinate we derive the law of mass action. This shows that the mesoscopic analysis gives a natural explanation of 
the fact that the reaction rate is a nonlinear function of the Gibbs energy of the reaction.  The theory can be applied to RNA stretching 
experiments. This application shows why stretching RNA leads to different results when one uses a constant force to stretch or when one 
stretches to a constant length. This relates to the fact that for small systems the results differ for different ensembles. Important work was done on 
this issue by Hill who wrote a book in the sixties of the last century on equilibrium thermodynamics of small systems. Furthermore the 
mesoscopic analysis can be applied to active transport by the Ca-ATPase. We were able to explain how temperature differences feature in this 
phenomenon. This understanding is relevant for instance to understand thermogenesis. In conclusion we find that mesoscopic non-equilibrium 
thermodynamic theory can be used, also on a molecular level. 
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ABSTRACT
One of the greatest hindrances to the development of theories of non-equilibrium thermodynamics beyond the local equilibrium
approximation is the difficulty of formulating definitive experimental tests of the basic concepts. For example, the existence
and definition of quantities such as temperature and entropy in far-from-equilibrium systems are extremely difficult questions
to directly address by experiment. Of course, this is partially due to the extraordinary success and great range of validity
of non-equilibrium thermodynamics in the local-equilibrium approximation. It is usually necessary to create systems under
extreme conditions such as shock waves, if we want to see deviations from the local equilibrium approximation, although non-
Newtonian fluids also provide some opportunities. Even in these situations, gaining direct experimental access to measurable
quantities that can be related to the theory is not simple. Alternatively, non-equilibrium molecular dynamics simulations are
an ideal test environment for many concepts in non-equilibrium thermodynamics. Many quantities of interest can be directly
computed in molecular dynamics simulations. In this paper, I would like to discuss several ways in which non-equilibrium
molecular dynamics simulations can be used to extract detailed information that can contribute to a deeper understanding of
non-equilibrium thermodynamics. I will also describe some of the pitfalls of this approach.

INTRODUCTION

Classical non-equilibrium thermodynamics as presented by
de Groot and Mazur [1] and others, has been incredibly success-
ful in providing a unified description of an enormous breadth of
non-equilibrium phenomena. However, there still remain many
non-equilibrium processes that do not fit within the realm of
the classical treatment. Some examples include extremely rapid
heating and deformation of simple fluids (as found in shock
waves, for example), and the deformation of complex materi-
als with large relaxation times (rheology) [2]. Although many
successful thermodynamically oriented theories have been de-
veloped to describe these phenomena, they are often quite spe-
cific to particular materials or processes. Furthermore, there is
still disagreement about the basic assumptions underlying these
extensions to classical non-equilibrium thermodynamics. Di-
rect comparisons between experimental results and theories of-
ten lack the detail needed to test these basic assumptions. For
example the concepts of temperature and entropy, which are so
important in equilibrium thermodynamics, become controver-
sial when the local equilibrium assumption is violated, but it is
very difficult to delineate the range of validity of the local equi-
librium assumption experimentally.

Computer simulation methods offer the opportunity to es-
cape some of the constraints of experimental studies. Non-
equilibrium molecular dynamics simulation methods have de-
veloped rapidly since the late 1970’s to the point where the
techniques and the theory behind them are now fairly well un-
derstood [3]. In molecular dynamics simulations, we have the
opportunity to calculate almost all properties of interest while
subjecting the sample to a wide variety of different perturba-
tions, some of which could never be achieved in a controlled

way in the laboratory. However, the new pathways opened up
by non-equilibrium molecular dynamics simulation techniques
also lead us into unknown thermodynamic territory.

In this paper, I will first very briefly summarise the main as-
sumptions of classical non-equilibrium thermodynamics and the
ways that they can be generalised. In the second half of the pa-
per, I will discuss two different types of non-equilibrium molec-
ular dynamics simulations in which extensions to classical non-
equilibrium thermodynamics are required.

NON-EQUILIBRIUM THERMODYNAMICS

Any brief discussion of non-equilibrium thermodynamics
will be necessarily and inevitably incomplete. However, I hope
that this will be sufficient to serve as a theoretical framework
for the second part of the paper.

Classical non-equilibrium thermodynamics

The two major assumptions made in classical non-
equilibrium thermodynamics are the local equilibrium assump-
tion and the assumption that linear (algebraic) constitutive equa-
tions are sufficient. The local equilibrium assumption essen-
tially postulates that the local values of fields such as the in-
ternal energy, pressure, density and entropy can be expressed
entirely in terms of their equations of state using the local val-
ues of their independent variables. Thus, we can assume that
the local internal energy density is a function of the local en-
tropy, temperature, pressure and mass densities use the first and
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second laws of equilibrium thermodynamics to write

ρ
du
dt

= ρT
ds
dt

+
p
ρ

dρ
dt

. (1)

This says that the time dependence of the internal energy is due
entirely due to the time dependence of the (independent vari-
ables i.e. the specific entropy and the density) appearing in the
Gibbs equation (combined first and second laws of thermody-
namics). From energy conservation, we also have

ρ
du
dt

=−∇ ·Jq −PT : ∇v (2)

and equating eq(1) with eq(2) also using the assumption that the
rate of change of the local entropy density is given by

ρ
ds
dt

=−∇ ·Js+σ (3)

we obtain the usual expression for the entropy production (for
details, see [1]),

σ =−

1
T

(

PT
− p1

)

: ∇v−
1

T 2Jq ·∇T (4)

wherePT
− p1 is the non-equilibrium part of the pressure ten-

sor. When the part of the entropy production due to stresses is
decomposed into its irreducible components, we obtain terms
due to the scalar, traceless symmetric and antisymmetric com-
ponents of the pressure and velocity gradient tensors. At this
point in the classical treatment of non-equilibrium thermody-
namics, the assumption of linear algebraic constitutive equa-
tions is made. The fluxes are assumed to be linear algebraic
functions of the thermodynamic forces and we have

Π =−ηV ∇ ·v, Pts =−2η(∇v)ts, Jq =−λ∇T (5)

These equations are valid for isotropic materials in the linear
response regime and in the absence of memory and spatial non-
locality. In this sense, they are quite restrictive, but they never-
theless describe a wide range of phenomena.

Deviations from local equilibrium

Classical non-equilibrium thermodynamics cannot correctly
describe the behaviour of viscoelastic materials, even in a steady
state. This is because, even though the viscoelastic constitutive
equation (for a Maxwell model material, for example) reduces
to Newton’s law of viscosity in a steady state, the Gibbs equa-
tion must also be modified to account for elastic stored energy.
In this sense, the local equilibrium assumption is violated. To
account for the stored energy, the work done by stresses must
be broken into elastic and viscous components. The decom-
position of the work into elastic and viscous components for a
general linear viscoelastic material has been discussed in detail
previously [4; 5]. Here we will just consider the particularly
simple case of a Maxwell model fluid in steady shear.

For a Maxwell model fluid, the shear stress is given by

Pyx + τ
dPyx

dt
=−ηγ̇ (6)

whereτ = η/G is the viscoelastic relaxation time and the work
done by the shear stress is

1
η

P2
yx +

1
G

Pyx
dPyx

dt
=−γ̇Pyx (7)

whereη is the steady shear viscosity andG is the infinite fre-
quency shear modulus. The terms involving these two coef-
ficients naturally separate the work into purely viscous (irre-
versible) and purely elastic (reversible) contributions. When the
system is taken from an equilibrium state into a thermostatted
shearing steady state, the integral of the viscous term continues
to increase with time, but the integral of the elastic term reaches
a value depending on the shear rate (or stress) in the steady state,
which becomes constant. Then the change in the total internal
energy of the system can be written as the integral of eq(2) over
the volume of the system and over time,

∆U = Q−WI −WR = QR −WR (8)

where we have definedQR =Q−WI as the reversible heat. This
is reminiscent of the ”compensated heat” of Clausius, recently
discussed in detail again by Eu [6]. In a steady state, the irre-
versible part of the work is exactly matched by the heat removed
from the system by the thermostat, and for this reason, it has
been called the ”housekeeping heat” [7; 8]. It is interesting to
note that since the internal energy is a state function, we expect
that the internal energy difference between an equilibrium state
and a given shearing steady state should be independent of the
path taken. Also, since we are free to take any path into the
steady state (provided that it does end in the steady state), we
can choose one for whichQR = 0. This is analogous to an adia-
batic process in equilibrium thermodynamics, but in this case, it
requires a specially tuned thermostat rather than complete ther-
mal insulation.

For the Maxwell model, we can write the reversible work in
the steady state as

WR =−

V
2G

P2
yx =−

γ̇2V ητ
2

(9)

This can be expressed in terms of an extensive variable related
to the shear rate as

WR =−

γ̇2Vητ
2

=−

(γ̇V )2ητ
2V

=−

Γ2ητ
2V

(10)

where the velocity difference∆v is an external macroscopic
variable

Γ = γ̇V =
∆v
L

LA = ∆vA (11)

This is similar to the choice made by Sasa [9]. Jou et al. [2]
have proposed an extensive variable based on the stress as an
alternative macroscopic variable. Choosing a path to the steady
state for which the reversible heat and the change in the volume
are both zero, we find that the internal energy in the steady state
is given by

U (S,V,Γ) =U (S,V,Γ = 0)+
Γ2ητ
2V

(12)
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then we have

dU = TdS− pdV + ζdΓ (13)

with

T = T0+
Γ2

2V
∂(ητ)

∂S
(14)

p = p0+
Γ2

2V

(

ητ
V

−

∂(ητ)
∂V

)

(15)

ζ =
ητΓ
V

(16)

These equations show that the thermodynamic temperature and
pressure in a shearing steady state must include strain rate de-
pendent corrections. The same conclusion was reached by Jou
et al. [2] from a completely different point of view. The resul-
tant Gibbs equation shows that there is a rich set of Maxwell
relations that it should be possible to investigate either experi-
mentally or by computer simulation. In fact, some work in this
direction has already been carried out, although the treatment in
[4; 5] was slightly different from the one presented here.

Another way that local equilibrium can be violated is when
certain degrees of freedom are heated and others are cooled, cre-
ating an relaxation of internal energy between different degrees
of freedom. This immediately violates the assumption of local
equilibrium, because at equilibrium, the temperatures of all de-
grees of freedom are equal. Internal thermal relaxation can be
accounted for by proposing separate Gibbs equations for each of
the internal energy reservoirs corresponding to the different de-
grees of freedom. Each of these is assumed to be at equilibrium
internally but out of equilibrium with other degrees of freedom.
Similar models have been investigated before in the context of
plasma physics and NMR for example. They may at first seem
unfamiliar, but they are not too different from the local thermo-
dynamic equilibrium models in the sense that the standard lo-
cal equilibrium models assume that we have spatially separated
subsystems that are locally at equilibrium but at different tem-
peratures. This idea has been developed in greater detail in the
context of thermostats for non-equilibrium molecular dynamics
simulations in [12]. From this, it is found that an additional term
in the entropy production due to internal thermal relaxation ap-
pears.

Non-equilibrium molecular dynamics (NEMD) simulations
exhibit both types of deviation from local equilibrium. Due
to the extremely high shear rates generated in these simula-
tions, viscoelastic effects (and also non-linear rheology) are eas-
ily observed, even for simple fluids. Also, the homogeneous
thermostats that are applied in NEMD simulations remove heat
specifically from some degrees of freedom while the dissipa-
tion occurs in others. This means that there are internal energy
fluxes from the degrees of freedom where dissipation appears
to those that are thermostatted. This will be described in more
detail in the following section.

NON-EQUILIBRIUM MOLECULAR DYNAMICS SIMU-
LATIONS

There are many different varieties of non-equilibrium molec-
ular dynamics simulation. Some of them are designed to faith-
fully reproduce experimental conditions by incorporating ex-
plicit molecular boundaries by which thermodynamic driving

forces such as velocity and temperature gradients are applied to
the fluid between them. These explicit boundary simulations are
restricted in size due to computational limitations, making sur-
face effects and inhomogeneity more apparent than they would
be for macroscopic systems. In cases where these effects are
the main focus of attention, this is an advantage. However,
if the bulk macroscopic properties are the focus of interest, it
is more convenient to use homogeneous simulations with peri-
odic boundary conditions. In this case, the absence of explicit
boundaries means that the thermodynamic forces must be ap-
plied through specially formulated external forces which gen-
erate the desired thermodynamic fluxes. The details of these
homogeneous NEMD algorithms can be found in the literature
[3; 11]. Because there are no explicit walls in homogeneous
NEMD simulations, dissipated heat cannot be removed from the
system by thermal conduction. Instead, additional forces in the
equations of motion that do a type of work to remove heat have
been developed. These thermostat terms are designed to con-
trol the value of a chosen quantity, which may be the internal
energy, the kinetic temperature or some other measure of tem-
perature. This raises the important question of the microscopic
definition of temperature. At equilibrium, we can derive gen-
eralised statistical-mechanical expressions for the temperature
directly from the thermodynamic definition of the temperature,
but far less is known about the microscopic measures of tem-
perature in far from equilibrium states.

Homogeneous shear

The equations of motion that are commonly used to generate
a homogeneous velocity gradient are called the SLLOD equa-
tions of motion

ṙ i =
pi

mi
+ r i ·∇v (17)

ṗi = Fi −pi ·∇v−αpi (18)

which generate shear flow when we set the velocity gradient as

∇v =





0 0 0
γ̇ 0 0
0 0 0



 (19)

where γ̇ is the shear rate. The work done by stresses calcu-
lated from the microscopic expression for the rate of change
of the internal energy exactly matches eq(2) when these equa-
tions are applied. These equations of motion include a thermo-
stat through the last term of the momentum equation of motion.
The thermostat coefficientα in this case acts to keeps the kinetic
temperature fixed, where the kinetic temperature is given by

TK =
1

(3N −NC)kB

〈

N

∑
i=1

p2
i

mi

〉

. (20)

N is the number of particles in the system andNC is the number
of constrained degrees of freedom. Note that the momentum ap-
pearing in this expression is the thermal part of the momentum,
as defined by the position equation of motion, eq(17). Then we
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have

α =

N
∑

i=1
pi · (Fi −pi ·∇v)

/

mi

N
∑

i=1
p2

i

/

mi

(21)

Eq(20) is not the only microscopic expression for the temper-
ature that is available to us. For example, the configurational
temperature, which only depends on the positions of the parti-
cles, is given by

kBTC =

〈

N
∑

i=1

(

∂Φ
∂r i

)2
〉

〈

N
∑

i=1

∂2Φ
∂r2

i

〉 . (22)

whereΦ is the total intermolecular potential energy of the sys-
tem. At equilibrium the kinetic and configurational tempera-
tures are equal.

We have used the SLLOD equations of motion to calculate
the viscosity and first normal stress coefficient of a simple liquid
undergoing shear flow in the presence of different types of ther-
mostat [12]. Previous work has shown that as the strain rate is
increased, the kinetic and configurational temperatures diverge
from each other. Furthermore, it is also observed that the ki-
netic temperatures calculated from the different cartesian com-
ponents of the thermal momentum diverge from each other as
the strain rate is increased. Similarly, the configurational tem-
peratures calculated from the different cartesian components of
the force also begin to differ as the shear rate increases. This
difference can be eliminated by constraining each independent
cartesian kinetic and configurational temperature to the same
set value with thermostats of increasing complexity (for details
see [12]). It is interesting to observe that in each case, the lim-
iting zero shear rate viscosity of the system (a linear transport
coefficient) was the same within the statistical uncertainty. But
the first normal stress coefficient, which is a second order prop-
erty, changed dramatically under the influence of different ther-
mostats. The value obtained also differed from the value found
from the stress relaxation function evaluated at equilibrium, us-
ing the Coleman-Markovitz equation

Ψ1,0 = 2
∫ ∞

0
tG(t)dt. (23)

It has previously been shown that the first normal stress coef-
ficient is related to the elastic energy stored in a shearing fluid
[5].

The limiting zero shear rate values of viscosity and first nor-
mal stress coefficient for different thermostats are shown in Ta-
ble 1. All of the values for the first normal stress coefficient
differ from the value obtained from eq(23), which is evaluated
at equilibrium. This provides strong evidence that the thermo-
dynamic considerations discussed in the first section of this pa-
per must be taken into account when analysing non-equilibrium
molecular dynamics simulation results. In particular, we must
question the use of microscopic expressions for temperature de-
rived from the equilibrium distribution function to describe the
state of systems that are in shearing steady states, particularly

Table 1. Zero shear rate viscosities and first normal stress coefficients

calculated by NEMD for various thermostats.

temperatures fixed η0 error Ψ1,0 error

TK 2.119 0.001 0.206 0.004

TC 2.118 0.002 0.193 0.009

TKα, α = x,y,z 2.124 0.006 0.27 0.03

TCα, α = x,y,z 2.115 0.002 0.205 0.009

TKα, TCα, α = x,y,z 2.120 0.003 0.24 0.02

when we consider non-linear properties such as the first normal
dress coefficient. We must also account for temperature inho-
mogeneity between different degrees of freedom due to the ac-
tion of the homogeneous thermostats employed in NEMD sim-
ulations. Work in this direction is currently under way.

Inhomogeneous shear

Extensions to classical non-equilibrium thermodynamics are
also required for the analysis of results from inhomogeneous
NEMD simulations. As an example, we will consider simula-
tions that model the flow of a nanoparticle suspension through
a narrow slit pore [13]. In these simulations, a binary solution
of simple spherical particles is sandwiched between two planar
molecular walls and an external field is applied to the fluid to
generate Poiseuille flow. The equations of motion for the fluid
are

ṙ i =
pi

mi
(24)

ṗi = Fi −Femi (25)

whereFe is the external field. Here,pi represents the labora-
tory fame momentum, not the thermal momentum. More details
of the simulation technique can be found in [13; 14]. When
a sufficiently low external field is applied to the fluid, we ob-
tain a quadratic velocity profile, as predicted by the classical
Navier-Stokes equations. Fig. 1 shows the velocity profile for
a model colloidal fluid with an external field ofFe = 0.0001.
The fluid consists of a solution of larger particles in an explicit
solvent. The solute to solvent mass ratio is 10, the solute to
solvent diameter ratio is 2.2254 and the mass fraction of col-
loid is 0.2939. The reduced temperature is equal to 1.0. The
predicted velocity profile, using the viscosity calculated from
independent homogeneous simulations at equilibrium using the
Green-Kubo relation, is in excellent agreement with the simu-
lation results within the error bars which are approximately the
size of the plot symbols. In a similar way, we can calculate the
kinetic temperature profile for the shearing fluid, as shown in
Fig. 2. The surprising result here is that, even though the flow
is slow enough for the Navier-Stokes equation for the velocity
profile to apply very precisely, the temperature profile cannot
be predicted using Fourier’s law of heat conduction. It might
be thought that by using Fourier’s law, we have neglected the
coupling of the heat flux to the concentration gradient (in other
words, the Dufour effect). However, we have calculated all of
the relevant transport coefficients and find that this term is neg-
ligible in comparison to the other effects. On the other hand,
we do find that the additional quadratic term in the temperature
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Figure 1. Velocity profile for a model colloid in planar Poiseuille flow.

Figure 2. Temperature profile for a model colloid in planar Poiseuille

flow. The solid line is the prediction of Fourier’s Law and the dashed line

is Fourier’s Law supplemented with a nonlinear coupling to the strain

rate.

profile is consistent with coupling to the strain rate. The heat
flux is then given by

Jqy =−λ
∂T
∂y

− ξγ̇
∂γ̇
∂y

(26)

This coupling has been observed before in simulations of sin-
gle component fluids [15; 16]. Further analysis of the cou-
pling shows that it is only observable for very narrow channels
- exactly the case that our non-equilibrium molecular dynamics
simulations are restricted to, by computational limitations on
the system size.

CONCLUSION

In this paper, we have shown how two quite different types of
non-equilibrium molecular dynamics simulation cannot be de-
scribed by classical non-equilibrium thermodynamics. It seems
that the extensions that are required in order to have a consistent
thermodynamic explanation of non-equilibrium molecular dy-
namics simulation results include the modification of the Gibbs
equation to include a term due to the storage of elastic energy
for viscoelastic fluids, a microscopic definition of temperature
that can be used for shearing steady states, a proper account of

the effects of homogeneous thermostats in producing thermal
relaxation between different degrees of freedom, and allowance
for non-linear strain rate coupling in the constitutive equation
for the heat flux. Clearly, non-equilibrium molecular dynamics
simulations provide a fertile testing ground for extended theo-
ries of non-equilibrium thermodynamics.
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ABSTRACT 

 
The argument of the Evans Searles Fluctuation Theorem [1], namely the dissipation function [2] is also the key quantity in all linear and 
nonlinear response theory [3]. It is also the key quantity in the proof of the newly discovered equilibrium relaxation theorems. For the first time 

we have, subject to certain simple assumptions, a proof of thermal relaxation to the canonical distribution function [4] postulated by J. Willard 
Gibbs. 
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EXTENDED ABSTRACT

Dynamics is primary and statics secondary in investigations of macroscopic systems. It is in the time evolution where explanations for their
behavior, both static and dynamics, have to be searched. By the time evolution we mean either the microscopic time evolution of∼ 1023 microscopic
particles composing them or a multiscale mesoscopic time evolution. In this investigation we concentrate on the latter.

Different types of observations of macroscopic systems have led to different experiences that in turn have led to different theoretical frameworks
providing settings for their organization and understanding. As an example we mention fluid mechanics (FM) and kinetic theory (KT), both involving
the time evolution, and a static theory known as classical equilibrium thermodynamics (CET). We recall that all these three theories (we shall call
them levels of description) have arisen (recall their well known history) independently one of the other and all three are completely self-contained
(i.e. they do not need others to be applied). Depending on the amount of details involved on the levels, a hierarchical order can be established. We
say that KT is more microscopic (i.e. involving more details) than FM and CET and that FM is more microscopic than CET. Instead of saying that
KT is more microscopic than FM we can also equivalently say that FM is more macroscopic than KT. Formally, we shall denote the levels by the
symbol L and we shall say that a level L j is more microscopic than Li if j > i.

Having a family of levels (that are initially completely independent and unrelated) equipped with the hierarchical order, we can attempt to
recognize a level Li as a pattern emerging in an analysis of the time evolution on a more microscopic level L j; j > i. I make now the following
proposition: Passages from L j to Li; i < j share a universal structure that I will call Multiscale Mesoscopic Dynamics (MMD). This abstract
dynamics encompasses both classical as well as mesoscopic equilibrium and nonequilibrium thermodynamics. Below, I will make a few comments
about MMD. A more detailed presentation can be found for instance in [1],[2],[3],[4].

We begin with CET. Its essence is maximization of entropy known as MaxEnt principle. The entropy is a potential (a real valued function of state
variables satisfying certain requirements). Its specification is called a fundamental thermodynamic relation. Two questions arise: Where does the
fundamental thermodynamic relation come from, and why is the entropy maximized. For answers we turn to the time evolution taking place on a
more microscopic level (e.g. KT). The entropy is a potential (or one of the potentials) generating the (fast) time evolution bringing the macroscopic
system under consideration to states at which the more macroscopic level (e.g. CET) applies. The maximization of the entropy during the fast time
evolution is a manifestation of the approach to the more macroscopic level on which either no time evolution takes place (as it is in the case of CET)
or a slow time evolution takes place (as it is for example in the case of the passage KT→ FM).

The main challenge in the mathematical formulation of the abstract thermodynamics is to identify a geometry in which the Hamiltonian (i.e. time
reversible and nondissipative) dynamics (formulated in the setting of symplectic geometry) naturally coexists with the gradient (i.e. time irreversible
and dissipative) dynamics (formulated in the setting of Riemannian geometry). Such geometry appears to be a contact structure geometry. This
conclusion arises also from the following argument. We ask the question of what is the group of transformations playing a dominant role in
thermodynamics. The answer is: it is a group of Legendre transformations (since these are the transformations arising in MaxEnt). It is then well
known that the contact structure geometry provides a natural setting for Legendre transformations.
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EXTENDED ABSTRACT

The statistical foundation of equilibrium thermodynamics relies heavily on the Gibbs distribution and its dependence on a few intensive variables
such as the inverse temperature β and the chemical potential µ. In mathematical statistics these probability distributions are said to belong to the
exponential family of models. In systems out of equilibrium the rationale for Gibbs distributions disappears. Other types of modeling, such as those
tried out in the area of complex systems, are indicated.

My approach is based on generalizing the concept of an exponential family [1]. In the simplest case this is the q-exponential family as found in
non-extensive statistical physics [2]. Here q is a deformation parameter. It equals 1 in the standard case. The same family is known in the domain
of information geometry as Amari’s alpha-family [3]. The concept has been further generalized in [4; 5] and applies in the context of both classical
and quantum systems.

An essential characteristic of these generalized theories is that the dual structure of thermodynamics survives. The model states satisfy the
maximum entropy principle. The dual of the inverse temperature β is the energy U . A Massieu function Φ(β) replaces the logarithm of the partition
sum. Its contact transform is the thermodynamic entropy S(U).

The main tool of the geometric formalism is a divergence function, which is the relative entropy functional of the physics literature. It is used as
a distance measure. Arbitrary states are projected onto the manifold of model states by minimizing the divergence. The projection can be claimed
to be orthogonal because a Pythagorean relation holds.

A nice example of the geometric approach is found in a study of the porous medium equation [6]. There it is proved that the projection of an
arbitrary solution onto the statistical manifold of q-Gaussian distributions follows a geodesic. This suggests that it suffices to study the dynamics of
the model states to capture the essence of non-equilibrium thermodynamics.
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ABSTRACT
We discuss different definitions of non-equilibrium temperature in systems with internal variables. In equilibrium states, all the
different definitions of temperature (caloric, entropic, kinetic, vibrational, configurational, fluctuational, and so on) lead to the
same value, but in non-equilibrium they lead to different values. Out of equilibrium, equipartition is not to be expected and
therefore the ”temperatures” of the different degrees of freedom will be different from each other. Here, we focus our attention
on the caloric temperature, based on the internal energy corresponding to the internal variable, the entropic temperature, based
on the entropy, and several thermometric or empirical temperatures, based on the zeroth law. We illustrate the difference and
the connections between them in some simple systems with a heat flux (two-level and three-level systems, ideal gases), and we
also consider a solid system with internal variables. These variables may be measured, but not controlled, and they appear in the
Gibbs equation like the classical thermodynamic variables. As an example, we consider a crystal with dislocations submitted to
an external flux of energy (like a wall of a fusion reactor bombarded by energetic particles).

INTRODUCTION

Temperature is a concept common to all thermodynamic ap-
proaches. However, the meaning and measurement of tem-
perature in non-equilibrium steady states beyond the local-
equilibrium approximation is one of the fundamental problems
in advanced non-equilibrium thermodynamics. Thus, it is log-
ical that different approaches may consider temperature from
different perspectives. For instance, in rational thermodynam-
ics, it is considered as a primitive quantity. In theories with
internal variables, each variable could have in principle its own
temperature. In extended thermodynamics, temperature is as-
sumed to depend also on the fluxes. In statistical theories, tem-
perature may be related to the form of the distribution functions.
Thus, a comparative discussion of the several thermodynamic
approaches requires as a preliminary condition to compare and
clarify the role of temperature.

Wide surveys of this topic are in [1]-[5]. Out of equilibrium,
energy equipartition is not expected and, therefore, different
measurements of temperature, sensitive to different sets of de-
grees of freedom, will yield different values for the temperature.
From the theoretical perspective as well, different definitions of
temperature will also lead to different values of this quantity.

For instance, in a system composed of matter and radiation,
a thermometer with purely reflecting walls will give the tem-
perature of matter, as it will be insensitive to radiation. In
contrast, a thermometer with perfectly black walls will yield
a temperature related both to matter and radiation. In equilib-
rium, both thermometers will give the same temperature, but in
a non-equilibrium steady state (for instance, with photons trans-
mitting heat and colliding against the particles of a gas) these
thermometers will give different temperatures.

Another situation with several -or many-temperatures arises

in mixtures of gases with internal degrees of freedom and at
high temperatures, as in the entry of spaceships into a plane-
tary atmosphere. In such a case, one may have different kinetic
temperatures for different gases, and different electronic tem-
peratures (related to the relative occupancy of electrons at the
several energy levels), and different vibrational and rotational
temperatures. All these temperatures may be experimentally
obtained by means of spectrometric methods, by measuring the
intensity of the spectral lines emitted by the gases.

As it was pointed out in [1], instead of trying to attribute to
some of the mentioned temperatures a more relevant role than
to others (this will be indeed the case, but for different kinds
of temperatures depending on the problem being addressed to),
one should try to obtain the relations between them when the
conditions on the system (total energy, energy flux, and so on)
are specified. In fact, the ensemble of these different temper-
atures yields a very rich information about the system: about
their internal energy transfers and their internal energy contents
for the several degrees of freedom.

Here, we will discuss in detail the thermometric, caloric and
entropic temperatures for systems with internal variables, the
first one related to the zeroth law, the second one being based
on the internal energy of the variable, and the third one related
to its entropy.

TEMPERATURE DEFINITIONS IN EQUILIBRIUM
THERMODYNAMICS

In equilibrium thermodynamics there are several definitions
of temperature: empirical (based on the zeroth law), caloric
(based on the first law), and entropic (based on the second law).
Here, we remind the reader these definitions.

Empirical definition:
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Empirical (or thermometric)temperatureis defined by the ze-
roth law, which states the transitive character of thermal equi-
librium. In particular, it states that if a state A of a system is
in equilibrium with state B of another system, and state B is in
equilibrium with state C of a third system, states A and C are in
mutual thermal equilibrium.

Entropic definition:
The most fundamental definition of temperature in equilibrium
thermodynamics is that appearing in the Gibbs equation.

1
T
≡̇

(
∂S
∂U

)

all other extensive variables
, (1)

where the subscript ”all other extensive variables” means that
the derivative must be carried out keeping constant all the other
extensive variables appearing in the entropy, as for instance the
volumeV, the number of particlesNi of the speciesi and so on.

Caloric definition:
Another definition of temperature - we will call it the caloric
definition, because it uses the so-called caloric equation of state
relating internal energy and temperature - is obtained from the
internal energy of the different degrees of freedom. For instance

U = U(T,V,Ni). (2)

SinceU is defined by the first principle, this definition is related
to this principle.

TEMPERATURE DEFINITIONS IN STEADY STATE
NON-EQUILIBRIUM THERMODYNAMICS

Our aim is to explore in a few simple situations how the tem-
peratures defined by (1) and (2) differ in non-equilibrium steady
states. Non-equilibrium steady states are different than equilib-
rium states because in them the system is crossed by fluxes of
energy, matter, electric current and so on. Thus, it is interesting
to investigate the influence of such fluxes on the thermodynam-
ics of the system. The presence of fluxes is related to inhomo-
geneities in the system: the presence of a gradient of tempera-
ture, concentration, electrical potential or barycentric velocity.

Illustration 1: caloric and entropic temperatures in two-
level system with an energy flux

First, we present an example related to a statistical descrip-
tion [6]. We illustrate the mentioned concepts of temperature
with a two-level system, withN1 particles at level 1 (with energy
E1) andN2 particles at level 2 (with energy 2). For instance, this
could refer to electrons in two electronic levels, or to spins un-
der an external magnetic field, or some other situations. The
total internal energy will beU = N1E1 + N2E2; from here, one
may define a caloric temperatureT as

kBT ≡ N1

N
E1 +

N2

N
E2, (3)

with N the total number of particlesN = N1 + N2, andkB the
Boltzmann constant. On the other side, in equilibrium situations
following the canonical distribution function, the temperature

will be defined as

kBT ≡ E2−E1

ln(N1/N2)
. (4)

Assumenow that the system is submitted to an energy flow q
(energy per unit time), in such a way that the relative proportion
of particles in states 1 and 2 is modified (for instance, the higher
energy level 2 becomes more populated than in equilibrium, and
the lowest level, which is receiving the external energy, becomes
less populated).

Assume that the dynamics of the populationsN1 andN2 is
given by

dN1

dt
=−dN2

dt
=−αN1 +βN2− γqN1, (5)

whereα andβ arethe transition rates from 1 to 2 and from 2 to 1
respectively, andγ is a coefficient related to efficiency of energy
absorption by particles in the lower level 1 bringing them to the
higher level 2. The steady state solution of (5) is

N1

N2
=

β
α+ γq

. (6)

For q = 0, onehas

N1

N2
=

β
α

= exp

[
−E1−E2

kBT

]
. (7)

This is the detailed-balancerelation amongst the rates. By
keeping the definitions (3) and (4) but related to the non-
equilibrium populations, one gets the following expressions for
the non-equilibrium caloric temperature

Tneq,cal= T
α+β

α+β+ γq
E1 +(α+ γq)β−1E2

E1 +αβ−1E2
. (8)

Theentropyis

S=−k

[
N1

N
ln N1/N+

N2

N
ln N2/N

]
, (9)

which in presence ofq takes the form

S= Seq−kB
γ2

β2

[
N
N1

+
N
N 2

]
q2. (10)

This leads to

1
Tneq,entr

=
1

Tcal
+kB

γ2

β2

1
(E1−E2)N

[
N2

N2
1

− N2

N2
2

]
q2. (11)

Finally, thenon-equilibriumthermometric temperature from (4)
and (6) will be

Tneq,th = T
1

1− ln[1+(γ/α)q]
E2−E1

kBT
. (12)
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It is seenthat these temperatures are different from each other
whenq 6= 0. Here, T is the equilibrium temperature, which is
equal to the temperature of a thermal bath in which these sys-
tems are in contact. Note that in the extreme situations that the
higher-level population 2 becomes higher than the lower level
population 1, namely, for q higher than(β−α)/γ , the entropic
temperature becomes negative, whereas the caloric temperature
remains positive. Note that a thermometer in equilibrium in
contact with the system will measure temperature (12), rather
than temperature (8) or (11). From temperature (12) it would be
possible measureγ. Spectrometric methods allow to measure
temperature (12) through the intensity of spectral emission line
corresponding to 2→ 1.

Illustration 2: thermometric temperature in three-level sys-
tem with an energy flux

To discuss the problems related to zeroth law and thermo-
metric temperature we consider a three-level system, with ener-
giesE1 < E2 < E3, and assume, for the sake of simplicity, the
simplest triangular scheme for its possible internal transitions,
namely 1→ 2→ 3→ 1. More realistic schemes are possible,
but here we want to stick to the simplest illustrations. The evo-
lution of the atomic populationsN1,N2 andN3will be given by

dN1

dt
=−α1N1 +βN3− γ1qN1,

dN2

dt
=−α2N2− γ2qN2 +α1N1 + γ1qN1,

dN3

dt
=−dN1

dt
− dN2

dt
, (13)

whereα1, α2 andβ stand fortherate transitions coefficients; in
particular,γ1 andγ2 stand for the part of the energy flux which
interacts with particles in state 1 and in state 2. The steady state
populations will be

N1

N2
=

α2 + γ2q
α1 + γ1q

,

N1

N3
=

β
α1 + γ1q

. (14)

Theequilibrium temperaturewill be

kBT =
E2−E1

ln(N1/N2)
=

E3−E1

ln(N1/N3)
. (15)

The thermometric temperatures related to populations 1 and 2,
as 1 and 3 , will be the following non-equilibrium temperatures

Tneq,12 = T
1

1− ln[(1+(γ1/α1)q)/(1+(γ2/α2)q)]
E2−E1

,

Tneq,13 = T
1

1− ln[1+(γ1/β1)q]
E3−E1

. (16)

A thermometer incontactwith levels 1 and 2 would measure
T12, and a thermometer in contact with 1 and 3 would measure
T13; analogously, a thermometer in contact with 2 and 3 would
measure a temperatureT23 defined in analogy with(16)a and
(16)b . Of course, in equilibrium all these temperatures would
be the same. It is not clear, instead, what would measure a ther-
mometer in contact with 1, 2 and 3. From expressions (16) it
would be possible to obtainγ1 andγ2. Note, therefore, that the
zeroth-principle of equilibrium thermodynamics cannot be ap-
plied to non-equilibrium steady states.

Illustration 3: caloric and entropic temperatures in non-
equilibrium ideal gas

Ideal gases are a system for conceptual discussion of thermo-
dynamic concepts [7], [8]. In kinetic theory, the temperature of
a gas is usually defined as the kinetic temperature, which is a
form of caloric temperature, through the relation

3
2

kBT =<
1
2

mC2 >, (17)

where mandC are the mass and the velocity intensity of a gas
particle, respectively. This relation has nothing to do with the
special form of the distribution function. In non-equilibrium
states, the distribution function may be written as

f (r, C, t) = feq(r ,C, t)[1+Φ], (18)

with feq the equilibrium distribution function characterized by
the local values of the thermodynamic parameters, andΦ a non-
equilibrium contribution. Up to the second order inΦ , the ”en-
tropy” sobtained from theH-function has the form

s= seq− 1
2

kB

∫
feqΦ2dC, (19)

with s the entropy per unit volume. It is seen that, in principle,
s will be different from the local-equilibrium entropyseq. Then
one may define the entropic temperature as

1
Tneq,ent

=
∂s
∂u

=
1
T
− kB

2c
∂

∂T

∫
feqΦ2dC. (20)

In a systemsubmitted to a heat flux, the entropy (19) has the
form, up to the second order in the heat flux,

s= seq− τ
2λT2 q ·q, (21)

whereτ is the collisiontime andλ the thermal conductivity. In
more explicit terms, taking into account that

λ =
5
2

kB
p
m

τ, (22)
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the general expression(21) combined with definition (20) yields

1
Tneq,ent

=
1
T

+
2
5

nm
p3T

q ·q. (23)

This temperature would be merely formal unless a method of
measurement of it may be specified. It has been shown that this
non-equilibrium temperature corresponds to the kinetic temper-
ature in the plane perpendicular to the heat flux. Thus, if the
heat flux is in the z direction, one has

<
1
2

mC2
x >=<

1
2

mC2
y >=

1
2

kBTneq,ent <
1
2

kBT

and

<
1
2

mC2
x >=

1
2

kB(3Tneq,ent −2T) >
1
2

kBT (24)

in such away that the usual definition of T given in (18) is satis-
fied. Thus, the concept of the entropic definition of temperature
is not in contradiction with that of the kinetic definition.

NON-EQUILIBRIUM TEMPERATURES IN CONTIN-
UUM THERMODYNAMICS

Here, we formulate the problem in the framework of contin-
uum thermodynamics and we consider non-equilibrium steady
states, different than equilibrium states because in them the sys-
tem is crossed by fluxes of energy, matter, electric current or
so on. In classical irreversible thermodynamics it is assumed
the local equilibrium hypothesis, that states that the fluxes have
not an essential influence on the thermodynamics of the system.
It assumes that a continuous system out of equilibrium may be
decomposed in many small subsystems, each of which behaves,
from a thermodynamic point of view, as if it was in local equi-
librium.

Non-equilibrium steady states are the natural generalization
of equilibrium states: in them, the values of the variables do
not depend on time but, in contrast to equilibrium states, a con-
tinuous flux of energy - or matter, or momentum, or charge -
must be supplied and extracted from the system. We recall the
well-known Fourier’s transport equation for heat flowq

q =−λ∇T, (25)

with λ the thermal conductivity.
Beyond local equilibrium, for an ideal monoatomic gas, the

entropy takes the form (21), which writes as

s(u,q) = seq(u)−α(u)q·q, (26)

wheres andu are the entropy and the internal energy, respec-
tively, per unit volume andα =− τ(2λT2)−1. Using definition
(1) we have for the entropic temperatureθ

1
θ

=
(

∂s
∂u

)

q
=

1
T
−

(
∂α(u)

∂u

)
q ·q, (27)

with T the caloric temperature.In a steady state we can use
q =−λ∇T and rewrite relation (27) in the form

s(u,q) = seq(u)− τλ
2T2 ∇T ·∇T. (28)

Non-equilibrium temperatures in solid systems with inter-
nal variables

In this section we will discuss the caloric and entropic non-
equilibrium temperatures in a crystal with dislocations, submit-
ted to a given energy flux. We have in mind, for instance, the
walls of a fusion nuclear reactor, which are submitted to an in-
tense neutron flux supplied by the nuclear reaction or an elec-
tronic device with hot electrons. The neutron flux has two ef-
fects on the walls: a thermal effect (it heats them), and a me-
chanical effect (it produces dislocations in the walls). The sec-
ond effect is unwanted, because it may reduce the mechanical
resistance of the wall.

We assume that in the considered medium we have fol-
lowing fields [9]-[11]: the elastic fielddescribed by the to-
tal stress tensorti j and the small-strain tensorεi j , defined by
εi j = 1

2(ui, j +u j,i) (beingui thecomponents ofthedisplacement
vector),the thermal fielddescribed by the local temperatureθ,
and the heat fluxqi . However, we assume that the description of
the evolution of the system requires the introduction of further
dynamical variables in the thermodynamic state space like, for
instance, an internal variable. But, whereas the classical vari-
ables may be measured and controlled, the internal variables
cannot be controlled. In solid media they can describe internal
defects like dislocation lines, point defects, porous channels,
disclinations and so on. They appear in the Gibbs equation like
the classical thermodynamical variables. The evolution of inter-
nal variables is described by rate equations, different from the
constitutive relations, the transport equation of heat, the balance
equations of mass, momentum, momentum of momentum and
energy. The whole set of these equations describe the evolution
of the system.

Thus, we introduce in the thermodynamic state space the in-
ternal variableai j and its fluxVi jk .

We assume that theevolution equationfor the tensorial inter-
nal variable is the following

dai j

dt
+Vi j k,k = Ai j , (29)

whereai j is the dislocation core tensor,Vi jk is its flux andAi j is
a field source. The tensorai j , introduced by Maruszewski [12],
describes the local structure of dislocations lines, which form a
network of very thin lines disturbing the otherwise perfect peri-
odicity of the crystal lattice. Since these very thin channels, in
general, are not distributed isotropically, it is natural to describe
them by a tensor, taking into account the local density of the
dislocation channels along several directions

The tensorAi j represents the source-like term describing the
net effects of formation and annihilation of dislocation lines,
which may be a function of temperatureT, the strain tensorεi j ,
the energy fluxq, or the stress tensorti j . Equation (29) could
be simplified, for instance, by assuming for the dislocation flux

Vi jk =−D
∂ai j
∂xk

, with D being adiffusion coefficient for disloca-
tions. On the other hand, the production term may be seen as the
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combination of adislocation-formationterm and a dislocation-
destruction term, namely,Ai j = Ai j (formation)−Ai j (destruc-
tion).

Then, we consider for the evolution equation for the internal
variables the simple form

dai j

dt
−D∇2ai j = Ai j,eq+ α̃qiq j . (30)

Here,Ai j ,eq is the net formation tensor in the absence of an ex-
ternal energy flux (q = 0), and we have added to it a tensor
depending on the energy flux.

This form does not pretend to be especially realistic, but only
to illustrate that thermal stresses related toqiq j could influence
the evolution of dislocation lines. More realistic than a simple
energy flux, would be to consider, for instance, an energy flux
due to the bombardment of the crystal with particles having rel-
atively high energy, which could produce new defects or modify
the structure of the dislocation lines.

Non-equilibrium entropic temperature

The entropic definition of absolute temperature is related to
the Gibbs equation which, for the system we are considering,
has the form

ds= θ−1dU +θ−1σi j dεi j −θ−1πi j dai j −θ−1πdqi , (31)

with πi j the corresponding thermodynamic potential conjugate
of the dislocation tensorai j and π the corresponding thermo-
dynamic potential conjugate of the heat fluxqi . Here,u is the
total internal energy of all the degrees of freedom, and we call
θ the entropic (absolute) temperature to distinguish it from the
T related to the caloric definition.

We have assumed that only the internal variable under con-
sideration is modified by the presence of an external energy
flow. Of course the classical variables, likeU andεi j will also
be modified by the flux, but here we refer to the modification of
temperature for given values of the classical variables.

The thermodynamic absolute temperature is given by (1).
In particular, for given values of the classical variableεi j and
in steady states, the equilibrium temperature and the non-
equilibrium temperature are defined by

θ−1
eq ≡̇

(
∂s
∂u

)

q=0
; θ−1

neq≡̇
(

∂s
∂u

)

q6=0
. (32)

The quantity θ−1
neq can beexpanded around its equilibrium

counterpart obtaining

θ−1
neq= θ−1

eq −θ−2
eq

∂θeq

∂ai j
∆ai j , (33)

wherein steady states

∆ai j = ai j (q 6= 0)−ai j (q = 0). (34)

Then, in the first approximation, the non-equilibrium tempe-
ratureθneq will be related to the equilibrium temperature corre-

sponding toai j (q = 0) as

θneq=
θeq

1−θ−1
eq

∂θeq
∂ai j

∆ai j

≈ T

(
1+T−1

(
∂T
∂ai j

)
∆ai j

)
=

T +
(

∂T
∂ai j

)
∆ai j , (35)

wherewe have taken into account that in equilibrium (or local-
equilibrium) all the definitions of temperature coincide, there-
fore θeq = T, and we have used the approximation(1−x)−1 ≈
1+x, for x¿ 1.

Non-equilibrium caloric temperature

To define the caloric definition of temperature first we con-
sider the caloric equation of state at the equilibrium of the sys-
tem for given values ofεkl and for vanishing values of the exter-
nal flux q: Udis = U (ai j (T,εkl),T,εkl), where we have taken in
consideration that at equilibrium the internal variable depends
on temperature and the stress tensor. Then, we define the caloric
non-equilibrium temperature fieldTneq related toai j in a steady
state in the following way

Udis(ai j (Tneq,εkl ,q = 0),Tneq,εkl) ≡̇Udis(ai j (T,εkl ,q),T,εkl)) .
(36)

Then, to define the caloric non-equilibrium temperature as-
sume that the formal expression of the relation between inter-
nal energy and temperature keeps, out of equilibrium, the same
form as in equilibrium (Udis = U (ai j (T,εkl),T,εkl) ), where
q = 0, and we equate it to the value of internal energy in
non-equilibrium, whereq 6= 0. Thus, we define the tempera-
ture in non-equilibrium state as that temperature which, intro-
duced in the caloric state equation would give for the internal
energy the actual value corresponding to the non-equilibrium
state. Namely, we will have

Tneq= T +
(

∂T
∂Udis

)
∆Udis = T +

(
1

cdis

)
∆Udis, (37)

where
(

∂T
∂Udis

)
∆Udis is thenon-equilibrium contribution due to

the presence ofq 6= 0, andcdis is the specific heat associated to
the changes of the internal energy of dislocation lines, per unit
volume, namelycvdis = ∂Udis

∂T . The specificheatplays thus an
important role in the caloric definition of temperature.

Entropic flux in the definition of non-equilibrium tempera-
ture

In [1] it was seen that in the case of a crystal with disloca-
tions, the entropy flux has the form

JS
k = θ−1qk−πi j θ−1Vi jk . (38)

Here, the variableπi j is the conjugate toai j as introduced in
(31). It has been proposed that a convenient definition of a non-
equilibrium contribution could be based on this expression (38),
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taking as thereciprocalof thermodynamic temperature the co-
efficient linking the heat fluxq with the entropy fluxJS. Based
on the idea of perfect interfaces between systems, in which both
the heat flux and the entropy flux would be continuous, Muller
gave the definition of the so-called ”coldness”, namely, of the
reciprocal of absolute temperature.

Considering the entropy flux and the heat flux through an in-
terface between two systems (let us say, a thermometer and a
system) is convenient, because this reminds us the importance
of the contact between the system and the thermometer in mea-
suring temperature.

In this aspect, problematic questions arise. In first place, the
existence of ideal interfaces is a nice theoretical concept, but in
general the interfaces between different materials are not ideal,
but exhibit the so-called ”thermal boundary resistance”, which
implies a discontinuity of temperature through the surface, and
a corresponding discontinuity of the entropy flux, due to entropy
production across the wall, due to the fact that heat is flowing
between two different temperatures.

FINAL COMMENTS

In this presentation we have emphasized that one of the aims
of non-equilibrium thermodynamics should be to find the trans-
formation laws relating several thermometric, entropic, caloric
and other temperatures in systems submitted to given energy
flux.

This program has been partially carried out in [1] for forced
harmonic oscillators in a thermal bath, in which case kinetic
and vibrational temperatures play a special role, and for ideal
gases in Couette flow [13], for kinetic temperatures along the
three spatial axes, thermodynamic absolute temperature, local-
equilibrium temperature, and fluctuation dissipation tempera-
ture, or the relation among some non-equilibrium temperatures
in heat transport along nanowires [14].

Here, we have tried to be more general, both by the use of
simple illustrations of two-level, three-level systems and ideal
gases, as by the statement of this problem in the context of a
more difficult and demanding situation of solids systems with
dislocations.
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1. INTRODUCTION 

Systems in equilibrium strictly follow the laws of 
thermodynamics [1]. Despite the disordered motion of large 
numbers of molecules, the system can be characterized by a few 
variables accounting for average properties. Thermodynamics 
also applies to systems outside equilibrium, in the local 
equilibrium regime in which the volume elements are 
considered small thermodynamic systems in equilibrium. This 
hypothesis is fundamental in the formulation of 
non-equilibrium thermodynamics [2].  

Non-equilibrium thermodynamics is restricted to the linear 
response domain in which the response of the system is linear in 
the perturbation exerted to remove it from equilibrium. 
Moreover, this theory performs a macroscopic description in 
terms of average values not accounting for the presence of 
fluctuations. Whereas the linear approximation holds for 
transport processes such as heat conduction and mass diffusion, 
even in the presence of large gradients [3], it is not appropriate 
for describing activated processes in which the system 
immediately enters the nonlinear domain. Small systems [4], 
such as single molecules in a thermal bath, in which fluctuations 
and nonlinearities can be very important, are beyond the scope 
of this theory. 

We show that a probabilistic interpretation of 
non-equilibrium thermodynamics which uses the concept of 
local equilibrium at the mesoscale [5] sets the basis of a theory 
able to analyze irreversible processes in the presence of 
fluctuations. The theory (Mesoscopic Non-equilibrium 
Thermodynamics [6], [7]) obtains the Fokker–Planck equation 
as a diffusion equation for the probability and the nonlinear 
relationships between activation rates and proper affinities of 
activated processes. The situations that can be studied with this 
formalism include, among others, slow relaxation processes, 
barrier crossing dynamics, chemical and biochemical reactions 
(see Fig. 1), entropic transport, active transport, dissipative 
self-assembly and single molecules and molecular motors [7]. 

Figure 1: A chemical reaction can be treated as a diffusion process 
through a potential barrier that separates the initial and final states of 
the reaction which correspond to the minima of the potential. (a) 
Transformations of the molecules of a biochemical cycle viewed as a 
diffusion process in a free energy landscape. The configurations are 
described by means of two reaction coordinates γ and β. (b) In each 
reaction, the molecular structure of a substance transforms 
progressively until it reaches its final conformation. 

 
These processes are, in general, nonlinear and influenced by 

the presence of fluctuations.  
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2. THERMODYNAMICS AND MESOSCOPIC 

DYNAMICS OF SMALL-SCALE SYSTEMS 

A reduction of the observational time and length scales of a 
system usually implies an increase in the number of degrees of 
freedom which have not yet equilibrated and that therefore 
exert an influence in the overall dynamics of the system. The 
nonequilibrated degrees of freedom could be the velocity of a 
particle, the orientation of a spin, the size of a macromolecule 
or any coordinate or order parameter whose values define the 
state of the system in a phase space. The will be denoted by 

means of the set of coordinates   ( { }i ). 

At the mesoscopic level, the characterization  of the state of 
the system is performed through the knowledge of the 
probability density  .  The statistical expression of the entropy 
of the system in terms of this probability can be expressed by 
the Gibbs entropy postulate [2, 6] 
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where 
eqS  denotes the entropy  when the degrees of 

freedom   are in equilibrium. The equilibrium probability 

density ( )eqP   can be related to the minimum reversible work 

required to create that state [4] through the expression  
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Here Bk  is Boltzmann’s constant, and T  is the 

temperature of the heat bath. The minimum work can in general 
be expressed as  

 

 W y Y    (3) 

 

where y  is an intensive parameter and Y  its conjugated 

extensive variable. This general form stands for mechanical, 
electrical, magnetic, surface work, etc., performed on the 
system [4].  

The expression of the minimum reversible work (3) reduces 
to the different thermodynamic potentials.  For instance, for the 
case of constant temperature, volume and number of particles, 
the minimum work coincides with the Helmholtz free energy. 
The statistical mechanics definition of the entropy is therefore 
crucial to connect thermodynamics with  the mesoscopic 

description in terms of the probability distribution ( )P t  .  

The dynamics of the mesoscopic degrees of freedom can be 
analyzed from the statistical mechanics definition of the 
entropy. Taking variations in Eq. (1), one obtains 
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Conservation of the probability density in   space implies 

that it obeys the continuity equation 
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where ( )J t   is a current in the space of mesoscopic 

coordinates.  
To derive the expression of this current, we take the time 

derivative in equation (4) and use the continuity equation (5) to 
eliminate the probability time derivative. After a partial 
integration, one then arrives at the expression of the mesoscopic 
entropy production [6]   
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This quantity expresses in the form of current-force pairs, 

the latter being the gradients in the space of mesoscopic 
variables. We will now assume a linear dependence between 
current and force and establish the linear relationship  
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where ( ( ))L P   is an Onsager coefficient [2], which in 

general depends on the probability ( )P   interpreted as a state 

variable in the thermodynamic sense and on the mesoscopic 
coordinates  .  

The kinetic equation follows by substituting Eq. (7) into the 
continuity equation (5):  
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where the diffusion coefficient is defined as  
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This equation, which in view of Eq. (2) can also be written as 
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is the Fokker-Planck equation for the evolution of the 

probability density in  -space.  

Under the conditions for which the minimum work is given 

by the Gibbs free energy G , W G H T S       , 

where H  is the enthalpy, this equation transforms into the 
Fokker-Planck equation for a system in the presence of a free 
energy barrier: 
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A particularly interesting situation which will be discussed 

in more detail in Section 3, is the case of a purely entropic 
barrier, often encountered in soft-condensed matter and 
biophysics.  
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Mesoscopic nonequilibrium thermodynamics provides a 

general formalism able to analyze the dynamics of systems 
away from equilibrium from the knowledge of the equilibrium 
probability. In this way, by knowing the equilibrium 
thermodynamic potential of a system, one could derive the 
kinetic equation. 

The mesoscopic entropy production can also be obtained 
from a generalized chemical potential that account for the 
additional mesoscopic variables. We may then assume that the 
evolution of these degrees of freedom is described by a 
diffusion process and formulate the corresponding Gibbs 
equation 

 

 
1

( ) ( )S P t d
T

          (12) 

 
which resembles the corresponding law proposed in 

nonequilibrium thermodynamics for a diffusion process in 

terms of the mass density of particles. Here ( )   plays the 

role of a generalized chemical potential conjugated to the 

distribution function ( )P t  Comparison of the Gibbs 

equation (12) with Eq. (4), where the variations of the 
equilibrium entropy are given by 
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and 
eq  is the value of the chemical potential at 

equilibrium, yields the expression of the generalized chemical 
potential 
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or alternatively, using Eq. (2), 
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In this reformulation, the “thermodynamic force” driving 

this general diffusion process is 
1T     , and the entropy 

production is given by 
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This expression coincides with the entropy production of a 

diffusion process over a potential landscape in the space of the 
mesoscopic coordinates. This landscape is conformed by the 
values of the equilibrium energy associated to each 
configuration  . The treatment of a diffusion process in the 

framework of nonequilibrium thermodynamics can then be 
extended to the case in which the relevant quantity is a 
probability density instead of a mass density. This fact shows 
the close connection between entropy and stochastic dynamics. 

3. AN EXAMPLE: ACTIVATED PROCESSES 

In this Section, we will apply our general formalism to the 
study of the kinetics of activated processes. We will show how 

the Fokker-Planck equation can be obtained from a diffusion 
process of the probability compatible with the statistical 
formulation of the second law. We will also illustrate how to 
derive the nonlinear equations for the activation rate in terms of 
the affinity of the process. 

Activated processes are frequently modeled by a particle 
crossing a free energy barrier that separates two 
well-differentiated states located at the minima at each side of 
the barrier. Processes such as chemical reactions, adsorption, 
nucleation, thermal emission in semiconductors, and active 
transport through biological membranes, share these features 
and, therefore, are generically referred to as activated 
processes.  

These processes are  essentially different from the linear 
transport processes described by nonequilibrium 
thermodynamics. The latter constitute the instantaneous 
response to an applied external force or gradient and may take 
place  even at very low values of the force. Since activated 
processes need of a minimum of energy to proceed, the regime 
in which they may be observed is essentially nonlinear. This 
difference becomes even more evident when we contrast the 
form of Fourier, Fick, or Ohm laws, in which the corresponding 
currents are proportional to the conjugated thermodynamic 
forces or gradients, with the exponential Arrhenius laws for the 
rates in activated processes.  

To better illustrate this point, let us consider a general 
process for which a system passes from state 1 to state 2 via 
activation. Instances of this process can be a chemical reaction 
in which a substance transforms into another, an adsorption 
process in which the adsorbing particle goes from the 
physisorbed to the chemisorbed state, or a nucleation process in 
which the metastable liquid transforms into a crystal phase. 
Nonequilibrium thermodynamics describes the process only in 
terms of the initial and final positions, obtaining a linear 
behaviour of the current in terms of the affinity which only 
agrees with the law of mass action for small values of the 
affinity. If we consider the process at shorter time scales, the 
state of the system instead of jumping from 1 to 2, progressively 
transforms by passing through successive molecular 
configurations. These configurations can be characterized by a 
reaction coordinate  . At these time scales, one may assume 

that the reaction coordinate undergoes a diffusion process 
through a potential barrier separating the initial from the final 
states (see Fig. 1).  

At the time scales of interest, the system is mostly found in 

the states 1 and 2, which correspond to the minima at 1  and 

2 , respectively. In the quasi-stationary limit,  when the energy 

barrier is much higher than the thermal energy and intra-well 
relaxation has already taken place, the probability distribution 
is strongly peaked at these values and almost zero everywhere 
else. Under these conditions, the Fokker-Planck description, 
leads to a kinetic equation in which the net reaction rate satisfies 
the mass action law.  

The current obtained from the mesoscopic entropy 
production (16) can be rewritten in terms of the local fugacity 

defined along the reaction coordinate ( ) exp ( ) Bz k T     

as  
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which can be expressed as 
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where BD k L z   is the diffusion coefficient. We now 

assume that D  is constant and integrate from 1 to 2  to obtain 
the nonlinear kinetic law for the averaged current 
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This equation can also be expressed as 
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where J  is the averaged rate 0 1( )BJ Dexp k T    and 

1 2A     is the corresponding affinity. We have then 

shown that a Fokker-Planck equation, linear in probabilities 

and in the gradient of [ ( )]P   , accounts for a non-linear 

dependence in the affinity. The scheme presented has been 
successfully applied to different classical activated processes, 
like chemical reactions, nucleation, active transport in ion 
channels, and molecular motors, to obtain the corresponding 
kinetic laws. 

4. CONCLUSIONS 

In this article, we have shown how to extend the use of 
thermodynamic concepts into the mesoscopic domain where 
fluctuations and nonlinearities play an important role. The 
probabilistic interpretation of thermodynamics together with 

probability conservation laws can be used to obtain kinetic 
equations for the mesoscopic degrees of freedom. 

The approach we have presented starts from the mesoscopic 
equilibrium behavior and adds all the dynamic details 
compatible with the second principle of thermodynamics and 
with the conservation laws and symmetries of the system. From 
the knowledge of the equilibrium properties of a system, it is 
straightforward to obtain Fokker-Planck equations for its 
dynamics. The coefficients entering the dynamic equations can 
be obtained from experiments or microscopic theories. 

We have shown explicitly the applicability of the 
mesoscopic nonequilibrium thermodynamics to study the 
kinetics of activated processes showing that the formulation of 
local equilibrium at small scales leads to the nonlinear kinetic 
equations that govern those processes. 
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EXTENDED ABSTRACT 

 
Non-equilibrium phenomena play an essential role in many processes of relevance in biology, physics and material science. One of such non-
equilibrium processes is thermoelectricity, in which a temperature gradient applied to a circuit made from different metals induces an electric 
current. Temperature measuring devices, and some refrigerators rely on these thermoelectric effects. One major application of this principle in 

material sciences is the synthesis of materials that can efficiently convert waste heat into electricity. It has been suggested that thermoelectricity 
can represent a physical mechanism used by some fish to sense temperature gradients. 

Recent work indicates the possibility of generating large thermal gradients in nanoscale assemblies. Such large thermal gradients have been 
inferred from theoretical analyses of systems involving metal nanoparticles heated with electromagnetic radiation, a notion that is being used in 

cancer therapy treatments. Similarly experimental studies of molecular motors, such as Ca
2+

-ATPase, indicate that significant thermal gradients 
can develop during the ion transport process. Quantifying thermal relaxation as well as the microscopic mechanisms operating at thermolecular 
scales characteristic of these nanomotors is therefore a very important objective. The environment, namely, the bilayer structure supporting these 
proteins, is expected to play a role in determining the relaxation. In fact, recent work has shown that the thermodynamic efficiency associated to 
ion transport reaches a maximum value at specific bilayer compositions, showing the relevance of the environment in regulating biological 
activity. 

Recent developments on fluorescent thermometry have revealed the existence of thermal gradients inside the cell too. These results indicate 
important correlations between local temperature and organelle function and raise interesting questions on how the resulting thermal gradients 
can influence biochemical reactions or transport of solutes inside biological structures. We are interested in developing computational 
approaches to quantify thermal transport in biological structures, including the transport of proteins and other biomolecules driven by thermak 
gradients. Also, for small systems, nanomaterials, e.g., nanofluids, and in particular biomolecules, interfacial effects become relevant as 
compared with bulk effects. In order to understand processes of relevance in biophysics, it is necessary to quantify the resistivity of the interfaces 
to heat transfer. The relevant structures in biological system involve aqueous interfaces. We are currently investigating the response of aqueous 
solutions and interfacial water to thermal perturbations. Our work suggests that water does not behave as a passive medium that transports heat 
only. We have recently described a novel phenomenon whereby water molecules reorient as a response to the thermal gradient, and polarize 
along the direction of the gradient. This polarization can result in electrostatic fields for thermal gradients that are achievable in biological 
processes. Thermoelectric effects are well known in semiconductors, but we find that related mechanisms can arise in polar fluids. 
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INTRODUCTION 

 

 For a system in contact with a heat bath, symmetry of the 

probability distribution of entropy production in the steady 

state is known as the fluctuation theorem. Crook’s fluctuation 

theorem compares probability distributions for the work 

required in the original process with the time-reversed one. 

The probabilistic approach reached the broader appeal due to 

advances in experimental techniques for tracking and 

manipulation of single particles and molecules [1-7].  

An overdamped motion x(τ) of a system in contact with a 

heat bath and a single continuous degree of freedom can be 

described by the Langevin equation: ( , )x F x    .The 

systematic force F(x,λ) can arise from a conservative potential 

and/or be applied to the system directly as a nonconservative 

force , while  is the stochastic force, which is not affected by 

a time-dependent force, and  is a positive constant. The 

Langevin dynamics generates trajectories x(τ) starting at x0. 

For an arbitrary number of degrees of freedom, x and F 

become vectors. The Langevin equation is the generic 

equation of motion for a single fluctuating thermodynamic 

quantity such as the concentrations of the chemical species in 

the vicinity of equilibrium [6-8]. 
 Definition and quantification of information have created 

broad discussions. ‘Information system’ with its role in living 

systems is a constantly evolving field [2,6]. This short review 

addresses some cirtical discussions on the associaton of 

information theory with fluctuation theorem and entropy 

production in living systems. 

 

FLUCTUATION THEOREM 

 

 The fluctuation theorem relates the probability p(στ) of 

observing a phase-space trajectory with entropy production 

rate of στ over time interval τ, to that of observing a trajectory  

with entropy production rate of –στ  

 

( )
exp( / )

( )
B

p
k

p













    (1) 

 

where kB is the Boltzmann constant. This result describes how 

the probability of violations of the second law of 

thermodynamics becomes exponentially small as τ or the 

system size increases. FT relates the work along 

nonequilibrium trajectories to the thermodynamic free energy 

differences, and applicable to single molecule force 

measurements. The FT depends on the following assumptions. 

The system is finite and in contact with a thermal bath. The 

dynamics are required to be stochastic, Markovian, and 

microscopically reversible. The probabilities of the time-

reversed paths decay faster than the probabilities of the paths 

themselves and the thermodynamic entropy production arises 

from the breaking of the time-reversal symmetry of the 

dynamical randomness. Since the statistics of fluctuations will 

be different in different statistical ensembles. 
 Crook’s FT can be used to determine free energies of 

folding and unfolding processes occurring in nonequilibrium 

systems. For that, the unfolding and refolding process need to 

be related by time-reversal symmetry, i.e. the optical trap used 

to manipulate the molecule must be moved at the same speed 

during unfolding and refolding [3,5,6]. 
 In processes that are microscopically reversible, Crook’s FT 

predicts a symmetry relation in the work fluctuations for 

forward and reverse changes a system undergoes as it is 

driven away from thermal equilibrium by the action of an 

external perturbation. A consequence of Crook’s FT is 

Jarzynski’s equality: exp( / ) exp( / )B BG k T W k T   . 

However, for processes that occur far from equilibrium the 

applicability of Jarzynski equality is hampered by large 

statistical uncertainty arising from the sensitivity of the 

exponential average to rare events [3]. 
 In the absence of the initial of final correlations, entropy 

production satisfies the integral of FT (or the Jarzynski 
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ABSTRACT 

Fluctuation theorems in the presence of information as well as the definition and quantification of information have created 

broad discussions and are constantly evolving. The fluctuation theorem can quantify the hysteresis observed in the amount of 

the irreversible work of unfolding and refolding of a macromolecule in nonequilibrium regimes. It also describes how the 

probability of violations of the second law of thermodynamics becomes exponentially small as the time or the system size 

increases. Functional information may lead to self-organizing capabilities of living systems, while instructional information is 

a physical array. The informational entropy is applicable to describe of objects of any nature. Developed dissipative structures 

are capable of degrading more energy, and of processing complex information through developmental and environmental 

constraints. Within this trend, control information is defined as the capacity to control the acquisition, disposition, and 

utilization of matter, energy, and information flows in purposive processes. On the other hand, maximum entropy production 

and the fluctuation theorem are seen as the properties of maximum entropy distributions.. This review brings out some critical 

turning points in describing living systems with the help of fluctuation and information theories. 
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equality): exp( ) 1   where ..  is the ensemble average 

over all microscopic trajectories. In the presence of 

information (I) processing with initial and final correlations, 

the integral FT with energy dissipation and energy cost of 

information exchange becomes [5] 
 

exp( ) 1I       (2) 

 

where I is the change in the mutual information. Convexity 

of exp exp( )x x  leads to I    [5]. With the 

correlation remaining after a feedback control (Irem) by Y on 

X, Eq. (2) becomes  
 

remexp( ( ) 1I I     so fbI I     (3) 

 

where remI I  may be an upper bound of the correlation 

that can be used.  
 The detailed FT in the presence of information processing is  

 

[ , ]
exp( )

[ , ]

b b

f f

p X y
I

p X y
       (4) 

 

with the constraint [ , ] 0p x y   (x and y are initial phase-space 

points), pb and pf are the joint probability distributions of the 

backward and forward processes, respectively, and ( )I 

shows the total entropy production of the composite system 

XY and the baths. Here system x evolves from x to x’ along a 

path xf in such a manner that depends on the information 

about y, which does not evolve in time [5].  
 FT allows a general orthogonality property of maximum 

information entropy (MIE) to be extended to entropy 

production (EP). Maximum entropy production (MEP) and 

the FT are generic properties of MIE probability distributions. 

Physically, MEP applies to those macroscopic fluxes that are 

free to vary under the imposed constraints, and corresponds to 

the selection of the most probable macroscopic flux 

configuration [9,10]. The constrained maximization of 

Shannon information entropy (H) is an algorithm for 

constructing probability distributions from partial 

information. MIE is a universal method for constructing the 

microscopic probability distributions of equilibrium and non-

equilibrium statistical mechanics. The distribution of the 

microscopic phase space trajectories over a time  satisfies 

p∝exp(σ/2kB).  

 

INFORMATION THEORY 

 

 Information may be defined as the capacity to reduce 

statistical uncertainty in the communication of messages 

between a sender and a receiver. Consider the number of ways 

in which N distinguishable entities can be assigned to M 

distinguishable states such that there are ni entities in state i  
 

1 2

!

! !.. !M

N
W

n n n
      (5) 

 

Maximum probability is related to maximum entropy in the 

limit of large N and ni and the asymptotic result from 

Stirling’s approximation ( ln ! lnN N N ) yields  

 

1
ln ln

M
i ii

W p p H
N

      (6) 

 

where the occupation frequency of state i is: pi = ni/N [10]. 

 In Shannon’s theory, entropy represents the amount of 

uncertainty one particular observer has about the state of this 

system [11]. This uncertinty is not information. For a variable 

X with the x1, x2,.., xN of its N posible states, the probability of 

finding X in state xi would be pi and the Shannon’s entropy H 

of X is ( ) ln
N

i ii
H X p p  . If nothing is known about X, 

we have ( ) lnH X N , which is the maximum value that 

H(X) can be; this occurs if all the states are equally likely pi = 

1/N. However, for example, if X = x5 then the uncertainty 

about X becomes smaller, and therefore H(X)  represents the 

quantity of the closest description of X. The probability 

distribution using prior knowledge or measurements can teach 

us something about a system. The difference between the 

maximal and the actual entropy after our measurements or 

analysis is the amount of information we have for the system. 

As it mesaures the difference of uncertainty, information is a 

relative quantity [11]. 
 If we define another random variable Y with its states y1, 

y2,..,yM and probabilities p1, p2,..,pM, then the joint entropy 

H(X,Y) measures our uncertainty about the joint system XY in 

N·M states. If X and Y are somehow connected, such as two 

molecules that can bind to each other, the information that one 

molecule has about the other is  
 

( : ) ( ) ( ) ( )I X Y H X H Y H XY      (7) 

 

Here ‘:’ shows that information is symmetric; X and Y equally 

know each other. If the state of Y is known, then the so called 

‘conditional entropy’ becomes 
 

( / ) ( ) ( )H X Y H XY H Y     (8) 

 

For independent variables: ( ) ( ) ( )H XY H X H Y  . With the 

conditional entropy, Eq. (7) becomes 
 

( : ) ( ) ( / )I X Y H X H X Y     (9) 

 

Eq. (9) shows that information measures deviation from 

independence that is the amount by which the entropy of X or 

Y is reduced by knowing the other (Y or X) [11]. 

 Maximization of the information entropy (IE) determines 

the probability of a particular state of the system. This leads to 

the relation between the probability of a nonequilibrium 

process and the number of microscopic trajectories [12,13].  
 

Information and Thermodynamics 

 

 Maximum entropy and maximum entropy production are 

two essential properties in equilibrium and nonequilibrium 

thermodynamics, respectively. MEP may be an organizational 

principle applicable to physical and biological systems. 

Various derivations of MEP by using the MIE procedure by 

Jaynes [14] exist in the literaure [2]. In these derivations the 

IE is not defined by a probability measure on phase space, but 

on path space for the stationary nonequilibrium systems [10]. 
 Consider M sites with a variable ni(t) (i = 1,2,.,M) at each 

site with t = 0,1,.,. The flux (time asymetric) occurring 
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randomly at every time step, Jij =  Jji from i to j depends on a 

parameter cij = cji, such that Jij (t) =  cij with stochastic sign. 

A miscroscopic path a is a set of values  cij so that: 

, , ,( 1) ( ) ( )i a i a ij aj
n t n t J t    . The path dependent time 

average is , (1/ ) ( )ij a ijt
J J t   and ni(0) does not depend on 

the complete path. With the miscroscopic path dependent 

probability pa, the path ensemble averages are 

,ij a ij aa
J p J . By using Jayne’s information theory and 

maximizing path information entropy 
 

lnI a aa
S p p      (10) 

 

with the constraints 

1 aa
p      (11) 

,(0) (0)i a i aa
n p n     (12) 

,ij a ij aa
N p J      (13) 

 

the most likely probability on path space is estimated as 

 

1
expa ap A

Z
      (14) 

 

where Nij is the numerical value of the time and path 

ensemble average of the flux Jij, Aa the path action: 

,n (0)a i ia ij ij aij i
A n J    in which i and nij = nji are 

the Lagrange multipliers of constraints (12) and (13), 

respectively, and Z is the partition function [2,9,14].  

However, a trajectory of a quantity possesed by a system 

may fluctuate wildly (far from equilibrium) or weakly; than 

they would not have the same probabilities as long as they 

have the same initial and final states. Here a path trajectory is 

a sequence of p over some time interval: 
 

[ (0), ( ), (2 ),.., ( )]a p p dt p dt p Mdt    (15) 

 

where M = /dt. And dt is the coarse graining corresponding 

to the time scale of experimental observations [8]. 
 The partition and constitutive (phenomenological) equation 

of motion have the relations 
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The forward and backward components of the time and 

ensemble averaged fluxes are 

 
m m
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where     and   2 ln /f b
ij ij ij ij ij ijm X c c X N N  .  

 The entropy production of a microscopic path a is [2] 
 

a a a ij ija ij
p X N       (19) 

 

By using Eq. (14) in Eq. (10), the maximum information 

entropy as a function of the forces becomes 

 

 ,max ( ) ln ( ) ( ) ln ( )IS X Z X A X W A X    (20) 

 

where  ( )W A X  is the density of paths.  

 The entropy curvature (response) matrix is 
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The probability distribution for the time averaged flux is 
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( ) exp [ ] ( )[ ]

2
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 (22) 

 

Combining the equation above with the FT yields [2] 
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p J
J
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    (23) 

 

In near equilibrium regime, the maximum path information is  

 
2( )

,max ( ) ln( ) ln 2 / 2M M
IS X W       (24) 

 

The first part on the right side of the equation above is the 

logarithm of the total number of paths for uniform probability 

distribution, while the second term is the entropy production. 

In the MEP, the assumption was that the number of paths W 

should be an increasing function of the averaged action [10]. 

Here for higher entropy production, the SI is minimum [2].  
 MEP principle states that if thermodynamic forces Xi are 

preset, then the true thermodynamic flows Ji satisfying the 

condition 0i ii
J X    yield the maximum value of the 

(J). This can be written using the Lagrange multiplier   

 

[ ( ) ( ( ) )] 0j k k i i Xi
J J J X        (25) 

 

and at fixed forces, the relationship between the fluxes and 

forces become 
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i ii

J
X J
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   (26) 

 

and indicates that the relationship between the thermodynamic 

forces and fluxes can be both linear and nonlinear [12]. 
 The same entropy production can be both maximum and 

minimum depending on the constraints used in the entropy 

production variation. However, it is widely published that the 

MEP principle may be a critical link in the explanation of the 

direction of the biological evolution under the imposed 

constraints of the environment [9,10,12,13]. If X is fixed, the 

MEP leads to maximum J that is the selection of fastest 

process. MEP principle has proved to be valuable for 

understanding and describing of various nonequilibrium 

processes in physics, biology, and environment. The local 

equilibrium of a nonequilibrium system and the representation 

of the EP as a bilinear form of flows and forces are a 
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mandatory condition for the use of MEP principle [11,14]. 
 In the cortex, populations of neurons continuously receive 

input from other neurons, interpret it their ongoing activity, 

and generate output destined for other neurons. This 

information processing and transmission is limited by the 

repertoire of different activated configurations available to the 

population. The extent of this repertoire may be quantified by 

its entropy H characterizing the information capacity as the 

upper limit on aspects of information processing of the 

population. When the information transmitted from the input 

to the output by a population that has only two states in its 

repertoire (H = 1 bit), then regardless the information the 

input contains, the output information content cannot exceed 

1 bit. Therefore, a network with low entropy population may 

limit information transmission. Activity in the cortex depends 

on the ratio of fast excitatory E to inhibitory I synaptic signals 

to neurons. This E/I ratio remains fixed at an average in 

various events during highly fluctuating activity levels, yet a 

small E/I raio, caused by weak axcitation drive, may reduce 

the correlations as well as the overall level of activity [16].  
 For a number of unique binary patterns, pi the probability 

that pattern i occurs, the entropy of the set of patterns is  
 

21
log

n
i ii

H p p


      (27) 

 

Eq. (27) estimates the occurrence probability for each pattern. 

Maximization of entropy may be an organizing principle of 

neural information processing systems [16]. 

The information capacity IC in binary units may be 

expressed as a function of the probability p 
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where  is the number of possibilities, po is the probability at 

equilibrium (i.e., no knowledge), and p is the probability 

when some information are available about the system. 

Information here is used as a measure of structure [1,7].  
 

BIOLOGICAL SYSTEMS 

 

Ribonucleic acid (RNA) translates the genetic codes in the 

nucleic acids of deoxyribonucleic acid (DNA). The codes 

consisting of four different bases (nucleotides) are adenine 

(A), guanine (G), cytosine (C) and thymine (T, DNA only) or 

uracil (U, RNA only). During the gene expression, RNA 

serves as the template for the translation of genes into proteins 

by transferring amino acids to the ribosome to form proteins, 

which may undergo posttranslational conformational changes, 

folding, and association with other polypeptide chains. All 

these steps can be regulated, therefore, the dynamical object 

of a gene is to produce functional, folded, and chemically 

modified protein [17]. 
 

Information and Biological Systems 

 

 DNA is a code, and codes from sequence alone do not 

reveal information. The nonconditional entropy for DNA 

sequence or proteins is about two bits per base; a random 

protein would have log2(20) = 4.32 bits of entropy per site. 

Due to repetitions, pair, and triplet correlations the actual 

entropy would be lower [11]. This entropy per symbol only 

allows us to quantify our uncertainty about the sequence 

identity; it will not reveal the ‘function’ of the genes.  
 In equilibrium thermodynamics, isolated systems have the 

maximum entropy and there are no correlations; hence there is 

no information. The information as the amount of correlations 

between two systems stored in living system (biological 

genomes) points out that they are far away from equilibrium. 

Consequently, information theory becomes a part of 

nonequilibrium thermodynamics in living cells. Information 

measures the amount of entropy shared between two systems; 

so it is the information that one system has about the other. if 

it cannot be specified what the information is about, then it 

would be entropy. Also informations enables us to make 

predictions about other systems; only in reference to another 

ensemble entropy can become information. Therefore, what is 

described by the correlations between the seqences stores 

information not the sequence itself. On the other hand, what 

information a genomic sequence represents depends on the 

interpreter environment. If a sequence means someting it can 

create a function necessary for its environment [11,17].  

 The information theory introduced ‘functional information’ 

that leads to self-organizing capabilities of living systems, and 

‘instructional information’ that is a physical array. However, 

linkages with the field of semiotics established a much more 

compatible approach to biological information [17]. Within 

this trend ‘control information’ is defined as the capacity to 

control the acquisition, disposition, and utilization of matter, 

energy, and information flows functionally. 

 Each position on the genome is four-base code and the 

uncertainty at each position is two bits; then the maximum 

entropy becomes 

 

max 2 2
, , ,

( ) log ( ) log (4) 2 bits
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     (30) 

 

since p(i) = ¼. The actual entropy is obtained from the actual 

probabilities pj(i) for each position j on the sequence. In N 

sequences, we have ( ) ( ) /j jp i n i N  by counting the number 

of nj(i) occurences of nucleotide i at position j (this will be 

done for all positions j = 1,..,M on the sequence length M). 

When we ignore correlations between positions j, the 

information stored in the sequence becomes 
 

max 2  bitsI H H M H       (31) 

where 
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 The thermodynamics of protein structures implies that 

sequence and structure are related. If a structural entropy of 

proteins H(str) is obtained for a given chain length and for a 

given environment, the the mutual entropy between structure 

and sequence becomes [11] 
 

(seq:str) (seq) (seq/str)I H H     (32) 

 

where H(seq) is the entropy of sequences of lenth M and 

H(seq/str) is the entropy of squences given the structure. If the 

environment requires a certain structure that will be functional 

in that environment then (seq/str) (seq/env)H H . Then 

(seq:str)I  is approximately equal to the physical complexity. 

Assuming that any given sequence produces an exact 

structure: H(str/seq) = 0, and Eq. (32) becomes 

58



 

 

(seq:env) (seq:str) (str)I I H     (33) 

 

Therefore, thermodynamic entropy of a protein structure is 

limited by the amount of information about the environment 

coded by the sequence. This may imply that sequences that 

encode more information about the environment may be more 

functional. 

One of the consequences of the Human Genome project 

has proved that ‘biology is an informational science’ [16,17]. 

The communication in living cells is based on the signals, 

such as electromagnetic-light, mechanical-touch, and 

chemical, received. In the signal-transduction pathway, a 

signal on a cell surface converted into a specific cellular 

response in a series of functional steps [16]. This suggests that 

information is conceived as the communication of a form 

from object to interpreter through the sign. The evolution of 

ways of storing, transmitting, and interpreting information can 

be seen a major step in the increased capacity for collective 

behavior and robustness in living systems [4,6,7]. 
 In semiotic understanding of living systems, interpreters of 

signs and information will often be an interpreter-dependent 

objective process. Genes should be regarded as signs in DNA, 

which can only have any effect on a cell function through a 

triadic-dependent process. The object of sign in DNA is a 

functional, folded, and chemically configured protein 

production; when a particular gene product is necessary, a 

signal from the environment activates the expression of a 

certain gene. The cell as an interpreter alters its internal states 

triggered by a collective signal transduction pathway to 

establish the boundary conditions to processes and perform 

someting functional with the genetic material [17].  

 

Coupled Biological Systems and Information  

 

Biochemical reactions coupled with diffusion of species can 

lead to molecular pumps and biochemical cycles in living 

systems. Here, the coupling refers that a flux occurs without 

its primary thermodynamic driving force, or opposite to the 

direction imposed by its primary driving force. This is 

possible only if a process is coupled with another spontaneous 

process and is consistent with the second law that states that a 

finite amount of organization may be obtained at the expense 

of a greater amount of disorganization in a series of coupled 

spontaneous processes. An example to that is the adenosine 

triphosphate (ATP) synthesis coupled to the respiratory 

electron transport. The ATP synthesis, in turn, is matched and 

synchronized to cellular ATP utilization. This shows a 

functional process leading to organized structures where the 

ATP synthesis ( < 0) has been made possible and the whole 

coupled processes satisfy the condition 0  [7,19-21]. 
The general approach for incorporating thermodynamics 

into the information theory has been to derive probability 

distributions for nonequilibrium steady states by employing 

the variational approach. However, composing the appropriate 

constraints to be used in the variational principle is not clear, 

since there is no definite extremum quantity to characterize 

the state space of such steady nonequilibrium states. In the 

vicinity of equilibrium only, the linear phenomenological laws 

may be useful in that respect [8]. Therefore a natural question 

is that how useful such an approach would be to describe the 

information processeing in functionally coupled and self-

organized biochemical cycles of living systems that are 

mainly far from equilibrium. The probabilistic measure of 

information derived from Jaynes information theory 

formalism of statistical mechanics is mainly indifferent to 

meaning [10]. 

The unified theory of evolution attempts to explain the 

origin of biological order as a manifestation of the flows of 

energy and information on various spatial and temporal 

scales. Genes originates the information to form the required 

enzymes, regulatory and structural proteins. The genome is 

the source of cellular codes; also any cellular structure such as 

lipids and polysaccharides may store and transmit 

information. Beside these, thermodynamic forces in the form 

of transmembrane gradients of H+, Na+, K+, Ca2+ and 

consequent electric potential cause significant displacements 

from equilibrium, and are therefore, potential sources of 

information. Genome-protein system may be a component of 

a large ensemble of cellular structures, which store, encode, 

and transmit the information [6,7,17].   
The use of maximum entropy formalism in biology is 

growing [4,18] in detecting expression patterns in signal 

transduction. At the maximum entropy, the probabilities of the 

different proteins are not equal; each protein will be present in 

proportion to its partition function, which is the effective 

thermodynamic weight of a species at thermal equilibrium.  

 Le Chatelier principle may be applied to analyze how a 

protein-signalling networks at equilibrium returns to its 

equilibrium state after being slightly perturbed. For a single 

cell or small cell colony, cell to cell perturbations are small, 

while the unperturbed state of a single cell may be unstable in 

the presence of many other cells. Experiments permits 

observations of the covariance in the fluctuations and 

evolution of these fluctuations of different proteins when a 

single cell is perturbed in the presence of other cells. The 

information theory helps analyze these covariances to 

understand the network of interacting proteins [18]. 

 The composite immediate object of a protein coding gene is 

the sequence of amino acids of a polypeptide, which can be 

folded in different ways in different cellular contexts and 

represents dynamical objects. So sign that is a sequence of 

nucleotides in DNA determines object that is a sequence of 

amino acids in a polypeptide through interpretant that is a 

range of possibilities of reconstruction of sequence of amino 

acids required by the environment (cell). 
 Dewar [4] suggests that MEP is the unifying optimization 

for living systems and ecosystem function, in which entropy 

production might be a general objective function. When a 

system is away from equilibrium, the nonequilibrium state of 

MEP is the most probable as it can be realized 

microscopically in a greater number of ways than any other 

nonequilibrium state. In this sense, MEP is a statistical 

principle, rather than a physical principle open to 

experimental validation. MEP may predict optimal plant 

behavior from the perspective of natural selection as well as 

offers a novel statistical reinterpretation of that behavior that 

is the survival of the likeliest. 

For a multicomponent fluid system under mechanical 

equilibrium with n species and Nr number of chemical 

reactions and diffusion, the rate of energy dissipation due to 

local rate of entropy production is [19.20]  

 

 , ,( ) 0i i T P i ij rji i jV
T J dV         J  (34) 

 

where Ji the vector of mass fluxes, i the chemical potential 

of species i, and A the affinity i iA    . The local mass 
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balance of chemical species i from the continuity equation 
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J
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j    (35) 

 

For a steady state system, we have ,i ij rji j J j  allowing 

the dissipation to be expressed in terms of affinity 
Assuming that we have N number of linear flux-force 

system expressed in matrix form: J = LX , Onsager’s 

reciprocal relations states that the coefficient matrix L is 

symmetrical. The L will have N×N elements and the number 

of cross coefficients would be (N2N)/2, which may be on and 

off based on the biochemical path and its environment. In the 

absence of pertinent symmetries or invariances, all types of 

cross-couplings are possible and lead to nonvanishing cross 

coefficients. If the structure of the system is invariant with 

respect to some or all of the orthogonal transformations, then 

the invariance will eliminate certain cross-couplings and their 

cross-coefficients will vanish.  

Thermodynamic coupling may lead to self organized and 

(N2N)/2 number of posibility of coupled-uncoupled 

structures with N biochemical reactions depending on the 

environmental interpretations. This, in turn, brings out the 

challenge of implementing the trajectories belonging two or 

much more coupled processes (recognizing each other) with 

different inital and end nonequilibrium states into the 

fluctuationg and information theory.   
 

CONCLUSIONS 

 

 Shannon’s theory can define both entropy and information 

and should be used to quantify the information content of 

sequences by distinguishing information-coding parts from 

random parts in ensemble of genomes. It can also be used in 

investigating protein-protein interactions and the association 

of enzymes and proteins with their binding sites. Also, 

information theory based biomolecule design may maximize 

the information shared between the target and biomolecule, 

such as drug, ensembles. The use of information and entropy 

in thermodynamically coupled processes in fluctuation theory 

may be helpful further understanding the concept of 

functionality in dissipative and self-organized structures of 

living systems.  
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ABSTRACT
The Earth’s biosphere – the sum of all life – as well as the Earth system itself are two highly dissipative, thermodynamic systems
that are driven by low entropy solar radiation and that produce high entropy ”waste”. Their dissipative activities are constrained
by the exchange of energy of different entropies, but also by the material transport processes within these systems. The strength
of material transport links the dissipative activity of the Earth system as a whole with the material exchange of the biosphere,
such as the exchange of carbon dioxide that is critical to maintain life. Here, I show how the thermodynamic limit of material
transport within the Earth’s atmosphere imposes a limit to the exchange of carbon dioxide for terrestrial photosynthesis. This
limit is not fixed, but is modulated by the biosphere through its effects on surface absorption and on the atmospheric composition.
These effects are illustrated by a simple model of atmospheric transport and biotic activity. This tight interplay between the limits
of physical transport on biotic activity and the effects of biotic activity on the Earth system emphasizes the need to approach and
understand life in its Earth system context in which thermodynamics defines the limits of the overall dissipative activities of both
systems.

THERMODYNAMICS OF LIFE ON EARTH

It is well recognized that life can be seen as a thermody-
namic dissipative process that is fueled by low entropy energy
and produces high entropy waste [1; 2]. Boltzmann [1] already
described in the late 19th century that the

general struggle for existence of living organisms is
therefore not a struggle for the basic materials – these
materials are abundantly available for organisms in air,
water and soil – ... but a struggle for entropy, which
through the transformations of energy from the hot sun
to the cold Earth becomes available.

Likewise, the Earth system as a whole is a thermodynamic, dis-
sipative system that is fueled by the absorption of low entropy
solar radiation and produces high entropy terrestrial radiation.
This correspondence was noted by Lovelock [3; 4], who popu-
larized the notion that the Earth is like a living organism. This
comparison was not made on the basis of a biological definition
of life, but rather from the recognition that both, life and the
Earth system are highly dissipative systems that are maintained
in states far from thermodynamic equilibrium.

Yet, the notion that life and the Earth system are dissipative
systems by itself does not provide a constraint on how dissipa-
tive these systems are. Yet, thermodynamics provides informa-
tion about limits as well and the factors that shape these lim-
its. A prime example for such a limit is the Carnot limit of a
heat engine, which describes how much heat can be converted
into mechanical work by the engine which can later be dissi-
pated. To evaluate such limits for life and for the Earth system,
we need to view these systems in terms of their environmen-
tal setting. The Earth system is driven by radiative exchange,

so the question regarding the limit of dissipative activity of the
Earth system relates to the thermodynamic limit of how much
free energy can be generated from the radiative forcing. Life is
embedded within the functioning of the Earth system, and it is
subjected to thermodynamic limits regarding the conversion of
sunlight into chemical energy, but also to limits regarding the
transport and exchange of the basic materials that are required
during the process of chemical energy generation and that are
taken up from (and released to) the abiotic environment. The
chemical transformation associated with life leaves an imprint
in the environment, most notably in terms of the atmospheric
composition, which has likely changed drastically during the
history of the Earth system due to life [5; 6] and which would
affect the radiative exchanges within the system. Hence, we
gain a view of life and the Earth system as two, closely con-
nected thermodynamic systems with reciprocal roles, with Earth
system functioning shaping a habitable environment that favors
life and with the effects of life shaping the Earth’s environment.

This interplay between the Earth system and the biosphere
– the sum of all life – is illustrated in Fig. 1. Both, the abiotic
processes of the Earth system as well as the biosphere are driven
mostly by the absorption of low entropy solar radiation. Solar
radiation is absorbed at the Earth’s surface, and differences in
absorption and emission provide the gradients to drive abiotic
processes, such as the generation of motion or the evaporation
of water which represent the dissipative activity of the Earth sys-
tem (arrow A in Fig. 1). Most of the biotic activity is driven di-
rectly or indirectly by photosynthesis, which utilizes a fraction
of the absorbed solar radiation in converting carbon dioxide into
carbohydrates (arrow B in Fig. 1). In both cases, the absorbed
solar energy is eventually reemitted to space, but it is emitted
at a much lower radiative temperature, so that the emitted ra-
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Figure 1: Schematic diagram to understand life in the thermodynamic context of the whole Earth system.
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Figure 1. Schematic diagram to understand life in the thermodynamic
context of the whole Earth system.

diation has a much higher radiative entropy. This difference
in radiative temperatures between the absorbed solar radiation
and the emitted terrestrial radiation provides the difference in
entropy that fuels both, the Earth system and its biosphere.

To link biotic activity and Earth system functioning, we first
note that biotic activity also requires basic building materials,
particularly carbon dioxide from which organic biomass is be-
ing formed from. Carbon dioxide is taken up from the atmo-
sphere (for the terrestrial biosphere, which I will focus on here),
or from the ocean (for the marine biosphere), and in both cases
the physical environment provides the means to transport car-
bon dioxide to the biosphere (arrow C). The ability to trans-
port depends on the intensity by which motion can be gener-
ated within the Earth system from the planetary forcing of solar
radiation, and this generation rate is thermodynamically con-
strained. Hence, the material supply for biotic activity is one
factor by which the Earth system imposes a constraint on bi-
otic activity (among other factors, such as temperature or water
availability on land).

The arrows D in Fig. 1 describe the effects of biotic activity
on the Earth system by the mass exchange of basic materials (as
mentioned above). Two aspects of this modification directly re-
late to the radiative forcing of the Earth system. The first aspect
relates to the presence of photosynthetic tissues that typically
increase the absorption of solar radiation at the surface, which
can, for instance, easily be noted on land where the presence
of vegetation darkens the surface. The second aspect is more
subtle and involves alterations of the atmospheric composition,
for instance in terms of the concentration of carbon dioxide,
methane, and molecular oxygen. The atmospheric composition
alters the radiative properties of the atmosphere in terms of the
concentration of greenhouse gases and thereby affects the trans-
fer of terrestrial radiation and the ability of the system to emit
radiation. Hence, the two effects associated with arrows D have
quite profound effects for the physical functioning of the Earth
system.

The goal of this contribution is to illustrate the interplay be-
tween life and Earth shown in Fig. 1 with a simple, yet quanti-
tative model of the Earth system and biotic activity and to quan-
tify the thermodynamic limits of both systems as well as their

coupling. I first illustrate the thermodynamic limit on mass ex-
change between the surface and the atmosphere associated with
convection. This intensity of mass exchange is then related to
the limitation imposed by the environment on the transport of
basic materials for photosynthesis. The consequences of biotic
activity are then discussed in terms of altering the atmospheric
composition, which in turn affects the strength of the atmo-
spheric greenhouse effect and the thermodynamic limits. The
implications for the understanding of life in a thermodynamic
Earth system context are then summarized.

TRANSPORT LIMITS IN THE EARTH SYSTEM

The transport and exchange of mass within the Earth system
is strongly constrained by thermodynamic limits. To demon-
strate these limits, I set up a simple model of atmospheric con-
vection in the following, which is based on [7; 8]. This model
considers the Earth’s surface with a temperature Ts and the at-
mosphere with a temperature Ta as a thermodynamic system
made up of two heat reservoirs. The system is forced by the
heating associated with the absorption of solar radiation at the
surface, Jsw, and by the cooling associated with the emission of
terrestrial radiation from the atmosphere, Jlw. Its steady state is
considered in which Jsw = Jlw. The surface and the atmosphere
are coupled by a flux of radiative exchange, Js,a, as well as the
sensible and latent heat fluxes, Jsh and Jlh. These latter fluxes
are directly linked to atmospheric motion and thus to the ability
of the atmosphere to transport mass, with the latent heat flux
linked to the strength of the hydrologic cycle.

To derive the thermodynamic constraints of material trans-
port, we consider the limit to the rate by which kinetic energy
can be generated within the atmosphere. This rate, G, is set by
the Carnot limit for dry convection which is associated with the
sensible heat flux, Jsh, and the temperature difference, Ts −Ta:

G = Jsh ·
Ts −Ta

Ts
(1)

The two terms, Jsh and Ts − Ta, are constrained by the energy
balances of the system, with a greater flux Jsh corresponding to a
smaller temperature difference Ts −Ta. This trade-off is derived
from the explicit consideration of the energy balances. Using
this energy balance constraint then yields a maximum power
limit Gmax that is associated with an optimum mass exchange
between the surface and the atmosphere that is characterized by
an optimum vertical exchange velocity wopt .

In the following, several simplifying assumptions are being
made to derive a relatively simple, but realistic analytical solu-
tion. A wet surface is considered, i.e. that the evaporation rate
is not limited by water availability. The atmosphere is assumed
to absorb all of the emitted terrestrial radiation from the surface.
As will be seen below, these considerations are quite reasonable
for present-day conditions and yield estimates by the model that
compare well with observations.

Energy balance constraints

The surface energy balance of the system is given by

0 = Jsw − Js,a − Jsh − Jlh (2)
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The corresponding energy balance of the atmosphere is given
by

0 = Js,a + Jsh + Jlh − Jlw (3)

In these equations, Jsw represents the forcing of the sys-
tem, and the steady state requires that Jlw = Jsw. Since the
radiative temperature is fixed by the global energy balance,
Jsw = σT 4

a (with σ being the Stefan-Boltzmann constant), the
atmospheric temperature is fixed at Ta = (Jsw/σ)1/4. The ra-
diative exchange flux between the surface and the atmosphere
is expressed in a linearized approximation by Js,a = kr(Ts −Ta)
with kr = 4σT 3

s /(1+ 0.75τ) and τ being the longwave optical
depth of the atmosphere. The sensible heat flux is expressed
as Jsh = cpρw(Ts −Ta) with heat capacity cp and air density ρ.
The latent heat flux for an open water surface is written as Jlh =
λw(qs −qa)≈ s/γ · Jsh with λ being the latent heat of vaporiza-
tion, qs and qa being the specific humidities of near surface and
atmospheric air, s = desat/dT ≈ s0 exp[19.83−5417/Ts]/T 2

s is
the slope of the saturation vapor pressure evaluated at the ref-
erence temperature Ts (with s0 ≈ 3.3 · 106 Pa K), and γ is the
psychrometric constant. These formulations are typical formu-
lations of atmospheric heat fluxes in meteorology, and the de-
tails of the formulations can be found in [8].

Maximum power limit

The expression for the Carnot limit with these formulations
of the heat fluxes depends on the forcing, Jsw, a series of phys-
ical and radiative parameters (such as heat capacity, air density,
the psychrometric constant, the slope of the saturation vapor
pressure curve, and optical thickness), and on the vertical ex-
change velocity within the atmosphere, w, which is a yet un-
constrained variable:

G =
cpρw

Ts(kr + cpρw(γ+ s)/γ)2 · J2
sw (4)

We can constrain the value of w by assuming that the generation
rate G is maximized with respect to w, that is, that the genera-
tion of motion is maximized and operates at the thermodynamic
limit within the system. When we neglect the slight dependence
of Ts (because variations in Ts are relatively small compared to
the mean), we can derive an analytic expression for the maxi-
mum generation rate, Gmax:

Gmax =
γ

γ+ s
· J2

sw

2krTs
(5)

with associated partitioning of heat fluxes of

Js,a,opt =
Jsw

2
Jsh,opt =

γ

γ+ s
· Jsw

2
Jlh,opt =

s
γ+ s

· Jsw

2
(6)

Note that this state of maximum power associated with con-
vection is closely related to a state of Maximum Entropy Pro-
duction (MEP), which is a general hypothesis that complex ther-
modynamic systems are maintained in steady states at which
entropy production is maximized ([9; 10; 11; 12; 13; 14; 15]).
The generation of kinetic energy equals its frictional dissipation
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Figure 2. Sensitivity of the thermodynamic limit of convective exchange
within the atmosphere, represented by the optimum exchange velocity
wopt , to radiative forcing and the associated surface climate in terms
of surface temperature Ts and evaporation Eopt . The panels show the
sensitivities to (top) solar radiative heating, Jsw, and (bottom) optical
thickness, τ, both expressed as a fraction of today’s reference value.

in steady state, i.e. G = D, so that a maximization of the gener-
ation rate then corresponds to a maximization of dissipation. If
this dissipation occurs at the cold, atmospheric temperature, Ta,
then the entropy production, σsh, associated with this frictional
dissipation is given by:

σsh =
G
Ta

= Jsh ·
(

1
Ta

− 1
Ts

)
(7)

using G = D and eqn. 1 from above. Since Ta is fixed by the
planetary energy balance with Ta = (Jsw/sigma)1/4, the maxi-
mization of G corresponds to a maximization of σsh.

This state of maximum power (and maximum dissipation)
relates back to the motivation of this contribution (arrow A in
Fig. 1) in that it is this state which characterizes the maximum
dissipative activity of the Earth system in terms of atmospheric
motion.

Climate sensitivity at maximum power

The properties at a state of maximum convective power can
now be associated with climatic conditions at the surface. The
above maximization is associated with an optimum vertical ex-
change velocity wopt at the surface-atmosphere interface of

wopt =
γ

γ+ s
· kr

cpρ
(8)
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With this maximization, the temperature difference is set, so
that the surface temperature, Ts, is obtained from the energy
balance and the atmospheric temperature, Ta:

Ts,opt = Ta +
Jsw

2kr
=

(
Jsw

σ

)1/4

+
Jsw

2kr
(9)

The associated strength of the hydrologic cycle, expressed by
the flux of evaporation E (or precipitation, since P = E) is given
by:

Eopt =
s

γ+ s
· Jsw

2λ
(10)

When these properties are evaluated for present-day con-
ditions with Jsw = 240 W m−2 and τ = 0.65, these expres-
sions yield values of Ts = 288 K, wopt = 1.1 mm s−1, and
Eopt = 2.9 mm d−1, which are very close to observed magni-
tudes of wobs ≈ 1 mm s−1 [16] and Eobs ≈ 2.7 mm d−1 [17].

The sensitivity of these estimates to changes in the radiative
forcing is shown in Fig. 2. The upper plot in the figure shows
the sensitivity to absorbed solar radiation, Jsw, which charac-
terizes the strength of the forcing of the system. This forcing is
affected by the luminosity of the Sun, but also to some extent by
the reflectivity of the Earth’s atmosphere (e.g. clouds) and the
surface (e.g. ice, vegetation, water), with the latter aspects not
dealt with here. The lower plot in Fig. 2 shows the sensitivity to
the optical thickness, τ, which describes the strength of the at-
mospheric greenhouse effect. This property does not affect the
rate of surface heating, but rather the rate by which the surface
cools through emission of terrestrial radiation.

The sensitivities of the estimates to these two radiative prop-
erties are qualitatively similar and consistent with sensitivities
derived from complex climate models. Greater values of Jsw
and τ both result in warmer surface temperatures, Ts, but for
different reasons. In the first case, the warmer temperature re-
sults from a stronger solar forcing, while in the latter case, it re-
sults from a reduced cooling rate due to a stronger atmospheric
greenhouse effect. Greater values of Jsw and τ also result in en-
hanced evaporation, Eopt , and lower values of the optimum ver-
tical exchange velocity, wopt . This lower value of wopt results
from the fact that at higher temperatures, s obtains a greater
value, so that less vertical motion is needed to accomplish the
turbulent heat exchange.

To summarize this section, we derived a Carnot-type limit
for convective motion within the atmosphere from the radiative
forcing and evaluated the climatic conditions associated with
this maximum convective transport state. The maximum results
from the strong interaction between the convective heat fluxes
of sensible and latent heat, Jsh + Jlh, and the driving tempera-
ture difference, Ts−Ta, which decreases with greater convective
heat fluxes due to the energy balance constraints. This trade-off
is the same trade-off that is involved in studies of Maximum En-
tropy Production (MEP), although here this limit is interpreted
by more conventional means in terms of the Carnot limit to me-
chanical power. This maximum convection state yields a re-
alistic representation of the climate and characterizes the upper
thermodynamic limit on mass exchange between the surface and
the atmosphere. Next, this limit is evaluated regarding its impli-
cation for biotic activity at the surface.

TRANSPORT LIMITS AND BIOTIC ACTIVITY

The environmental limits on the photosynthetic rate are now
being considered, as photosynthesis acts as the main driver for
biotic activity on Earth. Two environmental limits are consid-
ered that directly relate to the processes considered in the pre-
vious section: the availability of light at the surface to drive the
photochemistry associated with photosynthesis (arrow B in Fig.
1), and the ability of the atmosphere to transport carbon diox-
ide to the surface at which photosynthesis takes place (arrow C
in Fig. 1). These two constraints are formulated in terms of
a light-limited rate, Jbio,sw, and a flux-limited rate, Jbio,CO2, of
photosynthesis.

The light-limited rate, Jbio,sw, is linked to the absorption of
solar radiation at the surface and is expressed as

Jbio,sw = ε · Jsw (11)

where ε is the light use efficiency. Since about 55% of solar
radiation is photosynthetically active radiation, and it requires
about 10 photons of wavelengths of 580 and 600nm to fix one
molecule of carbon, the value of ε should be around ε= 3.910−6

gC J−1. For present-day conditions with Jsw = 240 W m−2,
this yields a light-limited rate of about Jbio,sw = 77µmol m−2

s−1. This rate is quite a bit higher than the observed maximum
photosynthetic rate of around 50 µmol m−2 s−1 [18] so that,
overall, it is not the availability of light that limits biotic activity.

The flux-limited rate, Jbio,CO2, reflects the limitation due to
the atmospheric exchange of carbon dioxide between the atmo-
sphere and the surface. It is expressed in terms of the verti-
cal exchange velocity, wopt , as well as the difference in carbon
dioxide concentration

Jbio,CO2 = ρwopt · (pCO2,a − pCO2,s) (12)

where ρ = 1.2kg m−3 is the air density and pCO2,a and pCO2,s
are the mixing ratios of carbon dioxide within the atmosphere
and at the surface. Since the CO2 mixing ratio within the air
space of leaves is about 70% of the atmospheric concentra-
tion, a value of pCO2,s = 0.7pCO2,a is used here, with a value
ofpCO2,a ≈ 390 ppmv. With wopt = 1.1 mm s−1, this yields a
value of Jbio,CO2 for present day conditions of about 20 µmol
m−2 s−1. This is noticeably smaller than the observed maxi-
mum photosynthetic rate stated above, emphasizing the impor-
tance of this transport limitation to photosynthesis.

The sensitivity of both limitations to the radiative properties
of absorbed solar radiation, Jsw, and longwave optical thickness,
τ, are shown in Fig. 3. The light-limited rate increases with
absorbed solar radiation, while it is insensitive to changes in τ.
In contrast, the flux-limited rate decreases with both, Jsw and τ,
due to the lower value of wopt .

This example is, of course, formulated in a highly simpli-
fied way. There are several ways by which the biota, particu-
larly vegetation on land, can alter the transport limit to some
extent, thereby alleviating this constraint. For instance, vege-
tation can reduce the rate of transpiration by stomatal control,
which would enhance the vertical exchange velocity by reduc-
ing the effect of s in the expression of wopt (not shown here). A
greater value of wopt would then raise the flux-limited rate and
allow for a greater rate of photosynthesis.

Nevertheless, the example demonstrates that atmospheric
transport and the associated flux limitation for photosynthesis
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Figure 3. Sensitivity of the light-limited and flux-limited rates of pho-
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pressed as a fraction of today’s reference value. The thin horizontal line
indicates roughly the maximum observed rate of photosynthesis.

is more limiting than the availability of light. This limitation
forms one aspect of the coupling between the dynamics within
the abiotic part of the Earth system and the activity of the bio-
sphere, as represented by arrow C in Fig. 1.

BIOTIC EFFECTS ON THE EARTH SYSTEM

The effects of biotic activity on the Earth system as shown
by arrows D in Fig. 1 affect the values of Jsw through enhanced
absorption by biomass and of τ through changes in atmospheric
composition. Even though the first effect plays a large role on
land, its global effect is relatively small, so that it is not consid-
ered here. The following scenario focuses on the second effect
that involves changes in τ that are taken here as a result of biotic
activity.

The scenario that is considered here is placed in the context
of Earth system history. Geological indicators suggest that the
Earth maintained an ice-free state and maintained surface tem-
peratures within a relatively narrow range through most of its
history although the sun was a lot fainter in the past, with about
70% of today’s luminosity at 4.5 billion years ago. One com-
mon ”solution” to this discrepancy is that the concentration of
greenhouse gases may have been substantially higher in the past
[19; 20], with changes in greenhouse gas concentrations being
attributed to changes in biotic activity.

We now consider such a scenario in the context of the simple
model developed here. The surface temperature Ts is prescribed
to its present-day value, and this condition is used to derive
the value of τ under the assumption of maximized convective
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ration Eopt (dotted line), vertical exchange velocity wopt (dashed line),
and flux-limited rate of carbon exchange, Jbio,CO2 (solid line) when a
fixed surface temperature of Ts = 288 K is prescribed for the given vari-
ation in absorbed solar radiation, Jsw.

exchange. The sensitivity of this setting is then evaluated to
changes in Jsw, which is shown in Fig. 4. The figure shows the
decrease in τ with an increase in Jsw, which is consistent with
the previous studies that argued for a stronger greenhouse effect
to compensate for the lower values of solar luminosity in the
past. The figure also shows a strengthening of the hydrologic
cycle, shown by Eopt , and a stronger vertical exchange, wopt ,
with greater values of Jsw, which result in a less-limiting rate
Jbio,CO2.

This sensitivity shown in Fig. 4 can directly be related to the
equations described above. The prescribed surface temperature
of Ts = 288 K requires a smaller value of kr for lower values
of Jsw, which can be seen in eqn. 9. This smaller value of kr
is achieved by a greater value of τ. Hence, the value of τ is re-
duced with increased values of Jsw under the constraint of the
prescribed surface temperature. The evaporation rate, Eopt , is
directly proportional to Jsw (eqn. 10), so that the strength of the
hydrologic cycle increases proportionally with the rate of ab-
sorption of solar radiation, Jsw. The increase in wopt with Jsw
reflects the increased value of kr (cf. eqn. 8), which is due to
the lower values of τ that are needed to maintain the prescribed
surface temperature. This increase in wopt then leads to the in-
crease in Jbio,CO2 with Jsw.

Even though the sensitivity and the model considered here is
highly simplified, it illustrates the important point that the dissi-
pative activities of the Earth system and of the biosphere are not
externally determined, but merely constrained. In the model,
this constraint is represented by the magnitude of absorption of
solar radiation, Jsw. Furthermore, these two systems strongly
interact, with the radiative forcing and the value of τ affecting
the flux-limited rate of photosynthesis, while greater values of
biotic activity could result in a reduction of greenhouse gases,
which could reduce τ. Hence, the interaction between life and
the Earth system is likely to affect the magnitudes of their re-
spective dissipative behaviors.

CONCLUSIONS

To conclude this study, the results presented here suggest that
it is not primarily the struggle for light that limits the dissipa-
tive activity of the Earth’s biosphere, but rather the ability to
exchange materials. To formulate the essence of this contribu-
tion in a similar way to Boltzmann’s quote that was presented at
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the beginning of this paper, this study would suggest that the

general struggle for existence of living organisms is
therefore not a struggle for light – this is abundantly
available at the surface – but a struggle for transport of
the basic materials, which through the transformations
of energy from the hot sun to the cold Earth becomes
available.

This perspective intimately links the abiotic transport character-
istics of the Earth system to the essential resource requirements
for life. If we want to better understand the role of life, we
would need to view it as a component of the Earth system that
is deeply embedded in its function and that is subjected to lim-
its that are not just related to direct energy conversions, but also
to environmental transport limitations. These limits are, how-
ever, not fixed, but are ameliorated by the consequences of life.
Hence, this would seem to require a thermodynamic Earth sys-
tem perspective to understand the role and consequences of life
on Earth.
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ABSTRACT
Biological molecular machines are proteins that operate under isothermal conditions hence are referred to as free energy transduc-
ers. They can be formally considered as enzymes that simultaneously catalyze two chemical reactions: the free energy-donating
(input) reaction and the free energy-accepting (output) one. It is now well established that most if not all enzymatic proteins
display a slow stochastic dynamics of transitions between a variety of conformational substates composing their native state. A
hypothesis is stated that, like higher level biological networks: the protein interaction network and the metabolic network, the
protein conformational transition networks have evolved in a process of self-organized criticality. All three classes of networks
are scale-free and, probably, display a transition from the fractal organization in a small length scale to the small-world orga-
nization in the large length scale. Good mathematical models of such networks are stochastic critical branching trees extended
by long-range shortcuts. The degree of coupling between the output and the input reaction fluxes have been studied both the-
oretically and by means of the Monte Carlo simulations on model networks. For single input and output gates the degree of
coupling values cannot exceed unity. Study simulations of random walks on several model networks involving more extended
gates indicate that the case of the degree of coupling with the value higher than one is realized on the mentioned above critical
branching trees extended by long-range shortcuts.

ENZYMATIC PROTEINS – CHANGE OF THE FUNDA-
MENTAL PARADIGM

Proteins are linear polymers of amino acids arranged in a
sequence determined by genes. Since the origin of molecular
biology in the 1950s, a paradigm has been commonly accepted,
expressed shortly in two successive implications:

sequence → structure → function.

It assumes implicitly that the dynamics of native proteins re-
duces to simple normal vibrations about a single well defined
conformational state referred to as the ’tertiary structure’ of the
protein. For et least two decades, however, it becomes more
and more clear that not only structure but also more complex
dynamics determine the function of proteins thus the paradigm
has to be changed onto [1]

sequence → structure & dynamics → function.

Two classes of experiments imply directly that besides fast vi-
brations enzymatic proteins display also a much slower stochas-
tic dynamics of transitions between a variety of conformational
substates composing their native state. The first class includes
observations of the non-exponential initial stages of reactions
after special preparation of an initial microscopic state in a sta-
tistical ensemble of biomolecules by, e.g., the laser pulse [2; 3].
The second class concerns statistics of the dichotomous noise
generated by single biomolecules in various processes, which
often displays a non-exponential time course [4; 5]. The even
more convincing proof if the conformational transition dynam-
ics of simple native proteins has been afforded by early molec-
ular dynamics simulations [6; 7]. Research of biomolecular dy-
namics is being developed faster and faster and today, even in
the case of small, water-soluble proteins, one speaks about the

’native state ensemble’ rather than a single native state, and for
very small proteins or protein fragments trials to reconstruct the
actual networks of conformational transitions are realized [8].

Because of the slow character of the conformational dynam-
ics, both chemical and conformational transitions in an enzy-
matic protein have to be treated on an equal footing [9] and
jointly described by a system of coupled master equations

ṗl(t) = ∑
l′
[wll′ pl′(t)−wl′l pl(t)] , (1)

determining time variation of the occupation probabilities pl(t)
of the individual protein’s substates (Fig. 1). In Eq. (1), wl′l
is the transition probability per unit time from the substate l
to l′ and the dot denotes the time derivative. The conforma-
tional transition probabilities satisfy the detailed balance condi-
tion which, however, can be broken for the chemical transition
probabilities controlled by concentrations of the enzyme sub-
strates. Eqs. (1) are to be treated as a model of microscopic dy-
namics in the stochastic theory of reaction rates [10; 11] the ori-
gins of which go back to the Smoluchowski theory of diffusion-
controlled coagulation and the Kramers one-dimensional theory
of reactions in the overdamped limit. It is the stochastic theory
of reaction rates and not the conventional transition state theory
that has to be applied in the description and interpretation of
biochemical processes [9; 12].

Contrary to the transition state theory the stochastic the-
ory of reaction rates takes seriously into account the very pro-
cess of reaching the partial thermodynamic equilibrium in non-
chemical degrees of freedom of the system described. In the
closed reactor, a possibility of a subsequent chemical trans-
formation of an enzyme to proceed before the conformational
equilibrium have been reached in the actual chemical state re-
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Figure 1. (a) Exemplifying realization of the model intramolecular dy-
namics underlying the irreversible reaction M → product. Chemical
state M is composed of many substates (the white and black circles)
and the dynamics involves purely stochastic transitions between these
states (the arrows). Chemical state product is represented by a single,
totally absorbing ’limbo’ state ∗. The reaction is realized through transi-
tions between distinguished substates in M, jointly forming what is called
the transition state R‡ (the black circles) and the limbo ∗. (b) Particular
case of the irreversible reaction when the transition state is reduced to
a single ’gate’ substate 0. The shaded box represents a network of an
arbitrary number of sites and the direct transitions between them.

sults in the presence of a transient non-exponential stage of the
process and in an essential dynamical correction to the reaction
rate constant describing the following exponential stage. In the
open reactor under stationary conditions (the concentrations of
reactants and products of the reaction kept constant), the gen-
eral situation is more complex but for reactions gated by single
transition conformational substates (Fig. 1(b)) a simple analyt-
ical theory was proposed [9; 13]. A consequence of the slow
conformational transition dynamics is that the steady-state ki-
netics, like the transient stage kinetics, cannot be described in
terms of the usual rate constants. This possibility was suggested
forty years ago by Blumenfeld [14]. More later on, we have
shown that adequate physical quantities that should be used are
the mean first-passage times between distinguished transition
substates [9; 13]. The subject of the present paper is an ap-
plication of this formalism to elucidate the action of biological
molecular machines.

BIOLOGICAL MACHINES AS CHEMO-CHEMICAL
FREE ENERGY TRANSDUCERS

The primary purpose of thermodynamics, born in the first
half of the 19th century, was to explain the action of heat en-
gines. The processes they are involved in are practically re-
versible and proceed in varying temperatures. As a conse-
quence, thermodynamics being the subject of the school and
academic teaching, still deals mainly with equilibrium pro-
cesses and changes of temperature. Meanwhile, biological ma-
chines as well as many other contemporary machines act irre-
versibly, with considerable dissipation, but at constant temper-
ature. Machines that operate under the condition T = const.
are free energy transducers [12]. A good example are enzymes
kinases that catalyze simultaneously two reactions, the ATP hy-
drolysis and a substrate phosphorylation.

From a theoretical point of view, it is convenient to treat
all biomolecular machines, also pumps and motors, as chemo-
chemical machines [12], enzymes that simultaneously catalyze
two chemical reactions: the free energy-donating reaction and
the free energy-accepting one. Under isothermal conditions, all
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Figure 2. Development of kinetic schemes of the chemo-chemical ma-
chine. (a) Principle of the chemo-chemical free energy transduction.
Due to proceeding on the same enzyme, reaction R1 ↔ P1 drives re-
action R2 ↔ P2 against its conjugate force determined by steady state
concentrations of the reactant and the product. (b) Assumption of a
possible short circuit or slippage of the input vs. output reaction. (c) As-
sumption of both the free energy-donating and the free energy-accepting
reaction to participate in a kinetic scheme like the one shown in Fig. 1(b).
(d) Further generalization of the kinetic scheme to involve many input
and output of gates.

chemical reactions proceed due to thermal fluctuations: a free
energy needed for their realization is borrowed from the envi-
ronment and then returned to it. In fact, the biological molecu-
lar machines are biased Maxwell’s demons: their mechanical or
electrical elements are ’soft’ and perform work at the expense of
thermal fluctuations [15; 16; 17]. Of course, Maxwell’s demon
can operate only out of equilibrium and it is a task of the free
energy-donating reaction to secure such conditions.

The principle of action of the chemo-chemical machine is
simple [18]. It is a protein enzyme that catalyzes simultane-
ously two chemical reactions (Fig. 2(a)). Separately, each reac-
tion takes place in the direction determined by the second law of
thermodynamics, i.e., the condition that energy dissipated, de-
termined by the product of flux and force, is positive. However,
if both reactions take place simultaneously in a common cycle,
they must proceed in the same direction and the direction of the
first reaction can force a change of direction of the second. As
a consequence, the first reaction transfers a part of its free en-
ergy recovered from dissipation performing work on the second
reaction.

In formal terms, the chemo-chemical machine couples two
unimolecular reactions: the free energy-donating reaction R1 ↔
P1 and the free energy-accepting reaction R2 ↔ P2. Bimolecular
reactions can be considered as effective unimolecular reactions
on assuming a constant concentration of one of the reagents, e.g.
ADP in the case of ATP hydrolysis. The input and output fluxes
Ji (i = 1 and 2, respectively) and the conjugate thermodynamic
forces Ai are defined as [18]

Ji =
d[Pi]/dt
[E]0

(2)

and

βAi = lnKi
[Ri]

[Pi]
, Ki ≡

[Pi]
eq

[Ri]eq . (3)
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Here, symbols of the chemical compounds in the square brack-
ets denote the molar concentrations in the steady state (no su-
perscript) or in the equilibrium (the superscript eq). [E]0 is the
total concentration of the enzyme and β is proportional to the re-
ciprocal temperature, β ≡ (kBT )−1, where kB is the Boltzmann
constant. The flux-force dependence is one-to-one only if some
constraints are put on the concentrations [Ri] and [Pi] for each
i. There are two possibilities. Either the concentration of one
species, say Ri, in the open reactor under consideration is kept
constant: [Ri] = const., or is such the total concentration of the
enzyme substrate: [Ri]+ [Pi] = const.

The free energy transduction is realized if the product J2A2,
representing the output power, is negative. The efficiency of the
machine is the ratio

η =−J2A2/J1A1 (4)

of the output power to the input power. In general, the degree of
coupling

ε = J2/J1 , (5)

being itself a function of the forces A1 and A2, can be both pos-
itive and negative.

Usually, the assumption of tight coupling between the both
reactions is made (Fig. 2(a)). It states that the flux of the first
reaction equals the flux of the second, J1 = J2 thus ε = 1. How-
ever, an additional reaction can take place between the two
states M′ and M′′ of the enzyme-substrates complex (Fig. 2(b)).
The latter reaction can be considered either as a short circuit,
the non-productive realization of the first reaction not driving
the second reaction, or a slippage, the realization of the second
reaction in the direction dictated by its conjugate force.

The multiconformational counterpart of the scheme in
Fig. 2(b) is shown in Fig. 2(c). Here, like in the scheme in
Fig. 1(b), a network of conformational transitions within the
enzyme-substrates complex is represented by the gray box and
the assumption of gating by single pairs of transition confor-
mational substates is made. In Ref. [13], using a technique of
summing up the directional diagrams proposed by Terell L. Hill
[18] who formalized an old idea of Gustav Kirchhoff, we shown
how the input and the output reaction fluxes are related to the
mean first-passage times between the distinguished substates.

For all the schemes shown in Figs. 2(a-c), the flux-force de-
pendence for the two coupled reactions has a general functional
form [13]:

Ji =
1− e−β(Ai−Ast

i )

J−1
+i + J−1

−i e−β(Ai−Ast
i )+ J−1

0i (Ki + eβAi)−1
. (6)

The parameters J+i, J−i, J0i and Ast
i depend on the other force

and are determined by a particular kinetic scheme. Ast
i have

the meaning of stalling forces for which the fluxes Ji vanish:
Ji(Ast

i ) = 0. The dependence Ji(Ai) is strictly increasing with
an inflection point, determined by J0i, and two asymptotes, J+i
and J−i (Fig. 3). The asymptotic fluxes J+i and J−i display the
Michaelis-Menten dependence on the substrate concentrations.
Because of high complexity, we refrained from giving any for-
mulas for the turnover numbers and the apparent dissociation
constants, but simpler formulas for the degree of coupling ε and
the stalling forces Ast

i are given and discussed in Ref. [8].

J
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-J
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A
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Figure 3. Character of the functional dependence of the output flux Ji
versus force Ai determined by Eq. (6). Only when the stalling force
Ast

i is negative does free energy transduction take place. The Ji(Ai)
dependence in this range is marked with a bold line.

In Ref. [8], we have compared theoretical results with Monte
Carlo simulations on several model networks. Fig. 4 shows an
example for 5-dimensional hypercube. It is seen that even for
such simple and small network of 32 nodes large fluctuations
make determination of the input and the output fluxes in 104

iteration steps impossible. Only the increase of the number of
the iteration steps to 109 enables one to determine the fluxes
with the error lower than 0.3%. Preliminary estimations indicate
that the result is in a good agreement with the Gallavotti-Cohen
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Figure 4. Simulated time course of the net number of the input (R1 ↔
P1) and the output (R2 ↔ P2) external transitions for the 5-dimensional
hypercube with gates and parameters described in text. (a) Snapshots
made every step. (b) Snapshots made every 105 steps.
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fluctuation theorem [19]

p(∑i βAi j+i )
p(−∑i βAi j−i )

= exp(−∑
i

βAi jit) , (7)

which can be equivalently rewritten as

⟨exp(−∑
i

βAiJit)⟩= 1 . (8)

Above, Ji = J+
i −J −

i denotes the random variable of the i-th net
flux being the difference of the forward and backward compo-
nents J+

i and J−
i , respectively, and ji = j+i − j−i is the value of

that flux.

NETWORKS OF CONFORMATIONAL TRANSITIONS
AND CRITICAL BRANCHING TREES

The essential motive of our studies is a trial to answer the
intriguing question whether is it possible for the degree of cou-
pling to have a value higher than unity. A dogma in the physical
theory of, e.g., biological molecular motors is the assumption
that for making a single step along its track the motor molecule
has to hydrolyze at least one molecule of ATP [20]. Several
years ago this assumption has been questioned by a group of
Japanese biophysicists from the Yanagida laboratory who, join-
ing a specific nanometry technique with the microscopy fluo-
rescence spectroscopy, shown that the myosin II head can make
several steps along the actin filament per ATP molecule hy-
drolyzed [21; 22]. The structure of myosin II is similar to that
of small G proteins, e.g., protein Ras (rat sarcoma) p21, both
proteins having a common ancestor [23]. After the bounded
nucleotide triphosphate hydrolysis, both in the G proteins [24]
and in the myosin II [25; 26] one of the α helices unwinds
in part what makes the neighboring region partly disordered,
highly flexible, thus fluctuating. Also for the transcription fac-
tor p53 a DNA binding core domain is partly disordered [27].
The commonly assumed model of facilitated, alternating 3- and
1-dimensional passive diffusion, does not explain all the known
facts concerning the search for a proper biding site on DNA
[28], so a hypothesis that this search can be active, using multi-
ply the free energy of a single ATP molecule hydrolysis seems
reasonable.

No conventional chemical kinetics approach is able to ex-
plain such behaviors. In Refs. [13] and [12], basing on approxi-
mations carried too far, we suggested that the degree of coupling
can exceed unity already for reactions proceeding through sin-
gle pairs of transition substates. In Ref. [8] we proved the theo-
rem that the value of the degree of coupling should be lower or
at the most equal to unity, but only in the case when the input
and output reactions proceed through single pairs of transition
conformational substates. It is reasonable to suppose that a pos-
sibility of higher degree of coupling is realized if the output gate
is extended to two or more pairs of the transition substates. In
fact, it is obvious that replacing the single output gate in the
scheme in Fig. 2(a) by n gates succeeding each other, we get the
degree of coupling ε = n. Such reasoning has been proposed
in order to explain multiple stepping of the myosin molecule
along the actin filament [22]. One can also imagine an incorpo-
ration of a system of additional nonreactive transitions what was
for the first time considered by Terada and coworkers [29]. In
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Figure 5. Extension of the kinetic scheme in Fig. 2 (c) to one input and
two output gates. Obligatory transitions are drawn by arrows. If no other
transitions are realized, the degree of coupling between second and first
reaction equals two. Otherwise, it is lower than two but possibly higher
than one.

Fig. 5 a scheme is shown with one input and two output gates,
being an extension of the kinetic scheme in Fig. 2(c). Unfortu-
nately, even in the case of only two output gates the analytical
formulas are so complex and not transparent that serious ap-
proximations are needed to be made from the very beginning.
Being not able to formulate presently such approximations, we
decided to apply computer experiment for a preliminary study
of the problem.

Since the formulation by Bak and Sneppen a cellular automa-
ton model of the Eldredge and Gould punctuated equilibriums
[30], the biological evolution is more and more often consid-
ered as a self-organized criticality phenomenon [31; 32]. There
are grounds to suppose that the conformational transition net-
works, like two networks of the systems biology: the protein
interaction network and the metabolic network, have evolved to
reach a scale-free structure [8]. A controversy emerges if this
structure is simultaneously small-world or fractal. The former
feature is suggested by results of molecular dynamics simula-
tions for small atomic clusters [33] and by a specific spatial or-
ganization of proteins [34]. The latter has been shown already
in the pioneer papers from the Hans Frauenfelder laboratory [3]
and confirmed in early molecular dynamics simulations for the
very proteins [6; 7]. Only recently, an apparent contradiction
between fractality and small-worldness have been explained by
application of the renormalization group technique [35]. It ap-
pears that on adding to an original fractal network shortcuts with
the distance r distribution following the power law r−α, a tran-
sition to the small world network occurs below some critical
value of the exponent α. Close to this critical value the network
can be fractal in a small length-scale, simultaneously having the
small-world features in the large length-scale and this is the case
of the protein interaction network, the metabolic network and,
probably, the protein conformational transition network as well.

The topological structure of the flow (of probability, metabo-
lites, energy or information) through a network is characterized
by a spatial spanning tree composed of the most conducting
links not involved in cycles. It is referred to as the skeleton [36]
or the backbone [37] of the network, all the rejected links being
considered as shortcuts. The skeleton of the scale-free and frac-
tal network is also scale-free and fractal. For the scale-free frac-
tal trees a criticality feature appears important that denotes the
presence of a plateau equal to unity in the mean branching num-
ber dependence on the distance from the skeleton root. The crit-
ical trees can be completed to self-similar scale-free networks
and such is the case of the protein interaction and metabolic
networks [36; 38].

Fig. 6(a) shows a scale-free fractal tree with N = 200 nodes
constructed following the algorithm described in Ref. [36], and
Fig. 6(b) shows an extension of this tree by 200 shortcuts with

70



1”

2”

1’

2’

1”

2”

2’a

2’b

2’c

2’d

1’

Figure 6. (a) Exemplifying realization of a scale-free fractal tree with
N = 200 nodes constructed following the algorithm described in
Ref. [36]. The single input and output gates are distinguished, chosen
for the Monte Carlo simulations. (b) Tree from the upper figure extended
by 200 shortcuts with the distance distribution following the power law
r2 what makes the network a scale free small world. Four output gates
are distinguished, chosen for the Monte Carlo simulations; the unlabeled
largest hub is the fourfold degenerated complement gate 2′′.

the distance distribution following the power law r2, with neg-
ative α, what makes the network a scale free small world. To
provide the network with a stochastic dynamics described by
Eq. (1), we assume the probability of changing a node to any of
its neighbors to be the same in each random walk step. Conse-
quently, the transition probability from the node l to the neigh-
boring node l′ per computer step

wl′l = 1/kl , (9)

where kl is the number of links (the degree) of the node l. The
network with such a dynamics cannot be isoenergetic and fol-
lowing the detailed balance principle the equilibrium occupa-
tion probability of the node l,

peq
l = kl/∑

l′
kl′ . (10)

To complete Ref. [8], for the system of gates shown in
Fig. 6(a) we performed a series of Monte Carlo simulations and

found ε = 0.99 for mean times of external transitions τ1 = τ2 =
40, those times being the order of magnitude shorter than the in-
ternal relaxation time τrx = 400, and ε = 0.88 for τ1 = τ2 = 400.
In the latter case of the comparable external and internal transi-
tion rates, there is some little slippage, but the output reaction
proceeds backward relatively rarely. The case of multiple out-
put gates needs more systematic studies. For the system of gates
shown in Fig. 6(b) and τ1 = τ2 = 40 we found ε = 1.40, larger
then unity. Random search for more optimal configuration of
gates indicates a possibility of obtaining much higher value of
the degree of coupling.

SUMMARY

It is now well established that most if not all enzymatic
proteins display a slow stochastic dynamics of transitions be-
tween a variety of conformational substates composing their
native state. This makes a possibility of chemical transforma-
tions to proceed before the conformational equilibrium has been
reached in the actual chemical state. In the closed reactor, it
results in the presence of transient, non-exponential stages of
the reactions. In the open reactor, a consequence is the ne-
cessity of determining the steady-state reaction fluxes by mean
first-passage times between transition conformational substates
of the reactions rather than by conventional reaction rate con-
stants. A hypothesis is stated that, like higher level biologi-
cal networks: the protein interaction network and the metabolic
network, the protein conformational transition networks have
evolved in a process of self-organized criticality. All three
classes of networks are scale-free and, probably, display a tran-
sition from the fractal organization in a small length scale to
the small-world organization in the large length scale. Good
mathematical models of such networks are stochastic critical
branching trees extended by long-range shortcuts.

Biological molecular machines are proteins that operate un-
der isothermal conditions hence are referred to as free energy
transducers. They can be formally considered as enzymes
that simultaneously catalyze two chemical reactions: the free
energy-donating (input) reaction and the free energy-accepting
(output) one. The degree of coupling between the output and the
input reaction fluxes have been studied both theoretically and
by means of the Monte Carlo simulations on model networks.
In the steady state, on taking advantage of the assumption that
each reaction proceeds through a single pair (the gate) of tran-
sition conformational substates of the enzyme-substrates com-
plex, the degree of coupling between the output and the input
reaction fluxes has been expressed in terms of the mean first-
passage times between the distinguished substates. The theory
has been confronted with the results of random walk simulations
on various model networks.

For single input and output gates the degree of coupling val-
ues cannot exceed unity. As some experiments for the myosin
II and the dynein motors suggest such exceeding, looking for
conditions of increasing the degree of coupling value over unity
(realization of a ’molecular gear’) challenges the theory. Prob-
ably it holds also for the G-proteins and transcription factors,
mutations of which can result in the cancerogenesis. Study sim-
ulations of random walks on several model networks involving
more extended gates indicate that the case of the degree of cou-
pling with the value higher than one is realized in a natural way
on the mentioned above critical branching trees extended by
long-range shortcuts. For short-range shortcuts, the networks
are scale-free and fractal, and represent an ideal model for the
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biomolecular machines with the tight coupling, i.e., with the de-
gree of coupling value equal exactly to unity.
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INTRODUCTION 

The chemical implementation of diverse proto-cellular 
model systems is gathering the interest of a growing number 
of researchers in the fields of synthetic biology and origins of 
life[1]-[6], who are becoming aware of the potential of micro-
compartments and lipid vesicle technologies to uncover 
biologically relevant phenomena, as well as prebiotically 
plausible processes and evolutionary transitions. Protocells are 
lipid micro-compartments (generally lipid vesicles, but other 
compartments have been also used) which contain a minimal 
number of (bio)chemicals in order to generate typical cellular 
behavior, like self-maintenance and self-reproduction.  

Lipid vesicles consist in a closed, spherical, semi-
permeable membrane formed by the spontaneous self-
assembly of lipid molecules. The membrane is a highly 
organized molecular bilayer that separates the molecules 
trapped inside the vesicle (i.e., in the inner aqueous vesicle 
core) from the environment.  

A variety of chemical and biochemical reactions have been 
implemented inside protocells, from RNA synthesis to gene 
expression, from DNA amplification to lipid synthesis (for a 
review, see [7]). The latter reaction is particularly important 
because it allows the growth of vesicles thanks to the 
enlargement of vesicle membrane. Division might also follow 
vesicle growth, so that two ‘daughter’ vesicles are obtained 
from a parent one (i.e., self-reproduction).  

The aim of this contribution is to introduce the 
mathematical framework used to describe the time behaviour 
of reacting protocells in terms of the deterministic versus the 
stochastic approach [8] and to review and discuss some recent 
results obtained by our research group, focusing on the 
interplay between internalized reactions, vesicle growth and 
self-reproduction.  

MATHEMATICAL BACKGROUND 

In Silico Protocell Model 

According to the schematic draw of a lipid vesicle reported 
in Fig. 1, reacting vesicles are described as compartmentalized 
systems made of two different homogeneous domains: the 
membrane and the water core [9]. Lipids can be exchanged 
between the membrane and water core and between the 
membrane and the external environment while transport 
processes can also occur, exchanging molecules directly from 
the external environment to the internal water pool. The 
vesicle membrane surface Sµ can be determined by its 
composition: 
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ABSTRACT 

The construction of artificial cells based on the encapsulation of chemical reacting systems inside lipid vesicles is 

rapidly progressing in recent years. Several groups are currently interested in synthesizing such simple cell models for 
biotechnological purposes or for investigating origin of life scenarios. Within this context, the properties of lipid vesicles (e.g., 
their stability, permeability, growth dynamics, potential to host reactions or undergo division processes…) play a central role,  
in combination with the dynamics of the encapsulated  chemical or biochemical networks. Thus, from a theoretical standpoint, 
it is very important to develop deterministic equations in order to explore first - and specify later - the conditions that allow the 
robust implementation of these complex chemically reacting systems, as well as their controlled reproduction. Due to their 
intrinsic compartmentalized nature, the population of reacting molecules can be very low in terms of number of molecules so 
that their behaviour can be highly affected by stochastic effects both in the time course of their reactions and in their 
occupancy distribution among the vesicle population. In this contribution we report our mathematical approaches to model 
artificial cell systems in this complex scenario, with emphasis on the issue of primitive cell (protocell) systems. 

 

 
Fig. 1: Schematic draw of an in silico vesicle 
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according to the hydrophilic head area i of different lipids, 

while the internal aqueous volume core VC is affected by a 

water flux due to osmotic pressure unbalance. In the rest of 

this paper we will deal with a vesicle membrane made of one 

lipid molecule so the previous equation simplifies 

2L LS n
  . The membrane stability can be monitored by 

introducing the reduced surface ratio , that equals 1.0 for 

spherical vesicles, while it will be less than 1.0 or greater than 

1.0 for inflated or deflated vesicles respectively. In fact, a flux 

of water can takes place across the lipid membrane driven by 

an osmotic pressure unbalance. Therefore, inflated vesicles 

can undergo an osmotic crisis when the internal volume grows 

to much bringing the membrane to rupture when <(1-),  

being the osmotic tolerance. On the other hand, in the present 

model deflated vesicles are assumed to divide when the 

membrane surface is large enough to form two twin spherical 

daughters: 3 2  . This event has been observed in some 

experimental conditions [10] nevertheless the dynamics of a 

deflated membrane is a much more complex process.  

Since the aqueous core volume VC and the membrane 

surface Sµ may follow independent time trends, in order to 

describe the various possible behaviors of the system, it is 

convenient to introduce the growth control coefficient  [11]:  
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(2) 

This dimensionless observable is defined as the ratio 

between the relative velocities of variation of volume and 

surface, respectively: In presence of an endogenous 

(biosynthetic or proto-metabolic) production of lipid results 

dS>0 thanks to the spontaneous uptake of fresh lipid by the 

membrane and, in these conditions, >0 indicates a real 

growth regime. Therefore, just by applying some straight-

forward geometry rules for a growing sphere: d(lnV)/3= 

d(lnS)/2= d(lnR), three different scenarios among all possible 

growth regimes may be distinguished: (a) =3/2 continuous 

spherical growth, i.e. a spherical vesicle will increase its size 

without any change of shape (=1); (b) >3/2 osmotically-

stressed growth, i.e. the volume increases faster then it will 

reach an elastic tension condition and, above the limit of 

elasticity of the membrane, this will lead the vesicle to 

osmotic burst(<1-); (c) <3/2 reproductive growth, i.e. the 

surface increases faster than the two previous cases, the 

growing vesicle will turn deflated, changing to some other 

closed but non-spherical shape (ellipsoidal, elongated or, 

generally speaking, a prolate shape) and the energy of the 

membrane will be higher due to a bending tension.  

Deterministic Approach 

If in the internal core of the compartment, N species Xi 
(i=1,2…N) react according to R chemical elementary 
reactions: 
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then the average time evolution of the reacting vesicles can be 
described by the deterministic approach [8] solving the 
following ordinary differential equation set (ODES): 
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where v are the reaction rates given by the mass action law: 
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(4) 

The solution of the ODES gives the average time behavior 

of the vesicle solution in terms of the number of molecules ix  

of internal aqueous species Xi (i=1,2…N, i≠L), the lipid 

molecules Lx  in the water core, the lipid molecules in 

membrane Lx
 and core volume VC. Moreover, it has been 

written for the case of aggregates formed by a single lipid XL. 

Others simplifying assumptions are to neglect the specie 

diffusion in the internal core and in the external environment 

as well, and assuming the external concentration [ ]i ExX  to be 
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Fig. 2: Vesicle membrane stability as a function of the 
reduced surface. 

 
 

Fig. 3: Time evolution of a reacting vesicle monitored 
by the grow control coefficient. 
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constant in time, i.e. the environment is considered as an 

infinity source of external compounds.  

Going into details, the mole number rate change of each 

aqueous species idx dt is due to the internal metabolic 

reaction and to the transport process from the outside. The 

transport across the membrane is driven by a concentration 

gradient as shown by the following scheme: 
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( 5) 

where  i is the membrane permeability of i-species and NA is 

Avogadro’s number. Instead, the rate change of the lipid in the 

core Ldx dt takes into account the exchange between the 

aqueous internal phase and the membrane described as 

follows: 
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while the lipid exchange towards the outside is not explicitly 

considered in rate change of membrane lipids Ldx dt since the 

external lipid concentration is assumed to be constantly equal 

to the equilibrium value [ ] (2 )i Ex L out inX k k . The last 

equation in the ODES (3) describes the core volume rate 

change due to a flux of water driven by the difference of the 

total osmolite concentration, i.e. an osmotic pressure 

unbalance, being aq the water permeability and aq the water 

molecular volume. It is important to remark that the 

deterministic approach gives the time evolution of the vesicle 

solution as the average time course calculated over the vesicle 

ensemble, so that ix and Lx
 are not positive integer numbers 

but they are positive real values nevertheless; they represent 

amount of molecules, Therefore the vesicle state is represent 

by the array X=(x1, x2, …, xN)
T
 and the core volume VC. When 

the condition for division is satisfied ( 3 2  ), then the 

vesicle divides in two twin daughters with volume equal to 

VC/2 and all the elements of the state array are accordingly 

divided by 2.  

Stochastic Simulations 

The stochastic kinetic approach explicitly takes into account 

the discrete nature of molecules and the intrinsic randomness 

of reacting events. Therefore, the state of a reacting vesicle is 

defined by an array of integer molecular numbers ni: N=(n1, 

n2,… nN, Ln
)

T
 and the core volume VC. Moreover, for each 

elementary reacting event a propensity density probability 

a(N) is introduced instead of the deterministic reaction rate 

so that a(N)dt gives the probability -th reaction will take 

place in the next infinitesimal time interval dt [8]: 
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(7) 
while the propensity density probabilities for transport 
processes and lipid exchange can be predicted according to 

eqs. ( 5) and (6) [12]. The stochastic time evolution of a well 
stirred chemically reacting system can be then obtained by 
solving the Master Equation (ME) [8]: 

 
 

 

0 0

0 0

1

0 0

1

,   ,  
( ) ,   ,   + 

                                     - ,   ,  ( ) 

R

R

P t t
a P t t

t

P t t a

  












  






N N
N N N N N

N N N

   (8) 

that expresses the change rate of the Markov Density function 

P(N, t| N0, t0), i.e. the density probability to find the system in 

the state N in the time interval [t, t+dt) given the system in the 

state N0 at time t0. ∆N is the jump array, that is the 

stoichiometric variation of the number of molecules due to the 

-th reaction. By solving analytically the ME, the average 

time behavior of the reacting system can be obtained along 

with displacements from the average species time trend due to 

random fluctuations that can bring the system towards regimes 

unpredictable by the deterministic approach[8]. ME is very 

difficult to solve analytically, but it can be exactly simulated 

by the well know Monte Carlo direct methods introduced by 

Gillespie [16]. Based on this method we developed a software 

platform [12] suitable to simulate the stochastic time evolution 

of a collections of reacting vesicles assuming that diffusion 

processes can be neglected and the concentration gradients 

take place only across the lipid membrane. This program 

allows also to study the case of vesicle self-reproduction since 

it is able to follow a collection reacting compartment that 

increases in number. For further details the reader is address 

to references[12]-[15]. What we want to remark here is this 

program is suitable to study also the influence of extrinsic 

stocasticity. In fact, reacting molecules can be distributed 

randomly among compartments at the starting time or between 

daughters at the division time ( 3 2  ), simulating how this 

source of randomness affects the system time behavior.  

RESULTS AND  DISCUSSION 

Autopoietic vesicles in homeostatic regime 

Autopoiesis, as developed by Maturana and Varela in the 
seventies [17], is a theoretical description of the ‘blue print’ of 
cellular life. It poses as a main feature the self-maintenance of 
the cell, as due to a process of components’ self-generation 
from within the cellular boundary—a boundary which is itself 
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Fig. 4: Autopoietic vesicles: schematic draw, kinetic 
mechanism and different regimes. 
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one of the products. From the chemical point of view, the 
fertility of autopoiesis theory allowed the design and the 
experimental achievement of some autopoietic chemical 
systems all based on surfactant self-assembling structures, 
such as micelles, reverse micelles and vesicles [18]. In Fig. 4, 
the schematic representation of an autopoietic vesicle is 
shown along with the kinetic conditions for experimentally 
observing different regimes in the time course of total 
surfactant concentration depending on the rates of amphiphiles 
production vG and decay vD respectively. These three 
scenarios have been really implemented and investigated by 
Zepik et al. [19]. In particular, the chemical system consists in 
a solution of oleic acid/oleate vesicles (Si, i being the 
aggregation number), buffered at pH 8.8, fed with a surfactant 
precursor and with a reactant capable of destroying oleic acid. 
The surfactant precursor (P) is oleic anhydride, a hydrophobic 
substrate rapidly taken up by oleate vesicles at their 
membranous interface. Thanks to the high pH value, P is 
converted to oleate by alkaline hydrolysis that takes place on 
the membrane of vesicles. Oleate vesicles also undergo a 
decay process due to the simultaneous transformation of 
oleate molecules into 9, 10-dihydroxystearate (W) by osmium 
tetroxide/potassium ferrocyanide oxidation (Y). The 
dihydroxylated compound P does not form vesicles; therefore, 
the consequence of the latter conversion is a stepwise vesicle 
collapse (death). Due to the two competitive reactions, the 
overall oleate concentration increases, remains approximately 
constant, or decreases, depending on the magnitude of the P 
and Y flux rates [19]. In order to reproduce the experimental 

observed behavior we proposed  the simple mechanism 
reported on the right of Fig. 4 and we was able to obtain the 
time course of the overall oleic acid concentration [15]: 
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(9) 
This equation accounts for the three regimes by explicitly 
expressing the rates of amphiphiles production vG=kG[P]0 and 
decay vD=kD[Y]0, as a function of the aqueous concentration of 
the anhydride [P]0 and of the oxidant [Y]0 kept constant by the 
external fluxes. Stochastic simulations performed in 
homeostatic conditions (kG[P]0=kD[Y]0) have been then done 
in order to elucidate the evolution of the vesicle size 
distribution.  
Starting from a size monodispersed ennamers solution, what 
emerges from simulations is that stochasticity selects 
ennamers with aggregation numbers in the range 103–104 (Fig. 
5A). This effect can be ascribed to the presence of random 
fluctuations in the growth and decay specific rates, which in 
real (chemical) reacting systems are due to the intrinsic 
stochasticity of reacting events but they can also be enlarged 
by natural changes of physical parameters such as 
temperature, molecular fluxes, etc. In fact, stochastic 
simulations starting from a single aggregate have shown how 
random fluctuations at the steady state can drive the evolution 
of the aggregate towards a growth or a decrease in size (Fig. 
5B). Therefore, when autopoietic ennamers of different sizes 
are present in a system in stationary conditions, fluctuations 
can act as a selection rule that leads to the perpetuation of 
those aggregates large enough to overcome large deviations. 
 In conclusion, stochastic simulations have shown that, in 
this landscape, random  and driven fluctuations  can represent 
the driving force for ennamer evolution, growth or decay, and 
at the same time they can act as a selection rule for the fittest, 
i.e. the most robust, aggregates in a prebiotic environment. 

Protocell stationary self-reproduction 

In a recent work, a phenomenological law that predicts 
when a stationary self-reproduction takes place for minimal 
self-producing vesicles have been derived. By ‘stationary self-
reproduction’ we mean a dynamic regime where the condition 
for division is reached at a constant, characteristic period of 
time, giving as a result two vesicles or protocells with the 
same (initial) size, lifetime and metabolite concentration 
profile as the progenitor. 

In terms of the growth control coefficient the steady 

condition takes place when =1. Then, two general 

M
a

ss
 F

ra
ct

io
n

time (a.u.)
Size class index m

(A)

time (a.u.)

0 10000 20000 30000

N
(t

)

0

1000

2000

3000

A
g

g
re

g
a

ti
o
n

N
u

m
b

er

(B)

 
 

Fig. 5: Stochastic simulations of autopoietic vesicles 
in homeostatic conditions: (A) evolution of the 
vesicle size distribution (to each size class 
belong ennamers with size 2

m−1
 < i ≤2

m
  except 

for the first class m=1 where only monomers 
are included); (B) time evolution of a single 
aggregate. 

 
Fig. 6: Self-Replicating Enzymatic Vesicle: P lipid 

precursor, S surfactant, E enzyme and W waste. 
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expressions for the temporal behavior of the protocell surface 
and the protocell core volume have been independently 
derived [11] and an explicit relationship among different 

molecular and kinetic parameters (e.g., reaction rates v, 

permeability coefficients i, metabolite concentrations [X]i) 
have been analytically derived for the protocell stationary 
reproduction:  
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(10) 
where vL is the rate of lipid production, CC  is the total internal 

concentration and ∆m is total variation of the number of 

molecules due to the -th reaction: 
 

, ,( )i ii
m p r      

(11) 
Eq.(10) shows the deterministic condition for a stationary 

reproduction regime that results from the osmotic 
synchronization between membrane and core volume growth, 
i.e.: a spontaneous ‘self-regulation’ driven by the osmotic 
balance across the protocell lipid bilayer. Eq.(10) links 
metabolic kinetic constants and membrane permeabilities with 
the external and internal concentrations of the system 
constituents. Therefore, it represents a constraint for the 
possible sizes and division periods of stationary self-
reproducing protocells. We have applied the general eq. (10) 

to the simplest case of a self-producing enzymatic vesicle 
(SPEV) represented in Fig. 6. SPEV is a hypothetical 
protocell model where the production of lipid S takes place 
through the chemical transformation of a precursor molecule 
P, assumed to occur only in the presence of an additional 
compound E encapsulated in the core volume. The S 
production generates also the waste W so that ∆m=1 and the 
osmotic synchronization can in principle takes place. 
Moreover W is accumulated in the core volume since it is 
assumed not to be transported across the membrane, i.e. 

W=0. It is worthwhile to note that this model is very close to 
some experimental approaches based on giant vesicles that 
produce internally (with the help of a synthetic catalyst) the 
main membrane component and eventually undergo self-
reproduction [20]. 

SPEV is not a real autopoietic vesicle since the catalytic 
specie E is not synthetizes by the internal metabolism. 
Therefore after each vesicle division the number of E 
molecules will decrease until just one copy of these molecules 
will be present in the internal core. As a consequence, 
whenever a division occurs only one of the two daughter 
vesicles will be able to encapsulate the catalyst molecule and, 
therefore, will keep the potential to continue growing, 
producing S and, eventually, reproducing as a protocell. The 
vesicle that contains that single molecule E, by default, will be 
taken as the mother vesicle, whereas the daughter (and all 
possible granddaughters) will be ‘sterile’ vesicles. Thus, by 
handling eq. (10) it was possible to predict [11] for the mother 
SPEV, i.e. the vesicle containing only one E molecule, its 

stationary radius R: 
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and the division time ∆t:  
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(13) 
where CC is the overall internal osmolite concentration, [P]Ex 

and X are the external concentration and the membrane 
permeability of the lipid precursor respectively, while k is the 
kinetic constant of the lipid production: 
vL=k[E][P]=k[P]/(NAVC). 

Fig. 7 shows in the upper plot the core volume time trend 

for the first 7 generations, i.e. vesicle divisions, obtained both 

by ODES integration (black line) and by stochastic 

simulations (gray lines). Vertical gray dotted lines represent 

the time of division that takes place when the reduced surface 

satisfied the splitting conditions: 3 2  . Generation by 

generation the mother protocell tends to the stationary growth 

and division as illustrated by the upper plot where the core 

volume values before 2V end after the division 34 3V R   

can be calculated with eq.(12). In the lower plot it is reported 

the division time ∆tg against the generation number, showing 

that generation by generation it tends to ∆t as predicted 

theoretically.  

An important aspect to remark is that eq.(10), strictly 

speaking, only captures the condition for stationary 

reproduction in the sense of a global synchronization process 

between membrane and volume growth. In other words, it 

does not guarantee that when a vesicle reaches the division 

threshold the number of each internal constituent gets 

effectively doubled (with regard to their initial state in the 
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Fig. 7: Self-Replicating Enzymatic Vesicle  
deterministic curves (black lines and data) and 
stochastic simulation results (gray lines and data) 
comparison: time evolution of the core volume 
(top plot); division time against generations 
(bottom plot). Horizontal dashed lines represent 
values calculated by eqs.(12) and (13). 
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protocell cycle). This becomes manifest in the case of SPEV, 

where the single enzyme/catalyst present in the mother is not 

doubled and, therefore cannot be transferred but to one of the 

offspring vesicles (i.e.: the only one that will remain fertile). 

Therefore, eq.(10) states a necessary but not sufficient 

condition for reliable reproduction of proto-cellular systems. 

In a more complex scenario, which will be introduced in the 

next section and where the metabolic reaction network 

included the synthesis of the enzymatic/catalytic compound, a 

more complete reproduction of the protocell could be 

achieved. But the synchronization among lipid production, 

enzyme duplication and membrane division would emerge in 

that system only if the new metabolic pathway(s) lead to 

effective internal chemical synthesis (i.e. ∆m>0), since the 

mechanism that drives the synchronization is the osmotic 

balance across the lipid bilayer. Moreover in this complex 

scenario also stochastic fluctuations can effect much more the 

time behavior of each single protocell and in particular the 

random distribution of enzymatic species between daughter 

vesicles. 

A minimal cell model: the Ribocell 

The so-called Ribocell (RNA-based cell) is a theoretical 
minimal cell model based on a self-replicating minimum RNA 
genome coupled with a self-reproducing lipid vesicle 
compartment that has been recently hypothesized [21]. This 
model suppose the existence of two ribozymes, one (the lipid 
synthase RL) able to catalyse the conversion of molecular 
precursors (P) into lipids (S) and the second (the polymerase 
RP) able to replicate RNA strands by a template driven 
elongation. Therefore, in an environment rich in both lipid 
precursors (P) and activated nucleotides (NTP), the Ribocell 
can self-reproduce if both processes, i.e. genome self-
replication and membrane reproduction (growth and division), 
are somehow synchronized.  Recently we have explored the 
feasibility of this hypothetical minimal cell [14] by 
determining the best external conditions to observe 
synchronization between genome self-replication and vesicle 
membrane reproduction, thanks to a deterministic kinetic 
analysis, while the Ribocell robustness to random fluctuations 
has been tested by stochastic simulations. The proposed 
metabolic mechanism is reported in Fig. 8. Both pairs of RNA 
strands reversibly associate (A) and these processes are shifted 
towards the dimer formation and are strongly dependent on 
temperature. The replication of any RNA strand is catalysed 
by the polymerase RP according to the steps in bracket (B). 
This process is described as a catalytic template-directed 
addition of mononucleotides with high fidelity and 
processivity. It starts with RP binding any of the monomeric 
template T (T=RP, cRP, RL and cRL) to form the complex 
R@T. This complex will then initiate the polymerization of 
the conjugate strand cT, by coupling and iteratively binding 
the complementary bases and releasing the by-product W. 
When the strand cT has been completely formed, the 
polymerase ribozyme releases the new dimer. Finally, the 
ribozyme RL catalyzes the conversion of the precursor P into 
the lipid S (C). All the kinetic constants have been estimated 
by experimental values reported in literature and are listed in 
Table 1 along with references. 

Thanks to a deterministic analysis [28][29], we showed that 
if the kinetic constant for lipid formation kL is in the range: 

1.710
3
s

-1
M

-1
≤kL≤1.710

5
s

-1
M

-1
 then synchronization between 

vesicle reproduction and genome replication can 

spontaneously emerge under the model assumptions and 
kinetic parameters reported in Table 1. Deterministic 
calculations were performed for two ribozymes 20 bases long 
and showed that the Ribocell reaches a stationary growth and 

division regime (=1), where the cell size remains constant 
after each division along with the amount of genetic material. 
Although the observed cell life time stabilizes after the first 10 
generations, it remains very high, at over 80 days for all the kL 
values in the synchronization range, making the Ribocell very 
hard to implement and study experimentally. Therefore, we 
investigated the robustness of the stationary growth and 
division regime of the Ribocell in terms of the external 
substrate concentrations, vesicle size and initial ribozyme 
amount in order to define optimal external conditions for 
Ribocell self-reproduction [14]. The influence of ribozyme 
length will also be explored in the optimal external conditions 
by ranging strand size from 20 to 200 bases in length and 
keeping all the other kinetic parameters constant. 20 bases is 
in fact the minimum length required to observe a folded RNA 
structures, i.e. a structure that can reasonably exhibit catalytic 
action. On the other hand, entities of about 200 nucleotides 
have been suggested as plausible ancient proto-ribosomes [30] 
even though, more recently, smaller subunits of 60 nucleotides 
have also been considered as plausible candidates [31]. This 
analysis shows that starting from external concentrations 

 
 

 
 

Fig. 8: The Ribocell model: a schematic draw on top, 
and the internal metabolic mechanism in details 
on bottom. 
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[NTP]Ex=[P]Ex=10
-2

M at the stationary regime the Ribocell 
radius is 113.0 nm and the division time reduces to 68.2 days. 
The total number of RNA strands is 258 and the genome 
composition is quite uniform 25.2% (RL), 25.2% (cRL) 25.6% 
(RP), 24.0% (cRP). The stationary division regime can be 
reached starting from initial genome composition ranging 
from 1 to 100 dimers of RcRL and RcRP. In Fig. 9, the 
deterministic time behavior of the Ribocell in optimal external 
conditions is reported.  

Finally, the dependence of t25 (division time after 25 
generations) on the kinetic constants for RNA dimer formation 
kTT and dissociation kT has been also studied. What emerged is 
the Ribocell life cycle at stationary regimes does not depend 
explicitly on the kinetic constant single values kSS and kS but 
on their ratio: kSS/kS, that is on the thermodynamic constant of 
RNA dimerization. The more thermodynamically stable the 
RNA dimers, the longer it takes to observe Ribocell self-
reproduction. For instance, if kSS/kS is decreased by two orders 
of magnitude, the Ribocell life time reduces from 68.2 days to  
11.8-6.4 days. 

Stochastic simulations have been then performed in order 
to test the robustness of the ribocell base on 100-base length 
ribozymes in optimal external conditions, with the aim of 
elucidating the role of intrinsic and extrinsic stochasticity on 
the time behavior of a protocell population. Simulations were 
executed by means of the parallel version of 
ENVIRONMENT [12], running 32 statistically equivalent 
simulations of a 10-ribocell solution on different CPUs. 
Therefore, the outcomes were obtained as averages from a 
population of 320 vesicles. Kinetic parameters used for 
simulations are those reported in Table 1. At each cell 
division, only one of the two offspring was kept while the 
other was discarded in order to reduce computation time, thus 
keeping the number of monitored vesicles constant. This is in 
agreement with the assumption that the external 
concentrations of all substrates are fixed due to an incoming 
flux of material, i.e. the substrates cannot  ever be exhausted. 
The simulation outcomes are reported on the left of Fig. 10 
where the composition of the Ribocell population is reported 
against time. In fact, during simulations at each division the 
genetic material is randomly distributed between the 
daughters. If the amount of genetic material is very low, then 
this can result in a separation of RP from the other RNA 

strands. In fact, the Ribocell must contain a minimum genetic 
kit of three RNA filaments in order to be capable of self-
replicating its entire genome: one RP that catalyzes the RNA 
base pair transcription, one (RL or cRL) and one (RP or cRP) 
that work as templates for the transcription. Moreover, since 
RL is necessary to catalyze lipid precursor conversion, the 
optimal minimum 3-ribozyme kit must be made up of 2RP and 
one RL. This minimum kit should be at least doubled before 
cell division, in order to have a chance that both daughters 
continue to be active. Therefore, if a random distribution of 
RNA filaments takes place after vesicle division, ribozyme 
segregation between the two daughters might occur. Different 
scenarios can be envisaged: death by segregation is reached if 
vesicles are produced without any ribozymes (empty vesicles) 
or containing one lone RP or many filaments of cRP and/or cRL 
(inert vesicles). Vesicles that encapsulate RL strands are self-
producing: they are able to synthesize lipids and then can 
grow and divide producing in turn self-producing and/or 
empty vesicles. On the other hand, vesicles containing more 
than one molecule of RP or both RP and cRP filaments are able 
to self-replicate this reduced genome (self-replicating genome 
vesicles) but they cannot self-reproduce the membrane. So 
they are destined for an osmotic burst due to an unbalanced 
increase in waste concentration. Finally, a reduced version of 
the Ribocell consists in a lipid aggregate that contains one RP 
filament and RL/cRL strands. As a consequence of this, 
reduced ribocells are able to replicate the RL/cRL genetic stuff, 
and at the same time to synthesize lipids. Therefore, they can 
grow and divide, producing in turn at least one reduced 
ribocell and/or self-replicating, inert and empty vesicle.  

On the left of Fig. 10 a schematic draw of the different 
types of protocells is reported. At the end of the simulation, 
the composition of the protocell population are obtained with 
low percentages of real ribocells (6.7%) while the most 
populated fractions are those of empty (40.0%) self-producing 
(33.3%) and broken (20.0%) vesicles, respectively. Reduced 
ribocells are present only in the first generations since they 
very soon decay into self-producing and empty vesicles. Inert 
vesicles, i.e. vesicles entrapping free chains of cRP and/or 
cRL or a single RP, are not formed and this can be ascribed to 
the high stability of RNA dimers and complexes so that the 
chance of finding free RNA monomers at the time of  vesicle 
division is extremely improbable. Indeed, the stochastic time 

Table 1: Kinetic Parameters for the in silico Ribocell 
model at room temperature. 

 

Kinetic 

Parameters 
Values Ref. 

KTT[s
-1

M
-1

] 8.810
6
 [22] 

KT[s
-1

] 2.210
-6

 [22] 

kR@T[s
-1

M
-1

] 5.3210
5
 [23] 

kR@TT[s
-1

] 9.910
-3

 [23] 

kNTP[s
-1

M
-1

] 0.113 [25][26] 

kL [s
-1

M
-1

] 1.710
3
 [24] 

kin [dm
2
s

-1
] 7.610

19
 [12] 

kout [dm
2
s

-1
] 7.610

-2
 [12] 

P  [cms
-1

] 4.2 10
-9

  

NTP [cms
-1

] 1.9 10
-11

 [25][26] 

W=T  0.0  

aq[cms
-1

] 1.010
-3

 [27] 

 
* kL is 10

5
 times larger than the value of the splicing 

reaction, catalyzed by the hammerhead ribozyme. 
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Fig. 9: Deterministic time behavior of the Ribocell in 
optimal external conditions: [NTP]Ex=[P]Ex=0.01M. 
At the starting time the genome was composed by 
100 dimers of of RcRL and RcRP and the radius was 

100nm and the core volume 4.210
6
nm

3
. 
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trend presents a very irregular time behaviour compared to the 
deterministic one that describes a highly synchronized 
oscillating regime of growth and division. In contrast, 
stochastic simulations highlight the alternation of dormant 
phases, where the reduced surface remains practically 
constant, both the core volume and the membrane surface 
being constant (data not shown), to very active steps where 
protocell growth takes place very fast, leading to a division 
event. The fast growth and division step corresponds to the 
presence in the vesicle core of a free RL chain while, in the 
dormant phase, ribozymes are all coupled in the form of 
dimers or complexes. As a consequence, self-producing 
vesicles with a genome made up only of RL monomers can 
reproduce very efficiently since no dormant phase can occur, 
given that the formation of RcRL dimers is impossible. This 
protocells could then self-produce very efficiently, with a ∆t 
less than one day.  

In conclusion, the simulation outcomes show that ribocells 
are not enough robust to survive to random fluctuations. In 
fact only about the 5-7% of the initial population survive as 
genuine ribocells after 15-25 generations and on a longer time 
window they are destined for extinction. Furthermore, the time 
course of each single protocell is also greatly influenced by 
intrinsic stochasticity in particular by the time fluctuations of 
the RNA dimer dissociation. In fact, when all the RNA strands 
are associated in dimers, protocells remain in a lazy phase, 
whereas free RL monomers induce fast growth and division 
steps and free RP cause the fast RNA replication without 
changing the vesicle size appreciably. Therefore these two 
processes are synchronized only by chance and this also 
represents a reason of weakness of this model protocell. 
Further details can be found in papers [14], [28] and [29] 

CONCLUSIONS 

In this short article we have shown some aspects of 

theoretical modelling in micro-compartmentalized systems, 
and in particular in the research on self-reproducing 
protocells. The occurrence of compartmentalized synthetic 
reactions coupled with the membrane dynamics in terms of 
growth and division plays a major role in determining the 
evolution of the system. In particular, we have firstly 
compared the deterministic and stochastic approach for 
modelling such systems, and applied these methodologies to 
describe (1) homeostatic autopoietic systems, (2) the 
stationary conditions for protocell self-reproducion, and (3) 
the more complex case of the “ribocell”, i.e., a protocell based 
on catalytic function encoded in self-reproducing ribozymes 
(RNA enzymes). 

Here we would like to emphasize the common aspects of 
analysis and modeling of these (and other) systems, namely 
the need of a systemic approach that integrates (and couple) 
the internal reactions, the membrane dynamics, and the 
environment. This is perhaps the most important scientific 
message that emerges from numerical simulations of these 
complex systems. Since numerical modeling is carried out by 
using true physical constants for all elementary molecular 
steps, it follows that genuine outcomes from modeling might 
actually help the experimentalists to design and construct 
protocell models or artificial cells for nanotechnological 
applications. Moreover, flanking stochastic modeling to 
deterministic approaches uniquely reveals intriguing dynamics 
in microcompartmentalized complex multimolecular systems 
and greatly helps to evaluate and understand basic 
mechanisms at the roots of biological behaviour. 
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Fig. 10: Stochastic behavior of a population of 320 Ribocells: population composition against time (on the left), schematic draw 
of different protocells as result of vesicle division and random RNA strands distribution.  
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INTRODUCTION 

The maximum energy dissipation (MED) principle, 
together with related maximum entropy production principle 
[1-4], has been discussed in various fields [3-10]. The 
maximum energy dissipation principle has been shown to be a 
good basis for consideration of kinetic non-linearities 
(cooperativity, autocatalytical growth) in chemical and 
biochemical reactions and variational decription of dissipative 
processes [11-15]. As it has been considered in these works, 
the nonlinearities in processes of energy dissipation are 
naturally incorporated into the MED principle. This principle 
can be treated as the general case of the least action (LA) 
principle, has also the evolutionary implications [15]. On this 
ground it is reasonable to suggest that the MED and the LA 
principles are different forms of a principle of least instability, 
where the free energy can be treated as a quantitative measure 
of instability. 

 
  Figure 1. Schematic presentation of the linear and 

nonlinear dissipative pathways in free energy dissipation. 
Adopted from [11].  

 

 
One can see that in such a way, as illustrated in Figure 1, 

chemical nonlinear and biological pathways utilise free energy 
more effectively, so the emergence of the nonlinear pathways 
satisfy the maximum energy dissipation/least action principle. 
Evolutionary, in a very complex system, having a planetary 
scale, when the richness of molecular primordial organic soup 
(diversity of molecular substances) allows, such nonlinear 
processes can take place. Therefore the overall “dissipative” 
action (dissipated free energy multiplied by time) is smaller 
comparably to the linear physical dissipative processes or 
linear chemical dissipative processes (Figure 1). Then in such 
interpretation, biological processes are the most effective in 
sense of the least action (dotted line, Figure 1). 

In this work we will discuss some evolutionary and 
organisational implication of the maximum energy dissipation 
principle. 

MOLECULAR, PREBIOTIC AND PURE BIOTICAL 

ORGANISATIONAL-EVOLUTIONAL LEVELS OF 

BIOLOGICAL DISSIPATIVE PATHWAYS  

Considering the molecular level of organisation of biotical 
processes, it is also reasonable to link them evolutionary to the 
stage known as molecular evolution. Interpreting molecular 
organisation in such a way, we have to note that there are two 
approaches to molecular evolution, in some sense alternative. 
In a number of works, Russell and coauthors [16] have 
described an approach when a network of chemical reactions, 
located and created by a complex environment on the surface 
of prebiotic Earth, was able to develop a level of complexity, 
sufficient to generate prebiotic molecular life. Such a 
molecular network was located nearby the surface and was not 
separated from the environment [16]. Alternative concept - the 
Eigen theory of molecular evolution [17-18] is based on 
known autocatalytic properties of organic polymers (proto-
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RNA and proto-enzymes). These, in the catalytic sense, are 
two opposite approaches, which might be combined in the 
way when at the first, initial stage, the catalytic role of surface 
prevails to develop a variety of organic substances and later 
these substances can independently support a hypercyclic 
network and evolve into proto-cell in a sort of symbiosis with 
the coacervates. One should note that a biochemical network 
[19] is a coupled network [20], as of any self-reproductive 
biological cycle. Particularly in an autocatalytic molecular 
network, free energy utilization is necessary for synthesis and 
can be proportional to the rate constants of replication of 
molecular subspecies involved in such an autocatalytic 
dissipative processes. The growth of molecular autocatalytic 
networks is accompanied by utilization of energy rich 
molecules [17-19] and, therefore, is dissipative. Later in 
evolution, cellular living organisms, once emerged, had 
consumed/utilised all resources of free energy reach 
primordial organic soup, and had developed a spectrum of 
heterotrophs (mono- and multi-cellular ones) which 
successfully terminate this soup and everything which was 
organic which was unprotected and less competitive [21-26].  

Evolution of unicellular biological systems went through a 
number of stages. According to the Margulis endo-symbiosis 
theory (see, for example, [27]), a proto-eukariotic cell at 
certain stage has integrated a chloroplastic cell and proto-
mitochondrion. Mitochondrion is known as a semi-autonomic 
subcellular organelle with its own two-strand cyclic DNA, 
indicating the bacterial origin and similar to bacterial 
mechanism of transcription/translation.  

Based on the assumption that cooperation of the same 
level biosystems, as sort “dissipative autonomic agents” of 
similar level of organisation (cellular systems) can provide 
additional adoptivity for the species and opportunity to 
develop a new dissipative degrees of freedom, necessary for 
surviving, an evolutionary transition from the single cell 
organisation to the social pinnacle can be built as in [15].   

Then the overall scheme can be expected as a series of 
levels with a superordination, superinclusion and coevolution. 
The qualitative evolutionary transitions, as are seen from this 
scheme, can be characterized by the following qualititative 
transitions [15]: 

 +compartmentalisation of macromolecules with 
hypercyclically-like auto-catalytic properties which evolved 
into a proto-cell developing a number of catalytic and 
informational molecular processes; 

+forming a symbiosis of some proto-eukaryotic cells and 
their subsequent evolution into proto-multicellular organism; 

+formation of social super-organisms by some biological 
species;  

+emergence in the framework of social systems, a 
symbiotic relationship within some nonbiotic things that 
essentially extends functional and adaptive abilities.  

The organisational structure, related to the evolution of the 
free energy consumption/dissipation by biological processes 
can be schematically represented by modifying so-called 
trophic pyramid illustrating the organisational hierarchy of 
biological systems (Figure 2).   

Molecular autocatalytic networks can be considered as a 
first stage, an initial level of organisation of dissipative 
processes (Figure 2). However, just those molecular 
subspecies survived (and gave the life for a protocell) which 
were capable to develop a protection from environment 
coacervate-like encapsulation – membrane and cellular wall. 
So the second stage, second level can be linked to the 
organisation forming a prokaryotic-like cell (Figure 2).  

The third level in the scheme (Figure 2), is introduced as a 
whole spectrum of eukaryotic cells, more precisely, spectrum 
of unicellular species. Evolutionary just a certain part of these 
species (designated as “cellular species capable to form 
multicellular organisation”) were able to form a multicellular 
form of organisation. Not all unicellular species had the 
capability to develop the next level of biological organisation 
by cooperation. One can note that the multicellular organism 
has been developed as a result of a long evolutionary process. 

The fourth level can be represented as a level of 
multicellular organisation, where the cells are forming an 
organism characterised by the integration and specialization of 
the activity of all cells. This resulting integral activity cannot 
be considered in terms of a single cell. Even for prokaryotic 
cells, the cooperation between cells is widely observed [28]. 
Modern multicellular organisms represent the biosystems 
evolved throughout millions years. These organisms formed a 
different from the cellular metabolism, regulation, cognition 
and can be considered as next level in Figure 2. This 
organisational level can be represented by a number of 
multicellular species, which have developed an essentially 
new degree of freedom of competition as, for example, the 
locomotions (running, swimming, jumping, flying). The 
ability to move fast provided multicellular organisms with an 
important method to find food, to escape danger, to develop 
also the new integrative for this level informational cognition 
– eye-seeing, hearing, brain. 

The fifth level can be considered as a level of those 
multicellular systems which were capable of forming so-called 
superorganisms – sometimes also referred to as communities 
or families of individuals. Such a known species as ants, bees, 
termites can be good examples of social species [29-30], 
organised in colonies, superorganisms. This kind of biological 
organisation can be characterised by the mode when the needs 
of superorganism/colony have a priority comparably to the 
individual needs. Such a sort of organisation provided an 
adaptive and competitive advantages for these species. Their 
social organisation is characterised by partial usage in their 
activity of things of non-biotical origin, which extends 
functional abilities of individuals and adaptation of the 
superorganism.  

However, from the spectrum of social species just Homo 
sapience (HS) was capable to “spin-off” the non-biotic origin 
means of production to the stage that they achieved self-
reproductive-like properties. In biological terms, HS was able 
to form symbiotic-like relations by means of production, see 
also next sections. This provided to the HS social system 
tremendous opportunity to explore a wide number of free 
energy sources not accessible or fragmentary accessed by 
other species. The sixth level can be considered as the level of 
social organisation widely exploring technology.  

Following proposed scheme, the bioevolution is a result of 
the demand of maximal free energy dissipation: the emergence 
of every qualitatively new level of bio-organisation is due to 
capability to acceleration of dissipation of essentially new 
qualitatively sources of free energy. 

The scheme in Figure 2 incorporates the minimal 
evolutionary mechanism: throughout the cooperation of (in 
cybernetic terms) dissipative autonomic agents to the 
formation of essentially new form of organisation, which 
allows utilization of new free energy from formerly 
inaccessible free energy sources; which can be seen at every 
evolutionary change on every level of hierarchy - cellular, 
organismic and social.  
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Figure 2  Evolutional ladder of dissipative systems. 

Schematic levelled representation of the organisation and 
evolution of dissipative cycles: from molecular Hypercycle to 
technological Supercycle (adapted from [15]). The role of 
symbiosis/cooperation during qualitative transitions in the 
trophic pyramid of dissipative systems, including bio- and 
biosocial-systems. The ability to utilise essentially new forms 
of free energy is related to the transition to the next step of the 
cooperative interaction of the biological systems at every 
level. The main outcome of symbiotic interaction is the 
formation of a qualitatively new type of integration and 
differentiation of the functions in the formed cooperative 
system, and also the formation of a qualitatively new form of 
the information mapping and a qualitatively new way of 
dissipative transformation of free energy.  

 
An important note is that the cooperation between the 

autonomic dissipative agent of any bio-level provides not just 
better ability in competition, but also a potential to develop a 
qualitatively new level of organisation, qualitatively new level 
free energy consumption (dissipation) and qualitatively new 
level of information processes (cognitive), supporting 
dissipation. 

From a thermodynamic perspective, bioevolution is a 
dissipative coupled process accelerating overall utilization/ 
dissipation of free energy. From this perspective the reasons 
of emergence of biotical dissipative pathways  - biological 
systems are purely physical – so physics and MED principle 
demand emergence and evolution of biosystems. Biosystems 
cooperate for the increase of adaptivity and from the 
thermodynamic perspective it helps to develop consumption 
of different sources of free energy, not accessible from the 
previous level of organisation. The utilization of new energy 
sources initiates a divergent phase in the development of 
species.  

Thus, biological phenomena are the extreme phenomena in 
the sense of energy dissipation, they utilize free energy from 
sources where somehow usual physical mechanisms do not 
work or work insufficiently fast. Since the maximum energy 
dissipation principle demands fastest possible dissipation, 
biological and socio-technological phenomena satisfy this 
demand, and their emergence and existence are consistent 
with MED/LA principles and whole physics. 

Previously [15] it has been concluded that each 
qualitatively new level of biological organisation becomes 
possible due to the cooperation/symbiosis of structures of the 
previous level, further specialization and integration of these 
structures within the framework of the association emerged, 
which developed essentially new form of substance-and free 
energy utilization and essentially new form of information 
cognition. 

 However, it can be seen that every level of biological 
organisation has its own limitations. These limitations are set 
up by nature and the scale of free energy utilization and 
material consumption as well as in the nature informational 
support of metabolism, which characterizes the particular 
level [15]. 

The level of pre-biotical processes (which has vanished in 
early stages of evolution and in modern biotical world can be 
thought as molecular network level) was limited to utilization 
of free energy-rich chemical substances available in a 
primordial organic soup. The metabolic processes obviously 
were limited by utilization of the limited range of energy rich 
molecular substances. 

 Emerged from autocatalytic networks/cycles the 
unicellular organisms in a long evolution accompanied by few 
symbiotic events explored a wider number of free energy 
sources. However, the unicellular level of biological 
organisation is limited in scale and nature of energy sources 
utilizing [26].  

One can also see that the biomass, in fact free energy in a 
biotic material form, produced by multicellular biological 
systems, has the scale of billions tones, but still is limited and 
has a order much less than 1% of solar radiation in energy 
equivalent. Therefore, one can conclude that all biological 
levels and as we will illustrate below, the socio-technological 
processes, are limited in the scale of free energy consumption 
[15].  

ACCELERATING DISSIPATION BY SOCIO-

TECHNOLOGICAL CYCLE 

Above, the hypothetical scheme, Figure 2, of the 
emergence of biological systems, their organisation and 
evolution as the dissipative systems, based on MED principle 
has been discussed, following [15]. The result of their 
evolution is the sort of organisational ladder from biopolymer 
macromolecules through their networks and cellular and 
multicellular organisms to the top level - social 
superorganisms.  The key points of these formations are the 
cooperation between the system of same level to constitute 
initially nonintegrated associations and later to develop and 
evolve to a new level of systems, with essentially/qualitatively 
new levels of free energy processing and informational 
mapping.  

Such a sort of cooperation (e.g. social form of cooperation, 
social symbiosis) widens the adaptivity of such a community 
(local population), increases the territorial competitiveness for 
food, and such a community has improved chances to survive. 
This trophic aspect can be interpreted in the thermodynamic 
sense, because biomass is a type of free energy and its 
consumption therefore is a dissipative process. Thus, from a 
thermodynamic perspective biological species are just specific 
dissipative processes (generalized biological flows) that over-
shunt, overtake, develop and compete with each other for free 
energy resources. In that sense the considerations from the 
maximum energy dissipation can be applied [15]. 
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At the top level of these organisational developments, the 

cooperation produces the social level of organisation, known 
for a part of HS for several other species. Classical examples 
are superorganisms - formed by ants, bees, termites. However 
a long organisational distance divides them from humans. 
Would be it possible to explain this distance from the 
perspective of energy dissipation and the main mechanism of 
developing such a new level of organisation – cooperation or, 
biologically speaking, – symbiosis?    

Let us note the important observable difference: the 
cooperation between the biosystems at the same level of 
biological organisation (macromolecules/networks, cells, 
individuals) always was carried out within the systems of 
biological nature exclusively. The observation of the humans’ 
cooperation can be considered as the cooperation between 
biological individuals (humans) and the tools/means of 
production, having non-biological nature [15]. This in fact 
can be pointed out as the key difference between the social 
system, formed by HS and all others pure biotical social 
systems: one can say that humans invented technology.         

Starting from a simple use of primitive tools, humans 
developed very complicated technological processes, which, 
one can see, indicate the self replicating-like properties. This 
helped humans (in the framework of developed new form of 
superorganism –society with technology) in thermodynamic 
terms to extend the overall process of energy dissipation to a 
very wide number of non-biological sources of free energy.  

From the perspective of dissipation, only socio-
technological system has jumped from the utilization of only 
biotical free energy sources, characteristic for bio-systems, as 
well as for known social species, known in the biological 
world. Only HS socio-technological system expanded usage 
free energy to qualitatively new sources and developed an 
essentially new level of organisation of free energy processing 
pathways. This utilization of free energy obtained a global 
character. Also, the essentially new form of informational 
support/cognition has been evolved in the process of evolution 
of the HS free energy processing and the development of the 
means of production accelerating pathway. These new 
pathways nowadays are dominating in energy consumption 
(dissipation) by the HS socio-technological system, Figure 6.  

The self-reproductive-like, symbiotic interaction starts as 
pre-historical usage by HS individuals of the non-biotical 
origin tools which were able to develop more and more 
complex and useful ones. Throughout thousand years these 
tools have been successfully modified. One can see that from 
a self-organisational perspective, a minimal scheme of this 
evolutionary mechanism can be similar as for cells, which 
cooperate into a cell colony and evolve into a multicellular 
organism, [15].  

As a result of such a “bio-nonbio” symbiosis, both 
components- biotical (biomass, the overall population of HS) 
and non-biotical (the means of production) grow 
tremendously. One can note that for the growth of biotical 
component a few critical stages observed. They can be linked 
to few key developments in exploration of new resources or 
the development of non-biotical “means of production” 
component (see, for example [15]).  The first can be related to 
agricultural phase and another one in linked to technological 
phase. 

The nonlinear growth of the nonbiotic component (means 
of production), having self-reproductive-like properties in 
biological terms, is rather characteristic of the industrial age; 
its self-reproductive-like growth is discussed in [15]. The 
main indices/parameters of technological, non-biological 
components also indicate the exponential growth (see the 

statistical data from US Census [37] or data from the Angus 
Maddison’s site and works [38-40]), which is similar to self-
reproductive growth kinetics of biological systems [15]. One 
can conclude that this sort of growth supports the suggestion 
of indirect self-reproductivity. This sort of growth especially 
is characteristic for different types of energy produced in 
different economies. The various economic data indicate 
exponential growth for many indices. This proves the 
acceleration of the energy usage and dissipation by the socio-
technological system, which can be illustrated as additional 
impact into global energy dissipation rate, Figure 4.   

So, one can also note, as in [15], that every level in the 
trophic pyramid organisation, Figure 2, can be characterized 
by the limitations in the value of involved and consumed free 
energy. Single cell and multicellular organism are limited by 
quantitative and qualitative variety of free energy utilised. The 
socio-technological system is as well limited in the utilization 
of free energy. 

Thus, one can see also the energy utilization limitations 
both - in purely biotical and bio-socio-technological parts of 
the global trophic pyramid (Figure 3). As a summary, in 
biological trophic (dissipative) pyramid one can observe 
several qualitatively essentially different levels of organisation 
of structural-energy dissipative transformation of the free 
energy flow from different sources (see also [15]): 

+level of pure physical dissipative processes 
+level of prebiotic, molecular evolution processes, 
+level of purely biological processes with unicellular 
organisation,  
+level of organismic organisation or multicellular 
organisms, 
+level of social species organisation evolving to 
socio-technological system of HS. 

These levels are also limited in their information 
mapping/cognition of the environment and information, 
necessary for self-replication in a wide sense.  

ON POSSIBLE POST-SOCIAL STAGES OF 

DISSIPATIVE SYSTEMS EVOLUTION   

The scheme in Figure 4 and related considerations imply 
that the development of hierarchy of biological global 
dissipative processes expands toward the exploration of new 
resources of free energy, employing the cooperation and 
further specialisation and integration of processes at every 
level. As the result, the essentially new levels of processing of 
structural-and-material forms of free energy and the 
essentially new levels of information processing are formed 
and evolved, which make the hierarchy of biological processes 
completed and then the essentially new technological level 
emerged. Then, it is reasonable to suggest from observed 
biological and socio-technological parts of global free energy 
dissipative pyramid, that a next level of cooperation between 
technological systems has to be considered. As a possible 
result of forming such a new level of energy 
processing/dissipation and evolution, as one can suggest, can 
be a space/cosmic organisation of human-like socio-
technological systems, which is continuing forming their 
technological activities at solar system toward to an unseeable 
scale. Then the human socio-technology can be considered as 
an elementary subsystem in an organized super technological 
system, similar to a single cell in a multicellular organism or 
an individual organism in the biotical societies.  
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SOME GENERALISATIONS   

Presented above scheme of evolution of organisation of 
biological systems is based on the suggestion that driving 
force of the chemical, probiotical, biological and socio-
technological evolution is the maximum energy dissipation 
principle, which can be treated as a partial case of the least 
action principle.  

We expect that an evolutionary role for this fundamental 
principle for all physics: maximum energy dissipation/least 
action principle can be considered as an evolutionary 
principle, stating that those dissipative processes win in 
evolutionary competition, which could provide the highest 
possible rate of free energy dissipation. Kinetically, the 
maximum energy dissipation principle is a principle that 
employs nonlinearities.  

Indeed, the maximum energy dissipation principle in 
combination with the maximum entropy production principle 
is probably the only physical principle that can explain the 
emergence of biological systems as the complex acceleration 
forms of free energy utilization. The relationship of the 
maximum energy dissipation principle to the least action 
principle unites, connects the biological processes to physical 
processes. In fact, these principles make the biological 
processes so universal, as physical processes. Thus, unified 
LA/MED principle can explain the emergence of biological 
pathways of dissipation. Moreover this unified principle can 
explain also the stages of the biological evolution and its 
transition to socio-technological evolution. 

In the energy transformation performing by biosystems, 
one can note few key limitations, which can be linked to the 
thermodynamics properties and MED principle. First one is 
related to the variety and scale of the structural/material forms 
of free energy utilization/dissipation. Second limitation is 
linked to information (negentropy generation): the 
informational support of maintaining/providing the free 
energy utilization by biological systems is essentially limited 
in the mapping capability because of a material nature of 
informational subsystem. 

Thus, the MED principle implies that the emergence of 
biological systems is a physical process. Indeed, the 
thermodynamic perspective can play a vital role in 
consideration any endogenous way of life emergence on our 
planet. Particularly the MED principle welcomes the 
emergence of the autocatalysis from the huge spectrum of 
catalytic processes.  

Due to the diversity of chemical processes, the number of 
possible chemical dissipative pathways over-exceeds the 
number of several physical processes of energy dissipation by 
the number of decimal orders. Among them there is a number 
known of different catalytic processes. From MED 
perspective is not particularly important how the self-
replicative molecular structures initially emerges, where they 
were synthesized - on the surface of the prebiotic planet 
(Russell and coauthors [16]), or they emerged as the result of 
self-polymerization in a complex network, proposed by Eigen 
and coauthors [17-18]. Important is that they bring the 
nonlinear, faster way of free energy dissipation, as illustrated 
in Figure 1. Significant is that they are capable to nonlinear 
acceleration of free energy dissipation - free energy in a form 
of various molecular compounds/structures. Certainly, that the 
physical and chemical processes of energy dissipation coexist. 

Their competitiveness has an indirect form and is rather 
related to their existence. 
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Figure 3. Global scales of energy utilization by some 
biospecies and socio-technological system, based on [31-40].   

 
On the other hand, the gain, the acceleration of free energy 

dissipation by nonlinear autocatalytic processes can be 
considered as the  emergence of non-pure-physical degrees of 
dissipations. The pure physical nonlinear dissipative processes 
can be observed in stimulated emission of the gain medium in 
the lasers. The nonlinear relaxation takes place and it has a 
pure physical nature. In more natural environment, the MED 
principle welcomes the non-linear processes of chemical 
nature, which may occur at the surfaces, e.g. catalytic 
processes. Kinetically, all these processes can be nonlinear, 
having at initial stage an exponential growth. In a spectrum of 
macromolecules, which can be initially randomly synthesized 
on the surface of prebiotic Earth, later the autocatalytic 
macromolecular structures emerged. Particularly these 
molecular structures can start the emergence of molecular 
networks and the hierarchy, which can lead to the emergence 
of prebiotic Eigen hypercycles-like molecular networks, 
having self-replication properties and RNA-based 
informational molecular cognition. 

The cooperation in different forms has taken place in 
earlier stages of the emergence of biological systems.  It has 
taken place in the form of molecular symbiosis. In the 
framework of this cooperation/symbiosis, further 
developments of molecular forms of informational 
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accumulation for more effective metabolic networks or 
primary structure of macromolecules, secondary structure, 
enzyme activity, informational control of functionality, 
functional/enzymic support of spatial separation from the 
environment have taken place and led to the formation of 
prokaryotic-like proto-cell.  

The overall trend and qualitative transitions in the 
evolutionary process of biological systems can be explained 
by the complexity increasing based on symbiosis/cooperation 
as a universal mechanism to develop a new qualitative level of 
free energy consumption/dissipation. The emergence and 
formation of these symbiotic associations opened the 
capability to expand to a new dissipation level.  New functions 
are gained by the capability of such a symbiotic organism to 
further develop the qualitatively new organisational structures 
and the exploration of qualitatively new sources of free 
energy.  

The hypothetical general scheme in Figure 2 illustrates an 
overall trend in the biological hierarchical organisation. In 
some sense these levels of organisation are also the 
evolutionary levels, levels of major transition in the form of 
dissipative relations with the environment as a source of free 
energy.  According to the maximum energy dissipation 
principle the key characteristic of biological evolution can be 
considered as in [15]: 

*  every new level of organisation/evolution (cellular, 
multicellular, biosocial) emerges as a result of cooperative, 
symbiotic relationships, further specialisation and integration 
in associations/communities formed by previous level of 
organisation biological systems; 

* every major level of the organisation can be characterized 
by essentially new level of dissipation of the forms of free 
energy resources which are not possible to utilise at the 
previous organisational levels of free energy dissipation. This 
includes also new biological resources which appeared as a 
result of the process of evolution. Overall acceleration of 
dissipation can be schematically illustrated in Figure 4. Every 
transition in organisation indicated in Figure 2, is 
accompanied by increase of global rate of energy dissipation. 

* the initial phase of the emergence of a new possible 
dissipative level is accomplished by divergent phase of the 
spectrum development, when emerged new structures develop 
various forms of organisation and the overall number of 
species significantly  increases;  

* the competition between different dissipative pathways 
increases when the total dissipation rate reaches the scale of 
free energy inflow into the system. Then, in biological terms, 
the integrative functionality of biosystems becomes crucial for 
the competition, specialisation of the constituent subsystem 
becomes very important and, as the final result, the essentially 
new level of integrative functionality and development of a 
new form of informational/cognitive support finally leads a 
new level of organisation; 

* the cooperation between the same level of organisation 
biosystems in the whole spectrum of species provides a 
capability to develop new level of symbiotic structures as an 
essentially new manner to adapt and survive. From a 
dissipative perspective, that lets to final development of a new 
way to dissipate free energy in an accelerated way, including 
exploring the new forms of it. Indeed, the cooperation, plays a 
crucial role in the emergence of new organisation, new 
biological systems; 

* at every level of biological organisation, there are 
qualitatively different informational sub-systems providing 
informational/cognitive support for the optimization of energy 

use/exploration and overall competitiveness of the biological 
structures at this level.  

 

 
 
Figure 4. Schematic presentation of acceleration of energy 
dissipation at every stage of evolution of biosystems. 

 
Finally, one can also suggest that by forming certain basic 

and minimal evolutionary step-unit, Figure 5, discussed also 
formerly in [15] can be considered: 

*cooperation (symbiosis) of the dissipative processes at 
level-down (previous level) 

*development of a qualitatively and essentially new form 
of organisational processes in the framework of new type of 
cooperation/symbiosis, 

*extension/exploration and utilization (or faster utilization 
than at previous organisational levels) of new free energy 
sources as a result from dissipative perspective. 

 

 
 
Figure 5. Principal evolutionary step, characteristic for 

“evolutionary ladder”, see Figure 2. 
 
Using this minimal evolutionary mechanism/step, Figure 5, 

it is possible to explain the transitions/evolution of bio-
systems at every qualitatively new level of biological 
hierarchy – cellular, organismic, social and even socio-
technological. In this way, the biological life, its emergence as 
a phenomenon characterising by its low probability, is a very 
robust and probabilistic process, and its emergence, 
robustness and evolution towards complexity is provided by 
MED principle. 

Taking into account discussed above, can be concluded that 
the emergence and evolution of socio-technological 
dissipative pathway can be seen as a result of evolutionary 
aspect of the MED principle. As it is shown in the general 
scheme, Figure 2, the socio-technological level of organisation 
predictably emerges/evolves from biosociality, which is 
characteristic of a number of biological species. However, just 
HS species developed a global socio-system, which has 
complex organisation in any aspect - social, energy and 
substance processing and informational processing. As we 
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have noticed above, the socio-technological system is the 
unique product of cooperation of biological component 
(individuals and the labour) with non-biotical component - the 
means of production, having non-biological nature. In terms 
of energy dissipation, socio-technological system of HS 
considerably expands the pure biological scale of free energy 
exploration. Its emergence and evolution corresponds to the 
maximum energy dissipation demand or the least action 
principle. 

This socio-technological level can be considered as a top of 
the biological trophic pyramid. It is essentially a new bio-
socio-technological level of organisation which can be treated 
as a symbolically-like related to certain non-biotical functional 
objects having a non-biological origin and characteristics 
(which usually called as the means of production). This is a 
key difference of HS “social organism” comparably to other 
known biological social species, like ants or termites. The data 
on biomass of these social species is indicated in Figure 3. 
One can note that the biomass of these species is very big, 
which can indicate the powerful role of social way of 
organisation in the adaptation of biological species to 
environment. However, only the HS social system was able to 
develop symbiosis-like relations with a non-biological means 
(later in evolution- the means of production), having self-
reproductive-like properties. Due to these symbiotic 
interactions of Homo sapiens with nonbiotical structures, the 
Homo sapiens social system was able to extend energy-
structural consumption of qualitatively new energy resources 
of non-biological origin [15], and has developed qualitatively 
new mechanisms of energy processing and qualitatively new 
information processing (cognition). In this way, the socio-
economic evolution appears as a continuation of bio-social 
evolution.  

In Figure 6, the approximate scales of informational 
mapping, which can be considered as more sophisticated at a 
higher level of biosystems (like multicellular or social), as are 
indicated. One can see the expansion of this mapping with the 
increase of organisational complexity in direction to socio-
technological system. However, one can expect also the 
limitations at every level of biological organisation [15]. 
 

 
Figure 6. Schematic presentation of scales of informational 

cognition of the systems of different levels of organisation 
(adapted from [15]). 

 
However, it is expected, that free energy processing scale 

and informational support in socio-technological system 
indicate their fundamental limitations [15]. First limitation is 
directly linked to the scale of exploration and processing of 
energy, which is limited by technological capability. Second 
limitation – is linked to socio-informational mapping/ 
cognition – that part of technology which deal with the 
investigation of new energy sources (for example, nuclear 
fusion) and develop the processes of energy production in 
conventional forms suitable for standard usage in technology 
and for effective and qualitative consumer goods production. 

Based on evolutionary trend, proposed in Figure 2, a post-
socio-technological organisational level of dissipative 
processes can be expected as a next organisational level after 
the socio-technological organisation systems. This new level 
can be characterized by qualitatively new level of energy 
consumption and linked to it dissipative process carried out, 
and also a qualitatively new level of information 
mapping/cognition. Taking into account cognitive limitations 
at every biological level [15], illustrated in Figure 6, one can 
state a question:  to what extend is it possible to predict the 
characteristics of this new post-socio-technological level. Is it 
possible to forecast within the framework of limited socio-
technological and informative-scientific mapping of Homo 
sapiens?  

Taking into account that in proposed evolutionary 
mechanism, every qualitative new level of dissipative systems 
organisation always emerges as a result of cooperativity of the 
systems of lower/previous level, one can suggest that a higher 
to socio-technological level can be the level when number of 
socio-technological systems cooperate, interact, specialize and 
form even more complex organisation, [15]. One can expect 
that the scale of this organisation can be enormously large. 
Then such extra-terrestrial expansion of HS-like technological 
systems can be considered as a first stage in the emergence of 
this post-socio-technological level of organisation. However, 
an expansion of post-socio-technological system into athe 
small distances of physical world can also take place, see 
Figure 6. This is expected to be a combined expansion in both 
super-large and super-small, plank-scale physical worlds. 

SUMMARY   

It is suggested that the driving force for the molecular, 
prebiotic, biological and socio-technological evolution can be 
explained on the basis of the maximum energy dissipation 
principle, which can be treated as a partial case of the least 
action principle.  

On this basis, a general scheme of evolution from 
autocatalytic molecular processes to socio-technologic system 
can be built from the perspective of maximum energy 
dissipation. This scheme also reflects the organisational 
structure of biological world. The scheme treats the 
emergence of biological systems as an initial stage in the 
acceleration of global free energy dissipation. The sequential 
emergence of qualitatively new levels of dissipation 
(biological cell, multicellular organism, social and socio-
technological systems) has been discussed, and the levels are 
suggested as evolved in the results of cooperation/symbiosis 
of the dissipative systems at the previous levels. The 
cooperation/symbiosis provides the basis for the development 
of every next, essentially new level of energy dissipation, 
leading to a new form of free energy utilization and a new 
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form of informational mapping/cognition. From a 
thermodynamic perspective, every qualitatively new level of 
biological organisation provides additional step to increase the 
global rate of energy dissipation from qualitatively new 
sources, essentially widening the number of these sources 
involved in the utilization. In the sense of maximum energy 
dissipation/least action principle, the emergence and existence 
of biological and post-biological (socio-technological) 
systems are the direct requirement of this united principle, 
which makes the existence of the biological world in 
agreement with physics as a whole. 

Post-socio-technological level can be considered as the 
cooperative, symbiotic-like organisation of socio-
technological systems as the subsystems, elements. This level 
can be characterized by significantly new level of energetical 
and substance/matter utilization, and qualitatively (and 
quantitatively) new level of informational supporting 
processes. Some observed in processes have to be analysed 
from the perspective to be considered as a super-socio-
technological system’s activity. Therefore some reservations 
can be taken into account with respect to the existence of post-
socio-technological level of dissipative processes 
organisation.  
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BACKGROUND 

 

In his famous lecture series "What is Life?"[1], Erwin 

Schrödinger asked how the events in space and time that take 

place within the spatial boundary of a living organism, can be 

accounted for by physics and chemistry. Among many 

interesting and far-reaching reflections, Schrödinger insisted 

that living matter creates order from disorder. Living matter 

evades the decay to thermodynamic equilibrium by feeding: it 

gains ' negentropy ' in an open system. 

 

Chemical pattern formation: the Turing mechanism 

More than 10 years later Turing was the first to propose a 

basic mechanism of order generating chemical pattern 

formation[2], in non-equilbrium conditions. He realized that 

two substances, which he termed morphogens, an activator  

(a) and an inhibitor (h), were needed to create a chemical 

pattern. Reaction-Diffusion (RD) equations of the type 
 

 

 

 

 

 

 

 

 

can lead to chemical patterning if there are sufficiently 

strong non-linearities in the source (S) terms (in fact, stronger 

self-activation than simple autocatalysis is required). To 

observe pattern formation, it is also necessary that the 

diffusion constants D be sufficiently different (or the 

morphogen decay rates, given by Q). Alain Turing suggested 

that the reaction diffusion mechanism may explain patterning 

in developmental biology. In spite of its seducing simplicity,  

 

 

even today there are only a limited number of cases in 

Biology where molecules/morphogens that follow an RD 

scheme have been clearly determined. Turing suggested that 

the organism Hydra, a 1cm tall polyp, could follow an RD 

scheme. Hydra can regrow lost body parts, it can even reform 

from a random cluster of its own cells. The work of Hans 

Meinhardt discusses this phenomenon at length, showing that 

almost any experiment can be explained based on an RD  

mechanism. In spite of an intense experimental search, the 

morphogens could not be isolated, suggesting a different 

pattern generating mechanism on the molecular scale. We 

have shown that next-neighbour signalling among the 

participating cells can explain the symmetry breaking and axis 

formation very well [3]. In order to comply to experiments, 

we borrow a mechanism from self organized critical systems. 

Although pattern forming systems are a major part of biology 

and the same applies to chemical oscillators, in the organism 

these phenomena remain poorly understood from a 

reductionist point of view. 

In chemistry the realization of pattern forming reactions 

has been the subject of intense research. The first self-

organizing periodic reaction in homogeneous solution was 

discovered by Bray in 1926, while studying the reduction and 

oxidation properties of H2O2 [4]. However, even today only 

few examples of pattern forming chemical systems exist. The 

Beloussov-Zabotinsky reaction [5] is the famous realization of 

a reaction diffusion mechanism that leads to colorful waves in 

an initial homogeneous solution. Initially this type of reaction 

was considered impossible to realize experimentally. The 

Briggs Rauscher reaction [6] was inspired from BZ. It is 

another classic of the few examples of a spontaneously 

oscillating chemical reaction. The detailed reaction 

mechanisms of both reactions are rather involved.  

Complexity could be a characteristic feature of this type of 

behaviour. Autocatalysis is the essential element in generating 

the required non-linearities for the phenomenon. Often the 

non-linearity is enhanced through the use of metal or 
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ABSTRACT 
We review some of the main advances in our understanding of the living state of matter as well as its stability. We cite some of 

the main ideas related to the production of self-organizing chemical order. We present preliminary, experimental results on two 

topics. In the first part we discuss prebiotic broths, following the ideas of Miller Urey. We show that by studying the dynamics of 

their molecular organization, temporal patterning emerges as a coherent feature of driven, random organic soups.  In the second 

part, we consider coexisting self-reproducing agents. We ask how the self-reproducing agents  attain a robust evolution towards 

increased complexity, rather than getting stuck by producing a single “winner”. By simplifying the system to one dimension, we 

show that the system may escape from getting stuck by generating new configurations. We find, however, that the theoretical 

construct is difficult to realize experimentally, without detailed tuning of the parameters by hand. This may well explain why, to 

our knowledge, a one dimensional molecular ecosystem did not emerge as a result of evolution. 
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halogenide compounds with a strong and broad oxidation 

potential. 

In physics it has long been known that the state space of a 

nonlinear system contracts if the system dissipates: the system 

becomes more ordered when driven. Among well-known 

examples of pattern forming phenomena is the Rayleigh 

Bénard convection, where rising liquid, due to heating at the 

bottom, will produce regular convection roles. Many other 

examples exist: cloud formation, dunes, turbulent fluids, mode 

selection in a laser. The patterns occur as a result of 

competition of  'modes' of the nonlinear system. The strongest 

among them wins and creates a pattern by starving the others 

in terms of energy. 

 

The hypercycle 

It has been proposed that self-reproduction is the strongly 

growing chemical “mode” that necessarily “wins” and 

dominates the dynamic behaviour of biochemistry. Manfred 

Eigen and Peter Schuster theoretically considered simple 

systems of reproducing molecular information carriers in 

competition [7]. In simple situations they could show that the 

selection process is governed by the same equation as mode 

selection in a laser. They also addressed a more complex 

situation: the evolution, in competition, of multiple, self-

reproducing, cyclic, mostly deterministic reactions of 

information carriers and enzymes, so called hypercycles. In 

this case, a molecule like RNA contains the information for 

the production of enzymes, which in turn multiply the RNA 

and, at the same time, read the stored information to produce 

more enzyme. In the system, Schuster and Eigen introduced 

molecular self-reproduction by hand, and the molecular 

pathways have reduced complexity compared to real 

chemistry. As a result the hypercycles do not produce 

evolution, although they undergo mutations. In most cases, it 

is the hypercycle with the largest number of elements that 

wins the competition and the evolution remains stuck. 

  However, chemistry is different from systems that physicists 

usually investigate, including the system studied by Eigen and 

Schuster. Chemistry includes the  transformation of matter, 

and the rules of chemistry evolve with changing 

concentrations, and with new molecules or molecular 

scaffolds that appear. No satisfying statistical characterization 

of (organic) chemistry has been achieved so far. 

Experimentally it is not clear, how chemical systems can be 

supplied with energy so that they self-organize in a non-trivial 

way. Even, theoretically, a system that compares to living 

matter has not yet been suggested. 

    With their reflections on hypercycles, Eigen and Schuster 

revealed one of the challenging problems that have not been 

solved: how can a number of reproducing entities coexist in 

an ecosystem and undergo Darwinian evolution without one 

species dominating the system and ultimately halting the 

process? 

 

EXPERIMENTAL AND RESULTS 

  

We study the time evolution of a Miller Urey type random 

prebiotic broth [8] using mass spectroscopy. We show [9] that 

the system produces polymerized substances as sudden bursts. 

They tend to disappear and the process restarts. Thus 

reversibly assembling and disabling biodynamers emerge 

spontaneously as a result of driving chemical reactions. 
We study the evolution of template based reproducing 

DNA strands that are allowed to double their length[10] We 

show that the experiment can produce filaments with 

increasing length only if it is helped by the experimentalist, in 

a narrow range of parameters.  This is in contrast to theory, 

where a situation with several coexisting filaments lengths 

easily occurs as a stable  dynamic result. 
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EXTENDED ABSTRACT 

 
It has been stated that certain chains of biological reactions can go to near completion in both directions as needed without any exterior 

driving force. This claim represents a thermodynamic impossibility. Yet, this impossibility is of a new type not covered by the traditional list of 
impossibility devices known as perpetual motion machines. Rather, it represents a perpetual motion machine of the third kind (PM3) that 
becomes impossible only in finite time [1]. At non-vanishing rate the chain of biological reactions above would constitute a finite-time perpetual 
motion machine. 

It turns out however that coexistent equilibrium degrees of freedom represent very low dissipation and can come surprisingly close to PM3 
operation. Exactly how this fact is exploited in biological systems will be the subject of the talk. 

Many biological processes seem to operate near the PM3 limit. In many cases the location where the free energy dissipation occurs is not even 
clear. Thus claims of the reversibility of such processes are not surprising. Below we present a number of processes for which the energy 
dissipation is indeed surprisingly low. 

 The molecular motor ATP synthase operates very nearly reversibly [2, 3]. 

 Myriad crista shapes of the inner mitochondrial membrane are isoergic and interconvert freely [4]. 

 Lipid composition of E. coli adjusts to ambient temperature so the sol-gel phase transition temperature is just below ambient [5]. This 
brings the sol-gel tran- sition within reach of many local fluctuations, e.g. in pressure or charge. 

 Twisting and untwisting DNA mediated by DNA-binding proteins that perform extensive DNA remodeling or distortion are frequent 
processes. The isothermal enthalpy / entropy compensation that keeps these reactions nearly isoergic is well documented [6,7]. 

In each of these examples a degree of freedom is kept near equilibrium thereby lowering the associated dissipation needed in changing that 
degree of freedom. Moving along such neutral degrees of freedom is a nice trick for any control minimizing dissipation. As illustrated in Figure 1, 
to get the rolling pin from one end of the table to the other, we need only lift one end of the table a bit as the table is flat. General bounds on 
dissipation in finite time relate such dissipation to the thermodynamic distance traversed [8]. This distance is zero along exactly such equilibrium 
modes! Our list above serves as a partial argument that living systems sometimes exploit these degrees of freedom to achieve their control of the 
scenarios needed for life. 

 

Figure 1: An illustration of the energetics along a neutral degree of freedom: the horizontal table. Note that only a very small elevation suffices to 
make the process go in one direction or the other. 
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INTRODUCTION 

In this paper we examine whether the distribution of 

optimal rate constant values for transitions among 

functionally important states in enzymes can be predicted by 

maximum entropy production (MaxEP) principle, by 

maximum of Shannon information entropy (MaxEnt) or as the 

combination of these two principles. 

The MaxEP and MaxEnt principles applied to Michaelis-

Menten kinetics of β-Lactamase enzymes [1,2] give a good 

agreement of optimal rate constant values for internal 

transition ES → EP with experimentally determined values. 

We also found that the functional design of rotary enzyme 

ATP synthase is consistent with the MaxEP and MaxEnt 

principle applied in combination [3] to the extent that 

predicted optimal angular position for the ATP-binding 

transition agrees within experimental error with the 

experimental value. 

In the Discussion section we maintain that the MaxEP 

principle is much more relevant than Prigogine’s principle 

[4,5]. Furthermore, the successful application of the MaxEP 

and MaxEnt principle, reviewed in this paperr, argues for the 

point of view that physical and biological evolution cannot be 

considered separately one from another. 

ENTROPY PRODUCTION FOR MICHAELIS-

MENTEN KINETICS 

In often used three state model for enzyme kinetics 

(Michaelis-Menten kinetics, Fig. 1), the internal transition 

ES↔EP is the only one not directly connected with a 

substrate or product concentration. Our conjecture here is that 

biological evolution, within fixed concentrations of substrate 

and product molecules, is accompanied with an increase of 

the entropy production in the internal transition. For fully  

 

 

 

 

 

evolved enzyme (the “perfect enzyme” concept of Albery and  

Knowles [6]) maximum entropy production is expected to be 

associated with that transition. We also propose that biological 

evolution is accompanied with an increase in Shannon 

information entropy of the entire cyclic reaction scheme. The 

perfect, fully evolved enzymes, are rare in nature, if they exist 

at all, and we do not expect to find more than approximate 

correspondence among predicted optimal rate constants by 

using the MaxEP or MaxEnt principle and measured rate 

constants for enzymes considered to be highly evolved. The 

MaxEP principle can be used as a test whether the enzyme has 

approached a fully evolved state or not, but cannot be 

considered as an alternative to the biological selection and 

evolution. 

Enzyme reactions involve metabolic fluxes (J) and 

thermodynamic forces (X) that govern these fluxes. The 

associated entropy production rate is defined as the product of 

the metabolic flux and the corresponding thermodynamic 

force, divided by absolute temperature 

 
T

JX
 . (1) 

 

For the three-state model (Fig. 1), J is the net flux of any 

given transition, because there is only one cycle and only one 

flux (which must be the same for all transitions in accordance 

with Kirchhoff’s junction rule). For given substrate and 

product concentrations, the total thermodynamic force of the 

overall reaction is a constant. The sum of the affinities (i.e. 

thermodynamic forces) associated with chosen transitions 

equals the total thermodynamic force X (in accordance with 

Kirchhoff’s loop rule). One of our basic results from previous 

research [1] shows that there is a unique maximum for the 

entropy production of any given transition with respect to 

variation in its forward rate constant. This is because the 
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associated transition flux and affinity are, respectively, 

monotonically increasing and decreasing functions of the 

forward rate constant. In other words, there is a simple trade-

off between thermodynamic flux and force. 

 

 

 
 

Figure 1. Michaelis-Menten reversible kinetic scheme. 

 

Here we calculate the entropy production of the internal 

enzyme transition ESEP, and the Shannon entropy of the 

entire reaction, as functions of the forward rate constant k2
+
. 

The net metabolic flux for ESEP is  

 

 
 

   EPkESk
dt

Pd
J





 22 , (2) 

where [P],[ES] and [EP] are the concentrations of product and 

complex states ES and EP, respecively. Thermodynamic force 

(or affinity) is the difference in chemical potentials between 

states ES and EP, 
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EP

ES
KRTA  (3) 

 
where R is the gas constant and K2 is the equilibrium constant 

for ESEP. The affinity (3) is a function of the complex 

concentrations [ES] and [EP]. 

After lenghtly, bur otherwise straightforward calculation, 

we get entropy production as a function of forward kinetic 

constant in the internal transition, 
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Here A=k3
+
+k1

-
/K2, B=k3

+
k1

-
, C=(k1

+*
[S]+k3

-*
[P])/K2, 

D=k3
+
k1

+*
[S], E=CK2, F=k1

-
k3

-*
[P], G=A+C+E,  H=B+D+F. 

 

SHANNON INFORMATION ENTROPY FOR 

MICHAELIS-MENTEN KINETICS 

The Shannon information entropy of the enzyme model in 

Fig. 1 is defined as  

 )ln( i

3

1

i ppH
i




 , (5) 

where pi (i=1...3) are probabilities that the enzyme is found in 

one of its functional states (E , ES or EP, respectively). These 

probabilities are given by: 

 
 
 t

i
i

E

X
p  , (6) 

where [E]t is the total enzyme concentration and [Xi] are the 

concentrations of the enzyme species E, ES or EP (for i=1,2,3, 

respectively). 

Similiarly to entropy production we get the Shannon 

information entropy as a function of k2
+
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COMPARISON OF PREDICTED OPTIMAL VALUES 

OF FORWARD KINETIC CONSTANT WITH 

EXPERIMENTAL RESULTS 

Optimal values of the forward rate constant k2
+
 predicted by 

MaxEP and MaxEnt are then obtained from the conditions 

 0

2dk


d
, (8) 

 0

2dk


dH
 . (9) 

The predicted and observed value of forward kinetic constants 

for three types of β-Lactamase enzymes are shown in Table. 1. 

Table 1. The comparison of experimental and predicted values of the 

forward rate constants k2
+ for three types of β-Lactamase enzymes. 

 

Enzyme k2
+
 [s

-1
]   

(MaxEP) 

k2
+
 [s

-1
]  

(MaxEnt) 

k2
+
 [s

-1
] 

 (Observed) 

PC1 – β Lactamase 281 94.5 173 

RTEM β Lactamase 4034 1091 2800 

β Lactamase I 6669 3548 4090 

 

 

The values of k2
+
 predicted by MaxEP and MaxEnt are of 

the same order of magnitude as the observed values. 
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MAXENT AND MAXEP RELEVANCE FOR THE 

FUNCTIONAL DESIGN OF THE ROTARY ENZYME 

ATP 

ATP synthase is an important biomolecular nanomotor. 

From an evolutionary viewpoint it is a very ancient secondary 

proton pump, which exploits the proton motive force created 

by respiration or photosynthesis to drive the synthesis of 

adenosine triphosphate (ATP), the most commonly used 

"energy currency" in living cells. ATP synthase is embedded 

in the inner membrane of mitochondria or in the thylakoid 

membrane of chloroplasts. ATP is formed from adenosine 

diphosphate  (ADP) and inorganic phospate (P), assuming that 

activation energy is available. This activation energy is stored 

and released as elastic energy in the stalk-like axle of the ATP 

synthase nanomotor. The rotary mechanism is well 

understood [7]. The stator is an ensemble of three structural 

subunits. Translocation of protons through this protein, driven 

by the transmembrane proton gradient, is accompanied by a 

stepped rotation of the stalk-like axle. Each 120° clockwise 

(or counter-clockwise) rotation is accompanied by the 

synthesis (or hydrolysis) of ATP. Here we will consider only 

the ATP synthase of chloroplast thylakoid membranes. 

The number of protons translocated through the thylakoid 

membrane that is necessary for the synthesis of one ATP 

molecule is called the gearing ratio, ATPHg /


 . The 

gearing ratio g  is related to the free energy input E per 

revolution, 

 

 
H

gE 3  (10) 

 
where 

   FpHRT
H

3.2 , (11) 

is the transthylakoid proton motive force. F is the Faraday 

constant, while pH  and   are the transmembrane 

differences in pH  and electric potentials, respectively.  The 

120° stalk rotation has a short ( ms2 ) pause, called the 

catalytic dwell, at a certain relative angular position of stalk, 

denoted by   (with 10   ). The catalytic dwell is so-

called because it is associated with the internal transition 

(synthesis or hydrolysis of ATP) of ATP synthase. In 

accordance with our starting assumption this internal 

transition is most sensitive to evolution. Therefore we take   

as the variable that is optimized during evolution. The free 

energy ( E ) partly depends on external conditions (the 

difference between pH   factors outside and inside of the 

membrane), and we take this to be an adjustable parameter as 

explained below.  

We describe the synthesis and hydrolysis of ATP using the 

five-state kinetic model shown in Fig.4. The problem can be 

solved analytically, either by solving the steady-state rate 

equations directly [8] or by using Hill’s diagram method [9]. 

Using experimental data obtained by Pänke and Rumberg [8, 

10], we calculated the state probabilities  iEp , the forward 

fluxes, 

 EEsynE ADPPOpkJ )**()()(    (12) 

and the backward fluxes  

 EhydE ATPOpkJ
E

)*()()(   . (13) 

Rate coefficients )(synE
k  and )(hydE

k  are calculated 

within the transition state theory [11] and are given by 

  RTEkk
synE syn 3/exp)( 0   , (14) 

  RTEkk
hydE hyd 3/)1(exp)( 0   . (15) 

The values of specific binding change constants  
130 1015.1)(  sksyn 

150 105.4)(  skhyd   are taken 

from [8, 10]. Under controlled experimental conditions, the 

enzyme was illuminated in the presence of 1mM ADP, 1 mM 

P and 10μM ATP at T=300K [8, 10]. Fixed kinetic rate 

constants are given in the legend of Fig. 4. 

The number of ATP molecules produced per enzyme p per 

second is then 

 )()()( 





 EJEJEJ . (16) 

The Shannon information entropy of state probabilities, and 

entropy production of the internal enzymatic transitions, are 

      
5

1

log  ipipH EEE , (17) 

  
)(

)(
log)(









E

E
EE

J

J
RJ , (18) 

respectively. 

 

 
 

Figure 4. Kinetic model of ATP synthase cycle for transitions be-

tween enzyme open (O) states. O*P, O*ADP, O*ATP and 

O*P*ADP are states which bind P, ADP, ATP, and ADP  respective-

ly. Rate constants are expressed in same units when second-order 

rate constants are multiplied by substrate concentrations: kATP=20.8s-

1, k-ATP=270s-1, kADP=8900s-1,             k-ADP=490s-1, kP =810s-1 and      

k-P=2030s-1. 

Our hypothesis is that the information entropy  EH  and 

entropy production )(  of a fully evolved enzyme are 

maximized at a common value of  , the relative angular 

position of the catalytic dwell. That is, 
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 E  (20) 

In order to obtain a solution, we adjust the free energy input E 

until there is a common value of   that satisfies both 

equations (19) and (20). In other words, we are 

simultaneously optimizing   and E . 

The numerical calculations are shown in Fig. 5. The 

solution yields optimal values 598.0
opt

  and 

kJ/mol 4.161
opt

E . The former value is very close to the 

empirical estimate 6.0
opt

  [8]. From equation (10), the 

optimal proton motive force kJ/mol 4.13
H

  and 

calculated free energy kJ/mol 4.161
opt

E  corresponds to 

the gearing ratio g=4 observed in chloroplasts [12]. 

In summary, our calculations show that ATP synthase is a 

fully evolved enzyme in the sense of MaxEnt and MaxEP. It is 

also interesting that the optimal solution of MaxEnt and 

MaxEP coincides with an inflection point of the curve of ATP 

synthesis rate (
E

J ) versus proton motive force (Fig. 5); this 

feature allows fast metabolic control with respect to short-

term changes in proton motive force, as well as a high optimal 

output/input free energy ratio of 69% [9]. 

CONLUSIONS 

Energy transduction is the central concept in physics, from 

the energy conservation principle to thermodynamics. One of 

the better known results from non-equilibrium 

thermodynamics is Prigogine’s theorem of minimal entropy 

production [6]. It is valid close to thermodynamic 

equilibrium. The theorem defines a non-equilibrium stationary 

state, caled the static head state. Non-equilibrium stationary 

states are the main interest to us here. Free-energy 

transduction and efficiency are zero in the static head 

stationary state, which can be considered as the closest non-

equilibrium relative of the equilibrium state. Coupling 

downhill and uphill free energy changes is essential for all 

life, but this is impossible in the static head state. Life must 

look to other non-equilibrium steady states with a non-

vanishing efficiency of free-energy transduction. 

In contrast to static head state, which is the steady state 

with zero efficiency of free-energy transduction, MaxEP 

principle applied to  β-lactamase enzymes and ATP synthase 

has predicted good order of magnitude relevant kinetic 

constants and reasonable efficiency of energy conversion. 

Beside MaxEP we use MaxEnt principle and apply it to 

predict the probabilities of biomolecular states. It is a 

powerful inference algorithm for solving problems with 

incomplete available information. In physics, the whole of 

equilibrium statistical physics can be derived from this 

principle [13, 14]. At first sight, it might seem that biological 

evolution, by building ever more structurally complex 

macromolecules (i.e. of low configurational entropy), has 

proceeded in the direction of entropy decrease rather than 

entropy increase. But when we look at the kinetics of β-

lactamase enzymes and  functional design of ATP synthase, as 

we have done here, we find that biological evolution is 

consistent with MaxEnt. There is no contradiction with the 

second law. The evolutionary optimization of β-lactamase 

enzymes and ATP synthase can be interpreted as selection of 

the most probable functional design within the constraints 

considered here. 

 

 

Figure 5.  Information entropy of state probabilities, entropy produc-

tion and net ATP synthesis rate as a function of relative angular 

position of catalytic dwell at optimal input free energy Eopt=161.4 

kJmol-1 . 
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ABSTRACT
By suitable reformulations, we review the mathematical frameworks of six different approaches to the description of non-
equilibrium dynamics with the purpose to set up a unified formulation of the Maximum Entropy Production (MEP) principle
valid in all these contexts. In this way, we extend to such frameworks the concept of Steepest Entropy Ascent dynamics in-
troduced by the present author in previous work on quantum thermodynamics. Actually, the present formulation constitutes a
generalization also in the quantum thermodynamics framework. The analysis emphasizes that in the SEA-inspired implemen-
tation of the MEP principle, a key role is played by the geometrical metric with respect to which to measure the length of a
trajectory in state space. The metric tensor turns out to be directly related to the inverse of the Onsager’s generalized conduc-
tivity tensor. We conclude that in most of the existing theories of non-equilibrium the time evolution of the state representative
can be seen to actually follow in state space the path of SEA with respect to a suitable metric connected with the generalized
conductivities. The resulting unified family of SAE/MEP dynamical models are all intrinsically consistent with the second law
of thermodynamics. The nonnegativity of the entropy production is a general and readily proved feature of SEA dynamics. In
several of the different approaches to non-equilibrium description we consider here, the SEA concept has not been investigated
before. Therefore, it is hoped that the present unifying approach may prove useful in providing a fresh basis for effective, thermo-
dynamically consistent, numerical models and theoretical treatments of irreversible conservative relaxation towards equilibrium
from far non-equilibrium states. The six mathematical frameworks are: A) Classical Statistical Mechanics; B) Small-Scale
and Rarefied Gases Dynamics (i.e., kinetic models for the Boltzmann equation); C) Statistical or Information Theoretic Models
of Relaxation; D) Rational Extended Thermodynamics, Macroscopic Non-Equilibrium Thermodynamics, and Chemical Kinet-
ics; E) Mesoscopic Irreversible Thermodynamics; F) Quantum Statistical Mechanics, Quantum Thermodynamics, Mesoscopic
Non-Equilibrium Quantum Thermodynamics, and Intrinsic Quantum Thermodynamics.

INTRODUCTION

The problem of understanding entropy and irreversibility has
been tackled by a large number of preeminent scientists during
the past century. Schools of thought have formed and flourished
around different perspectives of the problem. Several modeling
approaches have been developed in various frameworks to deal
with the many facets of non-equilibrium.

In this paper, we show how to construct Steepest Entropy As-
cent (SEA) and Maximum Entropy Production (MEP) models
of non-equilibrium dynamics by adopting a unified mathemati-
cal formulation that allows us to do it at once in several different
well-known frameworks of non-equilibrium description.

To avoid doing inevitable injustices to the many pioneers of
all these approaches and to the many and growing fields of their
application, here we skip a generic introduction and given no
references nor a review of previous work. Rather, we dig im-
mediately into the mathematical reformulations of the different
frameworks in such a way that then the construction of the pro-
posed SEA dynamics becomes formally a single geometrical
problem that can be treated at once.

Our reformulations here not only allow a unified treatment
of the MEP principle (for a recent review see [1]) in the various
frameworks, but also extends to all frameworks an observation
that we have been developing in the quantum thermodynamics

framework for the last three decades [2; 3; 4; 5]. In doing so,
we introduce an important generalization also in the quantum
thermodynamics framework.

The observation is that we cannot simply maximize the en-
tropy production subject to a set of conservation constraints or
boundary conditions, but in order to identify a SEA path in state
space we must equip it with a metric with respect to which to
compute the distance traveled in state space during the time evo-
lution.

The generalization is as follows. In our previous work, we
adopted the proper uniform metric for probability distributions,
namely, the Fisher-Rao metric, because in quantum thermody-
namics the state representative, the density operator, is essen-
tially a generalized probability distribution. In other frame-
works, however, the state representative not always is a prob-
ability distribution. Moreover, the present application to the
framework of Mesoscopic Non-Equilibrium Thermodynamics
[6; 7] shows that standard results such as the Fokker-Planck
equation and Onsager theory emerge as straightforward results
of SEA/MEP dynamics with respect to a metric characterized by
a generalized metric tensor that is directly related to the inverse
of the generalized conductivity tensor. Since the generalized
conductivities represent, at least in the near-equilibrium regime,
the strength of the system’s reaction when pulled out of equilib-
rium, it appear that their inverse, i.e., the generalized resistivity
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tensor, represents the metric with respect to which the time evo-
lution, at least in the near equilibrium, is locally SEA/MEP.

But the local SEA/MEP construction does much more, be-
cause it offers a strongly thermodynamically consistent way to
extend the well-known near-equilibrium theories to the treat-
ment of non-equilibrium states.

An investigation of the interrelations between the SEA and
MEP concepts and Ziegler’s [8] and Edelen’s [9] formulations
for the study of highly non-equilibrium dynamics in the nonlin-
ear domain is under way and will be communicated elsewhere.

The unified formulation of the local SAE/MEP variational
problem is as follows and it is not restricted to near equilib-
rium: the time evolution and transport equations advance the
local state representative in the direction of maximal entropy
production per unit of distance traveled in state space compati-
ble with the conservation constraints. The measure of distance
traveled in state space requires the choice of a metric defined
over the state space. The standard near-equilibrium results ob-
tain when the local metric tensor is proportional to the inverse
of the local matrix of generalized conductivities.

In the next six sections we introduce slightly nonstandard
notations in several non-equilibrium contexts with the purpose
to formulating, in the seventh section, a unified construction and
implementation of the SAE/MEP concept.

FRAMEWORK A: CLASSICAL STATISTICAL ME-
CHANICS

Let Ω be the classical position-momentum q–p phase space,
and L the set of real, square-integrable functions A,B, . . . on Ω,
equipped with the inner product (·|·) defined by

(A|B) = Tr(AB) =
∫

Ω
AB dΩ (1)

where Tr(·) in this framework denotes
∫

Ω
·dΩ, with dΩ =

dqdp.
In Classical Statistical Mechanics, the index of statistics from

a generally heterogeneous ensemble of identical systems (with
associated phase space Ω) distributed over a range of possi-
ble classical mechanical states is represented by a nonnegative
(Gibbs) density-of-phase distribution function fG = fG(q,p, t)
in L .

Borrowing from the formalism we originally developed for
the quantum framework [2; 3] (later introduced also in [4; 10]),
in order to easily impose the constraint of preservation of the
nonnegativity of fG during its time evolution, we adopt as state
representative not fG itself but its square root, that we assume
is a function in L that denote by γ = γ(q,p, t). Normalization
is not imposed at this stage but later as one of the constraints.
Therefore, we clearly have

fG = γ
2 ,

∂ fG

∂ t
= 2γ

∂γ

∂ t
(2)

∂ fG

∂q
= 2γ

∂γ

∂q
,

∂ fG

∂q
= 2γ

∂γ

∂q
, {H, fG}= 2γ{H,γ} (3)

where {·, ·} denotes the Poisson bracket.
Among the phase-space functions that represent physical ob-

servables we focus on the conserved ones that we denote syn-
thetically by the set

{Ci}=
{

H,Mx,My,Mz,N1, . . . ,Nr, I
}

(4)

where H is the classical Hamiltonian function, M j the momen-
tum function for the j-th component, Ni the number-of-particle
function for particles of type i, and I = 1 is the constant unity
function, so that Tr(γ2H) represents the mean energy, Tr(γ2M)

the mean momentum vector, Tr(γ2Ni) the mean number of par-
ticles of type i, and Tr(γ2I) the normalization condition on fG.

The description of an irreversible diffusion-relaxation pro-
cess in this framework can be done by assuming a evolution
equation for the state fG given by

dγ

dt
= Πγ where

d
dt

=
∂

∂ t
−{H, ·} (5)

It is easy to verify that for Πγ = 0 Eq. (5) reduces to Liouville’s
equation of classical reversible evolution. We do not make this
assumption because we are interested in modeling irreversible
evolution with energy, momentum, and particle numbers redis-
tribution towards equilibrium, subject to the overall conserva-
tion of energy, momentum, number of particles of each kind,
and normalization

ΠCi =
d
dt

Tr(γ2Ci) = (2γCi|Πγ) = 0 (6)

The entropy state functional in this context is represented by

S(γ) =−kTr( fG ln fG) = (−kγ lnγ
2|γ) (7)

so that the rate of entropy production under a time evolution that
preserves the normalization of fG is given by

ΠS =−k
d
dt

Tr( fG ln fG) = (−2kγ lnγ
2|Πγ) (8)

Below, in the section on SAE/MEP dynamics, we construct
an equation of motion for the square-root-of-density-of-phase
distribution γ such that ΠS is maximal subject to the conserva-
tion constraints ΠCi = 0 and a suitable additional constraint we
discuss therein.

FRAMEWORK B: SMALL-SCALE AND RAREFIED
GASES DYNAMICS

Let Ωc be the classical one-particle velocity space, and L the
set of real, square-integrable functions A,B, . . . on Ωc, equipped
with the inner product (·|·) defined by

(A|B) = Tr(AB) =
∫

Ωc
AB dΩc (9)

where Tr(·) in this framework denotes
∫

Ωc
·dΩc, with dΩc =

dcx dcy dcz.
In the Kinetic Theory of Rarefied Gases and Small-Scale Hy-

drodynamics [11], the probability to find a particle at position
x with velocity between c and c + dc [where of course c =
(cx,cy,cz)] is given by f (x,c, t)dΩc/

∫
Ωc

f dΩc where f (x,c, t)
is the local phase-density distribution which for every position
x and time instant t is a function in L .

Also in this framework, in order to easily impose the con-
straint of preservation of the nonnegativity of f during its time
evolution, we introduce the local one-particle state representa-
tion not by f itself but by its square root, that we assume is a
function in L that we denote by γ = γ(x,c, t). Therefore, we
have

f = γ
2 ,

∂ f
∂ t

= 2γ
∂γ

∂ t
,

∂ f
∂x

= 2γ
∂γ

∂x
,

∂ f
∂c

= 2γ
∂γ

∂c
(10)

Again, among the velocity-space functions that represent
physical observables we focus on the conserved ones that we
denote synthetically by the set

{Ci}=
{

H = ½ mc · c,Mx = mcx,My = mcy,Mz = mcz,m
}
(11)

of functions in Lc where H is the local kinetic energy function,
Mx, My, Mz the components of the local momentum function,
and m the particle mass, so that Tr(γ2H) represents the local
kinetic energy density, Tr(γ2Mi) the i-th component of the local
momentum density, and Tr(γ2m) the local mass density.
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The time evolution of the distribution function f is given by
the Boltzmann equation or some equivalent simplified kinetic
model equation, which in terms of the square-root distribution
may be written in the form

Dγ

Dt
= Πγ where

D
Dt

=
∂

∂ t
+ c · ∂

∂x
+a · ∂

∂c
(12)

and a denotes the particle acceleration due to external body
forces.

In order to satisfy the constraints of energy, momentum, and
mass conservation the collision term Πγ must be such that

ΠCi =
∂Tr( fCi)

∂ t
+∇ ·Tr( f cCi) = (2γCi|Πγ) = 0 (13)

The local entropy density functional in this context is repre-
sented by

S(x, t) =−kTr( f ln f ) = (−kγ lnγ
2|γ) (14)

so that the rate of entropy production under a time evolution that
preserves the normalization of f is given by

ΠS =−k
∂Tr( f ln f )

∂ t
− k∇ ·Tr( f c ln f ) = (−2kγ lnγ

2|Πγ)

(15)
Below, in the section on SAE/MEP dynamics, we construct

a new family of models for the collision term Πγ such that ΠS
is maximal subject to the conservation constraints ΠCi = 0 and
a suitable additional constraint we discuss therein.

The resulting new family of SEA kinetic models of the col-
lision integral in the Boltzmann equation is currently under in-
vestigation by comparing it with standard models such as the
well-known BGK model as well as with Monte Carlo simula-
tions of the original Boltzmann equation for hard spheres [12].
In addition to the strong thermodynamics consistency even far
from stable equilibrium, Ref. [12] gives a proof that in the near-
equilibrium limit the SEA model reduces to the BGK model.

FRAMEWORK C: STATISTICAL OR INFORMATION
THEORETIC MODELS OF RELAXATION TO EQUI-
LIBRIUM

Let L be the set of all n× n real, diagonal matrixes A =
diag(a j), B = diag(b j), . . . ( n ≤ ∞ ), equipped with the inner
product (·|·) defined by

(A|B) = Tr(AB) = ∑
n
j=1a j b j (16)

In Information Theory [13], the probability assignment to a
set of n events, p j being the probability of occurrence of the
j-th event is represented by ρ = diag(p j). Again, in order to
easily impose the constraint of preservation of the nonnegativity
of the probabilities during their time evolution, we adopt the
description in terms of the square-root of ρ that we denote by

γ = diag(
√

p j) (17)
Typically we consider a set of conserved features of the pro-

cess
{Ci}= {H,N1, . . . ,Nr, I} (18)

of diagonal matrixes H = diag(e j), N1 = diag(n1 j), . . . , Nr =
diag(nr j), I = diag(1) in L representing characteristic features
of the events in the set, which for the j-th event take on respec-
tively the values e j, n1 j, . . . , nr j. The corresponding expec-
tation values are Tr(ρH) = ∑

n
j=1 p j e j, Tr(ρN1) = ∑

n
j=1 p j n1 j,

. . . , Tr(ρNr) = ∑
n
j=1 p j nr j, and Tr(ρI) = ∑

n
j=1 p j = 1 thus pro-

viding the normalization condition on ρ .
The time evolution of the square-root probability distribution

γ is the solution of the rate equation
dγ

dt
= Πγ (19)

where in order to satisfy the constraints of conservation of the
expectation values Tr(ρCi) the term Πγ must be such that

ΠCi =
d
dt

Tr(ρCi) = (2γCi|Πγ) = 0 (20)

The entropy functional in this context is represented by

S(γ) =−kTr(ρ lnρ) = (−kγ lnγ
2|γ) (21)

so that the rate of entropy production under a time evolution that
preserves the normalization of ρ is given by

ΠS =−k
d
dt

Tr(ρ lnρ) = (−2kγ lnγ
2|Πγ) (22)

Below, in the section on SAE/MEP dynamics, we construct
a model for the rate term Πγ such that ΠS is maximal subject
to the conservation constraints ΠCi = 0 and a suitable additional
constraint we discuss therein.

An attempt along the same lines has been presented in [14].

FRAMEWORK D: RATIONAL EXTENDED THER-
MODYNAMICS, MACROSCOPIC NON-EQUILIBRIUM
THERMODYNAMICS, AND CHEMICAL KINETICS

Let L be the set of all n× n real, diagonal matrixes A =
diag(a j), B = diag(b j), . . . ( n ≤ ∞ ), equipped with the inner
product (·|·) defined by

(A|B) = Tr(AB) = ∑
n
j=1a j b j (23)

In Rational Extended Thermodynamics [15], the local state
at position x and time t of the continuum under study is repre-
sented by an element γ in L , i.e.,

γ(x, t) = diag[α(x, t)] (24)

Thus, γ(x, t) represents the set of fields which represent the
instantaneous spatial distributions within the continuum of the
local densities that define all its other local properties. In partic-
ular, for the conserved properties energy, momentum, and mass
it is assumed that their local densities and their local fluxes are
all given by particular functions of γ that we denote syntheti-
cally by

{Ci(γ)}=
{

E(γ),Mx(γ),My(γ),Mz(γ),m(γ)
}

(25)

{JCi(γ)}=
{

JE(γ),JMx(γ),JMy(γ),JMz(γ),Jm(γ)
}

(26)

so that the energy, momentum, and mass balance equations take
the form

DCi

Dt
=

∂Ci

∂ t
+∇ ·JCi = ΠCi = 0 (27)

Moreover, also for the local entropy density and the local en-
tropy flux it is assumed that they are given by particular func-
tions of γ that we denote respectively by

S(γ) and JS(γ) (28)

so that the entropy balance equation takes the form
DS
Dt

=
∂S
∂ t

+∇ ·JS = ΠS (29)

where ΠS is the local production density.
In general the balance equation for each of the underlying

field properties is
Dα j

Dt
=

∂α j

∂ t
+∇ ·Jα j = Πα j (30)

where Jα j and Πα j are the corresponding flux and production
density, respectively. Equivalently, this set of balance equations
may be written synthetically as

Dγ

Dt
=

∂γ

∂ t
+∇ ·Jγ = Πγ (31)

102



where Jγ = diag[Jα j ] and Πγ = diag[Πα j ].
It is then further assumed that there exist functions Φα j(γ)

(Liu’s Lagrange multipliers [16]) that we denote here in matrix
form by

Φ = diag(Φα j) (32)

such that the local entropy production density can be written as

ΠS =
n

∑
j=1

Φα j Πα j = (Φ|Πγ) (33)

and must be nonnegative everywhere.
For our development in this paper we shall additionally as-

sume that there also exist functions Ψiα j(γ) that we denote in
vector form by

Ψi = diag(Ψiα j) (34)

such that the production density of each conserved property Ci
can be written as

ΠCi =
n

∑
j=1

Ψiα j Πα j = (Ψi|Πγ) (35)

Typically, but not necessarily, the first five underlying fields
α j(x, t) for j = 1, . . . ,5 are conveniently chosen to coincide with
the energy, momentum, and mass densities, so that Eqs. (30) for
j = 1, . . . ,5 coincide with Eqs. (27) because Πα j = 0 for this
subset of conserved fields.

The above framework reduces to the traditional Onsager the-
ory of macroscopic Non-Equilibrium Thermodynamics (NET)
[6] if the α j’s are taken to represent the local deviations of the
underlying fields from their equilibrium values. In this context,
the usual notation calls the functions Xα j =−Φα j the “thermo-
dynamic forces” and Πα j the “thermodynamic currents”.

The same framework reduces to the standard scheme of
Chemical Kinetics (CK) if the α j’s are taken to represent the
local reaction coordinates, Πα j the local rate of advancement
of reaction j, Φα j its entropic affinity, Ci the local concentra-
tion of atomic elements of kind i, ΠCi = 0 their local production
density.

Below, in the section on SAE/MEP dynamics, we construct
an equation of motion for γ such that ΠS is maximal subject to
the conservation constraints ΠCi = 0 and a suitable additional
constraint we discuss therein.

FRAMEWORK E. MESOSCOPIC NON-EQUILIBRIUM
THERMODYNAMICS

Let L be the set of all n × n diagonal matrixes A =
diag(a j(γ)), B = diag(b j(γ)), . . . whose entries a j(γ), b j(γ),
. . . are real, square-integrable functions of a set of mesoscopic
properties usually denoted by α1, . . . ,αm that here we denote
synthetically by defining the matrix

γ = diag(α1, . . . ,αm) (36)

and denoting its m-dimensional range by Ωγ , usually called the
ααα-space. Let L be equipped with the inner product (·|·) defined
by

(A|B) =
n

∑
i=1

Tr(aibi) =
n

∑
i=1

∫
Ωγ

ai(γ)bi(γ) dΩγ (37)

where Tr(·) in this framework denotes
∫

Ωγ
·dΩγ , with dΩγ =

dα1 · · ·dαm.
In Mesoscopic Non-Equilibrium Thermodynamics (MNET)

(see, e.g., [6]) the α j’s are the set of mesoscopic (coarse
grained) local extensive properties assumed to represent the lo-
cal non-equilibrium state of the portion of continuum under

study. The mesoscopic description of the local state at position
x and time t is in terms of a probability density on the ααα-space
Ωγ , that we denote by P(γ;x, t). P(γ;x, t)dΩγ represents the
probability that the values of the underlying fields are between
γ and γ +dγ .

It is assumed that the probability density P obeys a continuity
equation that we may write as follows

DP
Dt

=
∂P
∂ t

+ c ·∇P =−∇γ ·Πγ (38)

where c = c(γ) is the particle velocity expressed in terms of the
underlying fields (usually it is convenient to take the first three
α j’s to coincide with the velocity components) and we define
for shorthand

Πγ = diag(Πα j) and ∇γ = diag
(

∂

∂α j

)
(39)

where the Πα j ’s are interpreted as the components of a stream-
ing flux in Ωγ , i.e., a current in the space of mesoscopic coordi-
nates.

The conserved fields Ci(x, t) have an associated underlying
extensive property which can be expressed in terms of the meso-
scopic coordinates as ψi(γ). They obey the balance equation

DCi

Dt
=

∂Ci

∂ t
+∇ ·JCi = ΠCi = 0 (40)

where local density Ci(x, t), the local flux JCi(x, t) and the local
production density ΠCi(x, t) are defined as follows

Ci(x, t) =
∫

Ωγ

ψi(γ)P(γ;x, t)dΩγ

JCi(x, t) =
∫

Ωγ

ψi(γ)c(γ)P(γ;x, t)dΩγ

ΠCi(x, t) =
∫

Ωγ

ψi(γ)
DP
Dt

(γ;x, t)dΩγ

= −
∫

Ωγ

ψi(γ)∇γ ·Πγ dΩγ

=
∫

Ωγ

Πγ ·∇γ ψi(γ) dΩγ

= (Ψi|Πγ) (41)
where in the next to the last equation we integrated by parts and
assumed that currents in ααα-space decay sufficiently fast to zero
as the γ j’s→ ∞, and we defined

Ψi = ∇γ ψi(γ) (42)
The entropy balance equation takes the form

DS
Dt

=
∂S
∂ t

+∇ ·JS = ΠS (43)

where the local density S(x, t), the local flux JS(x, t) and the lo-
cal production density ΠS(x, t) are defined in terms of the asso-
ciated extensive property expressed in terms of the mesoscopic
coordinates as

φ(γ) =−k lnP(γ) (44)
as follows

S(x, t) =
∫

Ωγ

φ(γ)P(γ;x, t)dΩγ

JS(x, t) =
∫

Ωγ

φ(γ)c(γ)P(γ;x, t)dΩγ

ΠS(x, t) =
∫

Ωγ

φ(γ)
DP
Dt

(γ;x, t)dΩγ

= −
∫

Ωγ

φ(γ)∇γ ·Πγ dΩγ

=
∫

Ωγ

Πγ ·∇γ φ(γ) dΩγ

= (Φ|Πγ) (45)
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where again in the next to the last equation we integrated by
parts and we defined

Φ = ∇γ φ(γ) (46)

Below, in the section on SAE/MEP dynamics, we construct
an equation of motion for γ such that ΠS is maximal subject to
the conservation constraints ΠCi = 0 and a suitable additional
constraint we discuss therein. The result, when introduced in
Eq. (38) will yield the Fokker-Planck equation for P(γ;x, t)
which is also related (see, e.g., [17]) to the GENERIC structure
[18]. The formalism can also be readily extended to the fam-
ily of Tsallis [19] entropies in the frameworks of non-extensive
thermodynamic models [20].

FRAMEWORK F: QUANTUM STATISTICAL ME-
CHANICS, QUANTUM INFORMATION THEORY,
QUANTUM THERMODYNAMICS, MESOSCOPIC NON-
EQUILIBRIUM QUANTUM THERMODYNAMICS, AND
INTRINSIC QUANTUM THERMODYNAMICS

Let H be the Hilbert space (dim H ≤ ∞) associated with
the physical system, and L the set of all linear operators A, B,
. . . on H , equipped with the real inner product (·|·) defined by

(A|B) = Tr
(
A†B+B†A

)
/2 (47)

where A† denotes the adjoint of operator A and Tr(·) the trace
functional.

In the quantum frameworks that we consider in this section,
the state representative is the density operator ρ , i.e., a unit-
trace, self-adjoint, and nonnegative-definite element of L .

Instead, also here we will adopt the state representation in
terms of the generalized square root of the density operator, that
we developed in this context [2; 3; 4; 5] in order to easily impose
the constraints of preservation of both the nonnegativity and the
self-adjointness of ρ during its time evolution. Therefore, we
assume that the state representative is an element γ in L from
which we can compute the density operator as follows

ρ = γγ
† (48)

In other words, we adopt as state representative not the density
operator ρ itself but its generalized square root γ . Therefore, we
clearly have

dρ

dt
= γ

dγ†
dt

+
dγ

dt
γ

† (49)

We then consider the set of operators corresponding to the
conserved properties, denoted synthetically as

{Ci}=
{

H,Mx,My,Mz,N1, . . . ,Nr, I
}

(50)

Here we assume that these are self-adjoint operators in L , that
each M j and Ni commutes with H, i.e., HM j = M jH for j =
x,y,z and HNi = NiH for i = 1, . . . ,r, and that I is the identity
operator.1

1In simplified models, the set {Ci} is often restricted to only {H, I}. Oper-
ators Mx, My, Mz are the components of the momentum operator. Operator Ni,
for i = 1, . . . , r, is the number operator for particles of type i in the system. If
the system is closed to particle exchange, it has a fixed number ni of particles
of type i, then Ni = niI, i.e., it is a c-number operator, where I is the identity
operator on H . If the system is open to particle exchange, then the Hilbert
space H is a Fock space, i.e.,

H =
∞⊕

j1=0

· · ·
∞⊕

jr=0

H j1 j2 ... jr and Ni =
∞

∑
j1=0
· · ·

∞

∑
jr=0

ji I j1 j2 ... jr

where I j1 j2 ... jr is the projector operator onto the subspace H j1 j2 ... jr belonging
to the composition with j1 particles of type 1, j2 particles of type 2, and so on.

The semi-empirical description of an irreversible relaxation
process is done in this framework by assuming an evolution
equation for the state γ given by the equations

dγ

dt
+

i
h̄

Hγ = Πγ (51)

dγ†

dt
− i

h̄
γ

†H = Π
γ† (52)

As a result, it is easy to verify that for the density operator the
dynamical equation is

dρ

dt
+

i
h̄
[H,ρ] = Πγ γ

† + γ Π
γ† (53)

where [·, ·] denotes the commutator. From this we see that in
order to preserve hermiticity of ρ the dissipative terms Πγ and
Π

γ† must satisfy the conditions

Π
γ† = Π

†
γ and Πγ = Π

†
γ† (54)

In order to satisfy the constraints of conservation of the ex-
pectation values Tr(ρCi), recalling that each Ci commutes with
H, the term Πγ must be such that

ΠCi =
d
dt

Tr(ρCi) = Tr(CiΠγ γ
† + γ Π

γ†Ci) = (2Ciγ|Πγ) = 0
(55)

The entropy functional in this context is represented by
S(γ) =−kTr(ρ lnρ) = (−k(lnγγ

†)γ|γ) (56)
so that the rate of entropy production under a time evolution that
preserves the normalization of ρ is given by

ΠS =−k
d
dt

Tr(ρ lnρ) = (−2k(lnγγ
†)γ|Πγ) (57)

In Quantum Statistical Mechanics (QSM) and Quantum In-
formation Theory (QIT), ρ is the von Neumann statistical or
density operator which represents the index of statistics from a
generally heterogeneous ensemble of identical systems (same
Hilbert space H and operators {H,N1, . . . ,Nr}) distributed
over a range of generally different quantum mechanical states.
If each individual member of the ensemble is isolated and un-
correlated from the rest of the universe, its state is described
according to Quantum Mechanics by an idempotent density op-
erator (ρ2 = ρ = P|ψ〉 =

|ψ〉〈ψ|
〈ψ|ψ〉 ), i.e., a projection operator onto

the span of some vector |ψ〉 in H . If the ensemble is heteroge-
neous, its individual member systems may be in different states,
P|ψ1〉, P|ψ2〉, and so on, and the ensemble statistics is captured
by the von Neumann statistical operator ρ = ∑ j w jP|ψ j〉. The
entropy functional here represents a measure of the informa-
tional uncertainty as to which homogeneous subensemble the
next system will be drawn from, i.e., as to which will be the
actual pure quantum state among those present in the heteroge-
neous ensemble.

In this framework, unless the statistical weights w j change
for some extrinsic reason, the quantum evolution of the en-
semble is given by Eq. (53) with Πγ = 0 so that Eq. (53) re-
duces to von Neumann’s equation of quantum reversible evolu-
tion, corresponding to ρ(t) =∑ j w jP|ψ j(t)〉 where the underlying
pure states |ψ j(t)〉 evolve according to the Schrödinger equation
d|ψ j〉/dt =−iH|ψ j〉/h̄.

In the framework of QSM and QIT, the SEA equation of
motion we construct in the next sections for ρ represents a
model for the rates of change of statistical weights w j in such a
way that ΠS is maximal subject to the conservation constraints
ΠCi = 0 (and a suitable additional constraint, see below), thus
essentially extends to the quantum landscape the same statis-
tical or information theoretic non-equilibrium problem we de-
fined above as Framework C.
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In Quantum Thermodynamics (QT), instead, the density op-
erator takes on a more fundamental physical meaning. It is not
any longer related to the heterogeneity of the ensemble, and it
is not any longer assumed that the individual member systems
of the ensemble are in pure states.

The prevailing interpretation of QT is the so-called open-
system model whereby the quantum system under study (each
individual system of a homogeneous ensemble) is always
viewed as in contact (weak or strong) with a thermal reservoir
or ’heat bath’, and its not being in a pure state is an indication of
its being correlated with the reservoir. The overall system-plus-
bath composite is assumed to be in a pure quantum mechanical
state H ⊗HR and reduces to the density operator ρ on the sys-
tem’s space H when we partial trace over the bath’s space HR.

The semi-empirical description of an irreversible relaxation
process is done in this framework by assuming for Πρ in Eq.
(53) the Lindblad-Gorini-Kossakowski-Sudarshan (LGKS) [21;
22]

Πρ = ∑
j

(
VjρV †

j −½ {V †
j Vj,ρ}

)
(58)

where {·, ·} denotes the anticommutator and operators Vj are to
be chosen so as to properly model the system-bath interaction.
The justification and modeling assumptions that lead to the gen-
eral form of Eq. (58) are well known.

In the framework of QT the SEA equation of motion we con-
struct in the next sections for ρ represents an alternative model
for Πρ (or for a term additional to the LGKS term) such that ΠS
is maximal subject to the conservation constraints ΠCi = 0 (and
a suitable additional constraint, see below). In some cases this
could be simpler than the LGKS model and it has the advantage
of a strong built-in thermodynamics consistency.

Mesoscopic Non-Equilibrium Quantum Thermodynamics
(MNEQT) [7] starts from the formalism of QSM but attempts
to extend the Onsager NET theory and MNET to the quantum
realm. We will show elsewhere that the present SEA formula-
tion reduces to MNEQT in the near-equilibrium limit, and can
therefore be viewed as the natural extension of MNEQT. The es-
sential elements of this proof have actually already been given
[4], but only for the particular case corresponding to Eq. (62)
below (Fisher-Rao metric).

An even more fundamental physical meaning is assumed
within the theory that we originally called Quantum Thermo-
dynamics [2; 3; 23; 24; 25; 26] but more recently renamed
Intrinsic Quantum Thermodynamics (IQT) to avoid confusion
with the QT model just outlined.

IQT assumes that the second law of thermodynamics should
complement the laws of mechanics even at the single particle
level [23]. This can be done if we accept that the true individual
quantum state of a system, even if fully isolated and uncorre-
lated from the rest of the universe, requires density operators ρ

that are not necessarily idempotent. Over the set of idempotent
ρ’s, QT coincides with Quantum Mechanics (QM), but it dif-
fers fundamentally from QM because it assumes a broader set
of possible states, corresponding to the set of non-idempotent
ρ’s. This way, the entropy functional S(ρ) becomes in IQT an
intrinsic fundamental property.2

In the framework of IQT the SEA equation of motion (53)

2In a sense it accomplishes the conceptual program, so intensely sought for
also by Ilya Prigogine and coworkers [27], of answering the following questions
[2]: What if entropy, rather than a statistical, information theoretic, macro-
scopic or phenomenological concept, were an intrinsic property of matter in
the same sense as energy is universally understood to be an intrinsic property
of matter? What if irreversibility were an intrinsic feature of the fundamental

for ρ which results from the expression for Πγ we construct in
the next section represents a strong implementation of the MEP
principle at the fundamental quantum level and generalizes the
original framework in which we developed the SEA formalism
about 30 years ago by making it compatible, at least in the near-
equilibrium limit with MNEQT.

Even the brief discussion above shows clearly that the dif-
ferences between QSM, QIT, QT, and IQT are important on the
interpretational and conceptual levels. Nevertheless, it is also
clear that they all share the same basic mathematical framework.
Hence, we believe that the SEA dynamical model, which they
share on the mathematical basis, can find in the different theo-
ries different physical interpretations and applications.

STEEPEST-ENTROPY-ASCENT/MAXIMAL-ENTROPY-
PRODUCTION DYNAMICS. UNIFIED VARIATIONAL
FORMULATION FOR FRAMEWORKS A TO F

In the preceding sections we formulated the non-equilibrium
problem in various different frameworks in a unifying way that
allows us to represent their dissipative parts in a single formal
way. In essence, the state is represented by an element γ of a
suitable vector space L equipped with an inner product (·|·).
The term in the dynamical equation for γ which is responsible
for dissipative irreversible relaxation and hence entropy gener-
ation is another element Πγ of L which determines the rate of
entropy production according to the relation

ΠS = (Φ|Πγ) (59)
and the rates of production of the conserved properties Ci ac-
cording to the relation

ΠCi = (Ψi|Πγ) (60)
Except for the RET Framework D, where we have no explicit
expressions for Φ and Ψi, in Frameworks A, B, C we found that
Φ =−k(lnγ2)γ and Ψi = 2Ciγ , in Framework F we found that
Φ =−k(lnγγ†)γ and Ψi = 2Ciγ .

The formulation in terms of square roots of probabilities in
Framework C, of the phase density in Frameworks A and B, of
the density operator in Framework F takes care of the important
condition that for the evolution law to be well defined it must
conserve the nonnegativity of probabilities, phase densities and
density operators (which must also remain self adjoint).

Our next objective is to implement the MEP principle. We
do this by assuming that the time evolution of the state γ fol-
lows the path of steepest entropy ascent in L . So, for any given
state γ , we must find the Πγ which maximizes the entropy pro-
duction ΠS subject to the constraints ΠCi = 0. But in order to
identify the SEA path we are not interested in the unconditional
increase in ΠS that we can trivially obtain by simply increasing
the “norm” of Πγ while keeping its direction fixed. Rather, the
SEA path is identified by the direction of Πγ which maximizes
ΠS subject to the constraints, regardless of norm of Πγ . Hence,
we must do the maximization at constant norm of Πγ .

The norm of Πγ represents the square of the distance d` trav-
eled by γ in the state space L in the time interval dt, the square
of the “length” of the infinitesimal bit of path traveled in state
space in the interval dt. The variational problem that identi-
fies the SAE/MEP direction at each state γ looks at all possible

dynamical laws obeyed by all physical objects, macroscopic and microscopic,
complex and simple, large and small? What if the second law of thermodynam-
ics, in the hierarchy of physical laws, were at the same level as the fundamental
laws of mechanics, such as the great conservation principles? When viewed
from such extreme perspective, the IQT conceptual scheme remains today as
“adventurous” as it was acutely perceived by John Maddox in 1985 [28].105



paths through γ , each characterized by a possible choice for Πγ .
Among all these paths it selects the one with the highest en-
tropy produced in the interval dt, ΠS dt per unit of distance d`
traveled by γ .

It is therefore apparent that we cannot identify a SAE/MEP
path until we equip the space L with a metric with respect to
which to compute the distance d` traveled and the norm of Πγ .

In our previous work [5], we selected the Fisher-Rao metric
based on the inner product (·|·) defined on L . Indeed, in deal-
ing with probability distributions it has been argued by several
authors that the Fisher-Rao metric is the proper unique metric
for the purpose of computing the distance between two prob-
ability distributions (see e.g. [29; 30; 31]). According to this
metric, the distance between two states γ1 and γ2 is given by

d(γ1,γ2) =
√

2arccos(γ1|γ2) (61)
which implies that the distance traveled along a trajectory in
state space is

d`= 2
√
(Πγ |Πγ)dt (62)

As a result, for Framework F the SEA dynamics we have origi-
nally proposed is most straightforward.

However, here we will adopt a more general metric, which
in Framework F generalizes our previous work and in the other
frameworks provides a most general formulation. We assume
the following expression for the distance traveled along a tra-
jectory in state space

d`=
√
(Πγ | Ĝ |Πγ)dt (63)

where Ĝ is a real, symmetric, and positive-definite operator
on L that we call the metric tensor, (super)matrix, or (su-
per)operator depeding on the framework. In Framework F, since
L is the space of operators on the Hilbert space H of the quan-
tum system, Ĝ is a superoperator on H . However, a simple case
is when Ĝ|A) = |GA) with G some self-adjoint positive-definite
operator in L .

We may now finally state the SAE/MEP variational prob-
lem and solve it. The problem is to find the instantaneous
“direction” of Πγ which maximizes the entropy production
rate ΠS subject to the constraints ΠCi = 0. We solve it by
maximizing the entropy production rate ΠS subject to the con-
straints ΠCi = 0 and the additional constraint (d`/dt)2 = ε̇2 =
prescribed. The last constraint keeps the norm of Πγ constant
so that we maximize only with respect to its direction. From
Eq. (63) it amounts to keeping fixed the value of (Πγ | Ĝ |Πγ) at
some small positive constant ε̇2. The solution is easily obtained
by the method of Lagrange multipliers. We seek the uncon-
strained maximum, with respect to Πγ , of the Lagrangian

ϒ = ΠS−∑
i

βi ΠCi − τ [(Πγ | Ĝ |Πγ)− ε̇
2] (64)

where βi and τ are the Lagrange multipliers. They must be in-
dependent of Πγ but can be functions of the state γ . Using Eqs.
(59) and (60), we rewrite (64) as follows

ϒ = (Φ|Πγ)−∑
i

βi (Ψi|Πγ)− τ [(Πγ | Ĝ |Πγ)− ε̇
2] (65)

Taking the variational derivative of ϒ with respect to |Πγ) and
setting it equal to zero we obtain

δϒ

|δΠγ)
= |Φ)−∑

i
βi |Ψi)− τĜ|Πγ) = 0 (66)

Thus, we obtain the SEA/MEP general evolution equation (the
main result of this paper)

|Πγ) = L̂ |Φ−∑
j

β j Ψ j) (67)

where we define for convenience

L̂ =
1
τ

Ĝ−1 (68)

Since in the various frameworks L̂ can be connected with
the generalized Onsager conductivity (super)matrix in the near
equilibrium regime, we see here that τL̂ is the inverse of the
metric (super)matrix Ĝ with respect to which the dynamics is
SEA/MEP. In other words, denoting the generalized Onsager
resistivity (super)matrix by R̂ we have: R̂ = τ Ĝ. Since, Ĝ is
positive definite and symmetric, so are L̂ and R̂. In other words,
the SEA assumption entails Onsager reciprocity.

Inserting Eq. (67) into the conservation constraints (60)
yields the important system of equations which defines the val-
ues of the Lagrange multipliers β j,

∑
j
(Ψi| L̂ |Ψ j)β j = (Ψi| L̂ |Φ) (69)

This system can be readily solved for the β j’s (for example by
Cramer’s rule) because the functionals (Ψi|L̂|Ψ j) and (Ψi|L̂|Φ)
are readily computable for the current state γ . When Cramer’s
rule is worked out explicitly, the SEA equation (67) takes the
form of a ratio of determinants with which we presented it in
the IQT framework [24; 25; 26; 5].

We can now immediately prove the general consistence
with the thermodynamic principle of entropy non-decrease (H-
theorem in Framework B). Indeed, subtracting Eqs. (60) each
multiplied by the corresponding β j’s from Eq. (59) and then in-
serting Eq. (67) yields the following explicit expression for rate
of entropy production

ΠS = (Φ|Πγ) = (Φ−∑
j

β j Ψ j|Πγ)

= (Φ−∑
i

βi Ψi| L̂ |Φ−∑
j

β j Ψ j)≥ 0 (70)

which is clearly nonnegative-definite by virtue, again, of the
nonnegativity that must be assumed for a well defined metric
superoperator Ĝ.

It is interesting to write the expression for the (prescribed)
speed d`/dt at which the state γ evolves along the SEA/MEP
path. This amounts to inserting Eq. (67) into the additional con-
straint (d`/dt)2 = ε̇2 = prescribed. We readily find

d`2

dt2 = (Πγ | Ĝ |Πγ)

=
1
τ2 (Φ−∑

i
βi Ψi| Ĝ−1ĜĜ−1 |Φ−∑

j
β j Ψ j) (71)

=
1
τ

ΠS = ε̇
2 (72)

from which we see that the Lagrange multiplier τ is related to
the entropy production rate and the speed d`/dt. In other words,
through τ we may specify either the speed at which γ evolves
along the SEA/MEP trajectory in state space or the instanta-
neous rate of entropy production. Indeed, using Eq. (71), we
obtain

τ =

√
(Φ−∑i βi Ψi| Ĝ−1 |Φ−∑ j β j Ψ j)

d`/dt
(73)

=
(Φ−∑i βi Ψi| Ĝ−1 |Φ−∑ j β j Ψ j)

ΠS
(74)

Hence, using τ given by Eq. (74) the evolution equation Eq. (67)
will produce a SEA/MEP trajectory in state space with the pre-
scribed entropy production ΠS. Eq. (74) also clearly supports
the interpretation of τ as the “overall relaxation time”.
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In general, we may interpret the vector
|Λ) = Ĝ−1/2 |Φ−∑

i
βi Ψi) (75)

as a vector of “generalized partial affinities”. In terms of this
vector, Eq. (67) rewrites as

Ĝ1/2 |Πγ) =
1
τ
|Λ) (76)

When only some of the partial affinities in the vector Λ are zero,
the state is partially equilibrated (equilibrated with respect to
the corresponding underlying components of the state γ). When
the entries of the vector Λ are all zero, then and only then we
have an equilibrium state or a non-dissipative limit cycle. In
fact, that is when and only when the entropy production van-
ishes. (Λ|Λ), which with respect to the metric tensor Ĝ is the
norm of the vector Φ−∑ j β j Ψ j, represents a measure of the
“overall degree of disequilibrium”. It is important to note that
this definition is valid no matter how far the state is from the
(maximum entropy) stable equilibrium state, i.e., also for highly
non-equilibrium states.

Eq. (74) rewrites as

ΠS =
(Λ|Λ)

τ
(77)

which shows that the rate of entropy production is proportional
to the overall degree of disequilibrium. The relaxation time τ

may be a state functional and needs not be constant, but even if
it is, the SEA principle provides a nontrivial non-linear evolu-
tion equation that is well defined and reasonable even far from
equilibrium.

We finally note that when the only contribution to the en-
tropy change comes from the production term ΠS (for exam-
ple in Framework B in the case of homogeneous relaxation in
the absence of entropy fluxes, or in Framework F for an iso-
lated system), i.e., when the entropy balance equation reduces
to dS/dt = ΠS, Eq. (72 ) may be rewritten as

d`
dt/τ

=
dS
d`

(78)

from which we see that when time t is measured in units of τ the
”speed” along the SEA trajectory is equal to the local entropy
gradient along the trajectory.

If the state γ moves only due to the dissipative term Πγ (for
example in Framework F when [H,γγ†] = 0), then the overall
length of the trajectory in state space traveled between t = 0
and t is given by

`(t) =
∫ t

0

√
(Πγ | Ĝ |Πγ)dt (79)

and, correspondingly, we may also define the “non-equilibrium
action”

Σ =
1
2

∫ t

0
(Πγ | Ĝ |Πγ)dt =

1
2

∫ t

0

ΠS

τ
dt =

1
2

∫ t

0

(Λ|Λ)
τ2 dt (80)

where for the last two equalities we used Eq. (72) and Eq. (77),
respectively.

The explicit expressions of the SEA/MEP dynamical equa-
tions that result in the six different frameworks treated here can
be readily obtained but will be given elsewhere.

PICTORIAL REPRESENTATIONS

Let us give pictorial representations of the vectors that we
defined in the SEA/MEP construction. We consider first the
simplest scenario of a uniform metric tensor Ĝ = Î.

Figure 1 gives a pictorial representation of the linear man-
ifold spanned by the vectors |Ψi)’s and the orthogonal pro-
jection of |Φ) which defines the Lagrange multipliers βi in

Figure 1. Pictorial representation of the linear manifold spanned by the
vectors |Ψi) and the orthogonal projection of |Φ) onto this manifold
which defines the Lagrange multipliers βi in the case of a uniform metric
Ĝ = Î. The construction defines also the generalized affinity vector,
which in this case is |Λ) = |Φ−∑i βi Ψi).

Figure 2. Pictorial representation of the SEA/MEP variational construc-
tion in the case of a uniform metric Ĝ= Î. The circle represents the con-
dition (Πγ |Πγ)= ε̇2. The vector |Πγ)must be orthogonal to the |Ψi)’s
in order to satisfy the conservation constraints ΠCi = (Ψi|Πγ) = 0. In
order to maximize the scalar product (Φ−∑i βi Ψi|Πγ), |Πγ) must
have the same direction as |Φ−∑i βi Ψi).

the case of uniform metric, i.e., the orthogonality conditions
(Ψ j|Φ−∑i βi Ψi) = 0 for every j, which is Eq. (69) with L̂ = Î.
The construction defines also the generalized affinity vector,
which in this case is |Λ) = |Φ−∑i βi Ψi) and is orthogonal to
the linear manifold spanned by the vectors |Ψi)’s.

Figure 2 gives a pictorial representation of the subspace or-
thogonal to the linear manifold spanned by the |Ψi)’s that here
we denote for simplicity by {|Ψi)}. The vector |Φ) is decom-
posed into its component |∑i βi Ψi) which lies in {Ψi} and its
component |Φ−∑i βi Ψi) which lies in the orthogonal subspace.

The circle in Figure 2 represents the condition (Πγ |Πγ) = ε̇2

corresponding in the uniform metric to the prescribed rate of
advancement in state space, ε̇2 = (d`/dt)2. The compatibility
with the conservation constraints ΠCi = (Ψi|Πγ) = 0 requires
that |Πγ) lies in subspace orthogonal to the |Ψi)’s. To take
the SEA the direction |Πγ) must maximize the scalar product
(Φ−∑i βi Ψi|Πγ). This clearly happens when |Πγ) has the same
direction as the vector |Φ−∑i βi Ψi) which in the uniform met-
ric coincides with the generalized affinity vector |Λ).

Next, we consider the more general scenario of a non-
uniform metric tensor Ĝ. Figure 3 gives a pictorial represen-
tation of the linear manifold spanned by the vectors Ĝ−1/2 |Ψi)
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Figure 3. Pictorial representation of the linear manifold spanned by the
vectors Ĝ−1/2 Ψi and the orthogonal projection of Ĝ−1/2 |Φ) onto this
manifold which defines the Lagrange multipliers βi in the case of a non-
uniform metric Ĝ. The construction defines also the generalized affinity
vector |Λ) = Ĝ−1/2 |Φ−∑i βi Ψi).

Figure 4. Pictorial representation of the SEA/MEP variational construc-
tion in the case of a non-uniform metric Ĝ. The circle represents
the condition (Πγ | Ĝ |Πγ) = ε̇2, corresponding to the norm of vector

Ĝ1/2 |Πγ). This vector must be orthogonal to the Ĝ−1/2 |Ψi)’s in order
to satisfy the conservation constraints ΠCi = (Ψi|Πγ) = 0. In order
to maximize the scalar product ΠS = (Φ|Πγ) = (Φ−∑i βi Ψi|Πγ),

vector Ĝ1/2 |Πγ) must have the same direction as |Λ) = Ĝ−1/2 |Φ−
∑i βi Ψi).

and the orthogonal projection of Ĝ−1/2 |Φ) which defines the
Lagrange multipliers βi in the case of non-uniform metric
Ĝ, where the orthogonality conditions that define the βi’s are
(Ψ j| Ĝ−1 |Φ−∑i βi Ψi) = 0 for every j, which is Eq. (69). The
construction defines also the generalized affinity vector |Λ) =
Ĝ−1/2 |Φ−∑i βi Ψi) which is orthogonal to the linear manifold
spanned by the vectors Ĝ−1/2 |Ψi)’s.

Figure 4 gives a pictorial representation of the subspace or-
thogonal to the linear manifold spanned by the Ĝ−1/2 |Ψi)’s
that here we denote for simplicity by {Ĝ−1/2 |Ψi)}. The vector
Ĝ−1/2 |Φ) is decomposed into its component Ĝ−1/2 |∑i βi Ψi)
which lies in {Ĝ−1/2 |Ψi)} and its component |Λ) = Ĝ−1/2 |Φ−
∑i βi Ψi) which lies in the orthogonal subspace.

The circle in Figure 4 represents the more general condi-
tion (Πγ | Ĝ |Πγ) = ε̇2 corresponding in the non-uniform met-
ric to the prescribed rate of advancement in state space, ε̇2 =
(d`/dt)2. It is clear that the direction of Ĝ1/2 |Πγ) which max-
imizes the scalar product (Φ−∑i βi Ψi|Πγ), is when |Πγ) is in
the direction of the point of tangency between the ellipse and a

line orthogonal to |Φ−∑i βi Ψi).
The compatibility with the conservation constraints ΠCi =

(Ψi|Πγ) = 0 requires that Ĝ1/2 |Πγ) lies in subspace orthogonal
to the Ĝ−1/2 |Ψi)’s. To take the SEA/MEP direction, the vector
Ĝ1/2 |Πγ) must maximize the scalar product (Φ−∑i βi Ψi|Πγ),
which is equal to the entropy production ΠS = (Φ|Πγ) since
(Ψi|Πγ) = 0. This clearly happens when |Πγ) has the same
direction as the generalized affinity vector |Λ) = Ĝ−1/2 |Φ−
∑i βi Ψi).

CONCLUSIONS

In this paper, we review the essential mathematical elements
of the formulations of six different approaches to the descrip-
tion of non-equilibrium dynamics. At the price of casting some
of them in a somewhat unusual notation, we gain the possibility
to set up a unified formulation, which allows us to investigate
the locally Maximum Entropy Production (MEP) principle in all
these contexts. It is a generalization to non-homogeneous cases
of the local Steepest Entropy Ascent (SEA) concept whereby
the time evolution the state is assumed to follows a path in state
space which, with respect to an underlying metric, is always tan-
gent to the direction of maximal entropy production compatible
with the conservation constraints.

The present SEA/MEP unified formulation allows us to ex-
tend at once to all these frameworks the SEA concept which
has so far been considered only in the framework of quan-
tum thermodynamics. Actually, the present formulation con-
stitutes a generalization even in the quantum thermodynamics
framework and constitutes a natural generalization to the far-
nonequilibrium domain of Mesoscopic Non-Equilibrium Quan-
tum Thermodynamics.

The analysis emphasizes that in the SEA/MEP implementa-
tion of the MEP principle, a key role is played by the geometri-
cal metric with respect to which to measure the length of a tra-
jectory in state space. The metric tensor turns out to be directly
related to the inverse of the Onsager’s generalized conductivity
tensor.

We conclude that in most of the existing theories of non-
equilibrium the time evolution of the state representative can
be seen to actually follow in state space the path of SEA with
respect to a suitable metric connected with the generalized con-
ductivities. This is true in the near-equilibrium limit, where in
all frameworks it is possible to show that the traditional assump-
tion of linear relaxation coincides with the SEA/MEP result.
Since the generalized conductivities represent, at least in the
near-equilibrium regime, the strength of the system’s reaction
when pulled out of equilibrium, it appear that their inverse, i.e.,
the generalized resistivity tensor, represents the metric with re-
spect to which the time evolution, at least in the near equilib-
rium, is SEA/MEP.

Far from equilibrium the resulting unified family of
SAE/MEP dynamical models is a very fundamental as well as
practical starting point because it features an intrinsic consis-
tency with the second law of thermodynamics. The proof of
nonnegativity of the local entropy production density is a gen-
eral and straightforward regardless of the details of the under-
lying metric tensor. In a variety of fields of application, the
present unifying approach may prove useful in providing a new
basis for effective numerical and theoretical models of irre-
versible, conservative relaxation towards equilibrium from far
non-equilibrium states.
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ABSTRACT
Physical systems behave according to their underlying dynamical equations which, in turn, can be identified from experimental
data. Explaining data requires selecting mathematical models that best capture the data regularities. Identifying dynamical equa-
tions from the available data and statistical model selection are both very difficult tasks. Motivated by these fundamental links
among physical systems, dynamical equations, experimental data and statistical modeling, we discuss in this invited Contribu-
tion our information geometric measure of complexity of geodesic paths on curved statistical manifolds underlying the entropic
dynamics of classical physical systems described by probability distributions. We also provide several illustrative examples of
entropic dynamical models used to infer macroscopic predictions when only partial knowledge of the microscopic nature of
the system is available. Finally, we present entropic arguments to briefly address complexity softening effects due to statistical
embedding procedures.

INTRODUCTION

The intimate connection between dynamics, on the one hand,
and modeling, prediction, and complexity, on the other, is quite
remarkable in science [1]. In real-world experiments, we usu-
ally gather data of the state of a physical system at various
points in space and time. Then, to achieve some comprehen-
sion of the physics behind the behaviour of the system, we must
reconstruct the underlying dynamical equations from the data.
Deducing dynamics from experimental observations (data) is a
fundamental part of science [2], [3]. We observe the trajecto-
ries of planets to deduce the laws of celestial mechanics; we
consider monetary parameters to determine economic laws; we
observe atoms to deduce quantum mechanics. A current chal-
lenge is the analysis of data gathered from networks of interfer-
ometric gravitational-wave detectors to search for a stochastic
gravitational-wave background [4].

A very recent and extremely interesting work shows that de-
ducing the underlying dynamical equations from experimental
data is NP hard (the NP complexity class denotes a class of
problems that have solutions which can be quickly checked on a
classical computer) and is computationally intractable [5]. This
hardness result holds true for both classical and quantum sys-
tems, and regardless of how much experimental data we gather
about the system. These results imply that various closely re-
lated problems, such as finding the dynamical equation that best
approximates the data, or testing a dynamical model against ex-
perimental data, are intractable in general.

By analyzing the available data about a system of interest, it
is possible to identify classes of regularities of the system itself.
It is generally agreed that something almost entirely random,
with practically no regularities, would have an effective com-
plexity near zero [6]. Instead, structured systems (where cor-
relations among system’s constituents arise) can be very com-
plex. Structure and correlation are not completely independent

of randomness. Indeed, both maximally random and perfectly
ordered systems possess no structure [7], [8]. What then is the
meaning of complexity? It appears that:

• A good measure of complexity is best justified through
utility in further application [9];

•A good measure of complexity is most useful for compar-
ison between things, at least one of which, has high com-
plexity by that measure [6];

• A good measure of complexity for many-body systems
ought to obey the so-called slow law growth [10]: complex-
ity ought not to increase quickly, except with low probabil-
ity, but can increase slowly;

• A good measure of complexity is one for which the mo-
tivations for its introduction and the features it is intended
to capture are stated in a clear manner [7].

In general, good measures of complexity are introduced
within formulations that deal with the whole sequence of events
that lead to the object whose complexity is being described [9].
For such measures, that which is reached only through a difficult
path is complex. For instance, when defining the complexity of
a noisy quantum channel, the concept of pattern plays a role,
in some sense [11]. The thermodynamic and the logical depths
are two such measures as well. The thermodynamic depth is
the measure of complexity proposed by Lloyd and Pagels and
it represents the amount of entropy produced during a state’s
actual evolution [12]. The logical depth is a measure of com-
plexity proposed by Bennett and it represents the execution time
required for a universal Turing machine to run the minimal pro-
gram that reproduces (say) a system’s configuration [13].

Since the path leading to an object (or, state) is central when
defining a measure of complexity, simple thermodynamic crite-
ria applied to the states to be compared are inadequate. Thermo-
dynamic potentials measure a system’s capacity for irreversible
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change, but do not agree with intuitive notions of complexity
[10]. For instance, the thermodynamic entropy, a measure of
randomness, is a monotonic function of temperature where high
(low) temperature corresponds to high (low) randomness. How-
ever, given that there are many functions that vanish in the ex-
treme ordered and disordered limits, it is clear that requiring
this property does not sufficiently restrict a complexity mea-
sure of statistical nature (statistical complexity [8] is a quan-
tity that measures the amount of memory needed, on average,
to statistically reproduce a given configuration). Despite these
facts, it is undisputable that thermodynamics does play a key
role when investigating qualitative differences in the complex-
ity of reversible and dissipative systems [13].

The difficulty of constructing a good theory from a data set
can be roughly identified with cripticity while the difficulty of
making predictions from the theory can be regarded as a rough
interpretation of logical depth. Both cripticity and logical depth
are intimately related to the concept of complexity. Making
predictions can be very difficult in general, especially in com-
posite systems where interactions between subsystems are in-
troduced. The introduction of interactions leads to fluctuation
growth which, in turn, can cause the dynamics to become non-
linear and chaotic. Such phenomena are very common and
can occur in both natural (cluster of stars) and artificial (finan-
cial network) complex dynamical systems [14]. A fundamental
problem in the physics of complex systems is model reduction,
that is finding a low-dimensional model that captures the gross
features of a high-dimensional system [15]. Sometimes, to
make reliable macroscopic predictions, considering the dynam-
ics alone may not be sufficient and entropic arguments should
be taken into account as well [16].

As stated earlier, one of the major goals of physics is mod-
elling and predicting natural phenomena using relevant infor-
mation about the system of interest. Taking this statement seri-
ously, it is reasonable to expect that the laws of physics should
reflect the methods for manipulating information. This point of
view constitutes quite a departure from the conventional line of
thinking where laws of physics are used to manipulate infor-
mation. For instance, in quantum information science, infor-
mation is manipulated using the laws of quantum mechanics.
This alternative perspective is best represented in the so-called
Entropic Dynamics (ED) [17], a theoretical framework built on
both maximum relative entropy (MrE) methods [18] and infor-
mation geometric techniques [19]. The most intriguing ques-
tion being pursued in ED stems from the possibility of deriving
dynamics from purely entropic arguments. Indeed, the ED ap-
proach has already been applied for the derivation of Newton’s
dynamics [20] and aspects of quantum theory [21].

In this invited Contribution, inspired by the ED approach to
physics and motivated by these fundamental links among physi-
cal systems, dynamical equations, experimental data and statis-
tical modeling, we present our information geometric measure
of complexity of geodesic paths on curved statistical manifolds
underlying the entropic dynamics of classical physical systems
described by probability distributions. We also provide sev-
eral illustrative examples of entropic dynamical models used
to infer macroscopic predictions when only partial knowledge
of the microscopic nature of the system is available. Finally,
we emphasize the relevance of entropic arguments in address-
ing complexity softening effects due to statistical embedding
procedures.

COMPLEXITY

In [22], the so-called Information Geometric Approach to
Chaos (IGAC) was presented. The IGAC uses the ED formal-
ism to study the complexity of informational geodesic flows on
curved statistical manifolds underlying the entropic dynamics
of classical physical systems described by probability distribu-
tions.

A geodesic on a curved statistical manifold MS represents
the maximum probability path a complex dynamical system
explores in its evolution between initial and final macrostates.
Each point of the geodesic is parametrized by the macroscopic
dynamical variables {θ} defining the macrostate of the system.
Furthermore, each macrostate is in a one-to-one correspondence
with the probability distribution {p(x|θ)} representing the max-
imally probable description of the system being considered. The
quantity x is a microstate of the microspace X . The set of
macrostates forms the parameter space Dθ while the set of prob-
ability distributions forms the statistical manifold MS.

The IGAC is the information geometric analogue of conven-
tional geometrodynamical approaches [23], [24] where the clas-
sical configuration space is being replaced by a statistical man-
ifold with the additional possibility of considering chaotic dy-
namics arising from non conformally flat metrics (the Jacobi
metric is always conformally flat, instead). It is an information
geometric extension of the Jacobi geometrodynamics (the ge-
ometrization of a Hamiltonian system by transforming it to a
geodesic flow [25]).

The reformulation of dynamics in terms of a geodesic prob-
lem allows the application of a wide range of well-known ge-
ometrical techniques in the investigation of the solution space
and properties of the equation of motion. The power of the Ja-
cobi reformulation is that all of the dynamical information is
collected into a single geometric object in which all the avail-
able manifest symmetries are retained- the manifold on which
geodesic flow is induced. For example, integrability of the sys-
tem is connected with existence of Killing vectors and tensors
on this manifold. The sensitive dependence of trajectories on
initial conditions, which is a key ingredient of chaos, can be in-
vestigated from the equation of geodesic deviation. In the Rie-
mannian [23] and Finslerian [24] (a Finsler metric is obtained
from a Riemannian metric by relaxing the requirement that the
metric be quadratic on each tangent space) geometrodynamical
approach to chaos in classical Hamiltonian systems, a very chal-
lenging problem is finding a rigorous relation among sectional
curvatures, Lyapunov exponents, and the Kolmogorov-Sinai dy-
namical entropy [26].

Information metric

An n-dimensional C∞ differentiable manifold is a set of
points M admitting coordinate systems CM and satisfies the fol-
lowing two conditions: 1) each element c ∈ CM is a one-to-one
mapping from M to some open subset of Rn; 2) For all c∈ CM ,
given any one-to-one mapping ξ from M to Rn, we have that
ξ ∈ CM ⇔ ξ ◦ c−1 is a C∞ diffeomorphism. In this article, the
points of M are probability distributions. Furthermore, we con-
sider Riemannian manifolds (M , g). The Riemannian metric g
is not naturally determined by the structure of M as a manifold.
In principle, it is possible to consider an infinite number of Rie-
mannian metrics on M . A fundamental assumption in the in-
formation geometric framework is the choice of the Fisher-Rao
information metric as the metric that underlies the Riemannian
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geometry of probability distributions [19], [27], [28], namely

gµν (θ)
def
=

∫
dxp(x|θ)∂µ log p(x|θ)∂ν log p(x|θ) , (1)

with µ, ν = 1,..., n for an n-dimensional manifold and ∂µ
def
= ∂

∂θµ .
The quantity x labels the microstates of the system. The choice
of the information metric can be motivated in several ways, the
strongest of which is Cencov’s characterization theorem [29].
In this theorem, Cencov proves that the information metric is
the only Riemannian metric (except for a constant scale factor)
that is invariant under a family of probabilistically meaningful
mappings termed congruent embeddings by Markov morphism
[29], [30].

Given a statistical manifold MS with a metric gµν, the ED is
concerned with the following issue [17]: given the initial and
final states, what trajectory is the system expected to follow?
The answer turns out to be that the expected trajectory is the
geodesic that passes through the given initial and final states.
Furthermore, the trajectory follows from a principle of infer-
ence, the MrE method [18]. The objective of the MrE method
is to update from a prior distribution q to a posterior distribu-
tion P(x) given the information that the posterior lies within a
certain family of distributions p. The selected posterior P(x) is
that which maximizes the logarithm relative entropy S [p |q ],

S [p |q ] def
= −

∫
dxp(x) log

p(x)
q(x)

. (2)

Since prior information is valuable, the functional S [p |q ] has
been chosen so that rational beliefs are updated only to the ex-
tent required by the new information. We emphasize that ED is
formally similar to other generally covariant theories: the dy-
namics is reversible, the trajectories are geodesics, the system
supplies its own notion of an intrinsic time, the motion can be
derived from a variational principle of the form of Jacobi’s ac-
tion principle rather than the more familiar principle of Hamil-
ton. In short, the canonical Hamiltonian formulation of ED is
an example of a constrained information-dynamics where the
information-constraints play the role of generators of evolution.
For more details on the ED, we refer to [17].

A geodesic on a n-dimensional curved statistical manifold
MS represents the maximum probability path a complex dy-
namical system explores in its evolution between initial and
final macrostates θinitial and θfinal, respectively. Each point
of the geodesic represents a macrostate parametrized by the
macroscopic dynamical variables θ ≡

(
θ1,..., θn

)
defining the

macrostate of the system. Each component θk with k = 1,..., n
is a solution of the geodesic equation [17],

d2θk

dτ2 +Γ
k
lm

dθl

dτ

dθm

dτ
= 0. (3)

Furthermore, as stated earlier, each macrostate θ is in a one-
to-one correspondence with the probability distribution p(x|θ).
This is a distribution of the microstates x.

Entropic motion

The main objective of ED is to derive the expected trajectory
of a system, assuming it evolves from a known initial state θi to

a known final state θ f . The ED framework implicitly assumes
there exists a trajectory, in the sense that, large changes are the
result of a continuous succession of very many small changes.
Therefore, the problem of studying large changes is reduced to
the much simpler problem of studying small changes. Focusing
on small changes and assuming that the change in going from
the initial state θi to the final state θ f = θi +∆θ is sufficiently
small, the distance ∆l between such states becomes,

∆l2 def
= gµν (θ)∆θ

µ
∆θ

ν. (4)

Following Caticha’s work in [17], we explain how to determine
which states are expected to lie on the expected trajectory be-
tween θi and θ f . First, in going from the initial to the final state
the system must pass through a halfway point, that is, a state θ

that is equidistant from θi and θ f . Upon choosing the halfway
state, the expected trajectory of the system can be determined.
Indeed, there is nothing special about halfway states. For in-
stance, we could have similarly argued that in going from the
initial to the final state the system must first traverse a third of
the way, that is, it must pass through a state that is twice as
distant from θ f as it is from θi. In general, the system must
pass through an intermediate states θξ such that, having already
moved a distance dl away from the initial θi, there remains a
distance ξdl to be covered to reach the final θ f . Halfway states
have ξ = 1, third of the way states have ξ = 2, and so on. Each
different value of ξ provides a different criterion to select the
trajectory. If there are several ways to determine a trajectory,
consistency requires that all these ways should agree. The se-
lected trajectory must be independent of ξ. Therefore, the main
ED problem becomes the following: initially, the system is in
state p(x|θi) and new information in the form of constraints is
given to us; the system has moved to one of the neighboring
states in the family p(x|θξ); the problem becomes that of select-
ing the proper p(x|θξ). This new formulation of the ED prob-
lem is precisely the kind of problem to be addressed using the
MrE method. We recall that the MrE method is a method for
processing information. It allows us to go from an old set of
rational beliefs, described by the prior probability distribution,
to a new set of rational beliefs, described by the posterior dis-
tribution, when the available information is just a specification
of the family of distributions from which the posterior must be
selected. Usually, this family of posteriors is defined by the
known expected values of some relevant variables. It should
be noted however, that it is not strictly necessary for the family
of posteriors to be defined via expectation values, nor does the
information-constraints need to be linear functionals. In ED,
constraints are defined geometrically. Whenever one contem-
plates using the MrE method, it is important to specify which
entropy should be maximized. The selection of a distribution
p(x|θ) requires that the entropies to be considered must be of
the form,

S [p|q] def
= −

∫
dxp(x|θ) log

(
p(x|θ)
q(x)

)
. (5)

Equation (5) defines the entropy of p(x|θ) relative to the prior
q(x). The interpretation of q(x) as the prior follows from the
logic behind the MrE method itself. The selected posterior dis-
tribution should coincide with the prior distribution when there
are no constraints. Since the distribution that maximizes S [p|q]
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subject to no constraints is p ∝ q, we must set q(x) equal to the
prior. That said, let us return to our ED problem. Assuming
we know that the system is initially in state p(x|θi) but have
obtained no information reflecting that the system has moved.
We therefore have no reason to believe that any change has oc-
curred. The prior q(x) should be chosen so that the maximiza-
tion of S [p|q] subject to no constraints leads to the posterior p=
p(x|θi). The correct choice is q(x) = p(x|θi). If on the other
hand we know that the system is initially in state p(x|θi) and
furthermore, we obtain information that the system has moved
to one of the neighboring states in the family p(x|θξ), then the
correct selection of the posterior probability distribution is ob-
tained by maximizing the entropy,

S [θ|θi]
def
= −

∫
dxp(x|θ) log

(
p(x|θ)
p(x|θi)

)
, (6)

subject to the constraint θ = θξ. For the sake of reasoning, let
us assume that the system evolves from a known initial state θi
to a known final state θ f = θi +∆θ. Furthermore, let us denote
with θξ = θi +dθ (ξ ∈ R+

0 ) an arbitrary intermediate state in-

finitesimally close to θi. Thus, the distance d (θi, θ f )
def
= dl2

i→ f
between θi to and θ f is given by,

dl2
i→ f

def
= gµν (θ)∆θ

µ
∆θ

ν, (7)

while the distance between θi to and θξ reads,

dl2
i→ξ

def
= gµν (θ)dθ

µdθ
ν. (8)

Finally, the distance between θξ and θ f becomes,

dl2
ξ→ f

def
= gµν (θ)(∆θ

µ−dθ
µ)(∆θ

ν−dθ
ν) . (9)

The MrE maximization problem is to maximize S[θξ|θi] =
S [θi +dθ|θi],

S [θi +dθ|θi]
def
= −1

2
gµν (θ)dθ

µdθ
ν =−1

2
dl2

i→ξ
, (10)

under variations of dθ subject to the geometric constraint,

ξdli→ξ = dlξ→ f , (11)

or equivalently, ξ2dl2
i→ξ
−dl2

ξ→ f = 0. It must then be true that,

δ

[
−1

2
gµν (θ)dθ

µdθ
ν−λ

(
ξ

2dl2
i→ξ
−dl2

ξ→ f

)]
= 0, (12)

where λ denotes a Lagrangian multiplier. Substituting Eqs. (8)
and (9) into Eq. (12), we obtain

{[
1+2λ

(
ξ

2−1
)]

dθµ +2λ∆θµ
}

δ(dθ
µ) = 0. (13)

Since (13) must hold for any δ(dθµ), it must be the case that

{[
1+2λ

(
ξ

2−1
)]

dθµ +2λ∆θµ
}
= 0, (14)

that is,

dθµ = χ∆θµ, (15)

where χ = χ(ξ, λ) is defined as,

χ(ξ, λ)
def
=

1
(1−ξ2)− 1

2λ

. (16)

To find the value of the Lagrange multiplier λ, observe that the
geometric constraint in Eq. (11) can be rewritten as, ξ2dl2

i→ξ
−

dl2
ξ→ f = 0. Then, using Eqs. (8), (9) and (15), we obtain

[
ξ

2
χ

2− (1−χ)2
]

gµν (θ)∆θ
µ
∆θ

ν = 0, (17)

thus,

ξ
2
χ

2− (1−χ)2 = 0. (18)

Combining Eqs. (16) and (18), we find

χ(ξ)
def
=

1
1+ξ

and, λ(ξ)
def
= − 1

2ξ(1+ξ)
. (19)

In conclusion, it has been determined that

dl2
i→ξ

def
=

1

(1+ξ)2 ∆θ
2, (20)

and,

dl2
ξ→ f

def
=

ξ2

(1+ξ)2 ∆θ
2. (21)

From Eqs. (20) and (21), it follows that

dli→ξ +dlξ→ f =
1

1+ξ
∆θ +

ξ

1+ξ
∆θ = ∆θ. (22)

However, recall that dl2
i→ f

def
= gµν (θ)∆θµ∆θν = ∆θ2, that is

dli→ f = ∆θ. (23)

Combining Eqs. (22) and (23), we arrive at

dli→ f = dli→ξ +dlξ→ f . (24)

In other words, given

∆θ
def
= dθ+(∆θ−dθ) , (25)
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we have shown by means of entropic arguments that,

‖∆θ‖= ‖dθ‖+‖∆θ−dθ‖ , (26)

where ‖∆θ‖ def
=
√

dl2
i→ f , ‖dθ‖ def

=
√

dl2
i→ξ

and, ‖∆θ−dθ‖ def
=√

dl2
ξ→ f . Given Eq. (25), Eq. (26) holds true iff dθ and

∆θ− dθ are collinear. Therefore, the expected trajectory is a
straight line: the triangle defined by the points θi, θξ, and θ f
degenerates into a straight line. This is sufficient to determine
a short segment of the trajectory: all intermediate states lie on
the straight line between θi and θ f . The generalization beyond
short trajectories is immediate: if any three nearby points along
a curve lie on a straight line the curve is a geodesic. This result
is independent of the arbitrarily chosen value ξ so the poten-
tial consistency problem we mentioned before does not arise.
Summarizing, the answer to the ED problem is the following:
the expected trajectory between a known initial and final state
is the geodesic that passes through them. However, the ques-
tion of whether the actual trajectory is the expected trajectory
remains unanswered and depends on whether the information
encoded in the initial state is sufficient for prediction.

Volumes in curved statistical manifolds

Once the distances among probability distributions have been
assigned using the Fisher-Rao information metric tensor gµν (θ),
a natural next step is to obtain measures for extended regions in
the space of distributions. Consider an n-dimensional volume
of the statistical manifold Ms of distributions p(x|θ) labelled
by parameters θµ with µ = 1,..., n. The parameters θµ are co-
ordinates for the point p and in these coordinates it may not
be obvious how to write an expression for a volume element
dVMs . However, within a sufficiently small region any curved
space looks flat. That is to say, curved spaces are locally flat.
The idea then is rather simple: within that very small region,
we should use Cartesian coordinates wherein the metric takes
a very simple form, namely the identity matrix δµν. In locally
Cartesian coordinates χα the volume element is given by the
product dVMs

def
= dχ1dχ2.....dχn, which in terms of the old co-

ordinates reads,

dVMs

def
=

∣∣∣∣∂χ

∂θ

∣∣∣∣dθ
1dθ

2... dθ
n. (27)

The problem at hand then is the calculation of the Jacobian∣∣∣ ∂χ

∂θ

∣∣∣ of the transformation that takes the metric gµν into its
Euclidean form δµν. Let the new coordinates be defined by

χµ def
= Ξµ

(
θ1,...., θn

)
where Ξ denotes a coordinates transforma-

tion map. A small change dθ corresponds to a small change
dχ,

dχ
µ def
= Xµ

mdθ
m where Xµ

m
def
=

∂χµ

∂θm , (28)

and the Jacobian is given by the determinant of the matrix
Xµ

m,
∣∣∣ ∂χ

∂θ

∣∣∣ def
=
∣∣det

(
Xµ

m
)∣∣. The distance between two neighbor-

ing points is the same whether we compute it in terms of the
old or the new coordinates, dl2 = gµνdθµdθν = δαβdχαdχβ.

Therefore the relation between the old and the new metric is
gµν = δαβXα

µ Xβ

ν . Taking the determinant of gµν, we obtain

g def
= det(gµν) =

[
det
(
Xα

µ
)]2 and therefore

∣∣det
(
Xα

µ
)∣∣=√g. Fi-

nally, we have succeeded in expressing the volume element to-
tally in terms of the coordinates θ and the known metric gµν (θ),

dVMs

def
=
√

gdnθ. Thus, the volume of any extended region on
the manifold is given by,

VMs

def
=

∫
dVMs =

∫ √
gdn

θ. (29)

Observe that
√

gdnθ is a scalar quantity and is therefore invari-
ant under orientation preserving general coordinate transforma-
tions θ→ θ′. The square root of the determinant g(θ) of the
metric tensor gµν (θ) and the flat infinitesimal volume element
dnθ transform as,

√
g(θ) θ→θ′→

∣∣∣∣∂θ′

∂θ

∣∣∣∣√g(θ′), dn
θ

θ→θ′→
∣∣∣∣ ∂θ

∂θ′

∣∣∣∣dn
θ
′, (30)

respectively. Therefore, it follows that

√
g(θ)dn

θ
θ→θ′→

√
g(θ′)dn

θ
′. (31)

Equation (31) implies that the infinitesimal statistical volume el-
ement is invariant under general coordinate transformations that
preserve orientation (that is, with positive Jacobian). For more
details on these aspects, we suggest Caticha’s 2012 tutorial [31].

Information geometric complexity

The elements (or points) {p(x|θ)} of an n-dimensional
curved statistical manifold Ms are parametrized using n real val-
ued variables

(
θ1,..., θn

)
,

Ms
def
=
{

p(x|θ) : θ =
(
θ

1,..., θ
n) ∈D(tot)

θ

}
. (32)

The set D(tot)
θ

is the entire parameter space (available to the sys-
tem) and is a subset of Rn,

D(tot)
θ

def
=

n⊗
k=1

I
θk = (Iθ1 ⊗ Iθ2 ...⊗ Iθn)⊆ Rn (33)

where I
θk is a subset of R and represents the entire range of

allowable values for the macrovariable θk. For example, con-
sidering the statistical manifold of one-dimensional Gaussian
probability distributions parametrized in terms of θ = (µ, σ),
we obtain

D(tot)
θ

def
= Iµ⊗ Iσ = [(−∞, +∞)⊗ (0, +∞)] , (34)

with Iµ⊗ Iσ ⊆ R2. In the IGAC, we are interested in a proba-
bilistic description of the evolution of a given system in terms of
its corresponding probability distribution on Ms which is home-
omorphic to D(tot)

Θ
. Assume we are interested in the evolution
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from τinitial to τfinal. Within the present probabilistic descrip-
tion, this is equivalent to studying the shortest path (or, in terms
of the MrE methods [18], the maximally probable path) leading
from θ(τinitial) to θ(τfinal).

Is there a way to quantify the complexity of such path?
We propose the so-called information geometric entropy (IGE)
SMs (τ) as a good complexity quantifier [32]. In what follows,
we highlight the key-points leading to the construction of this
quantity.

The IGE, an indicator of temporal complexity of geodesic
paths within the IGAC framework, is defined as [32],

SMs (τ)
def
= log ṽol [Dθ (τ)] , (35)

where the average dynamical statistical volume ṽol [Dθ (τ)]
(which we also choose to name the information geometric com-
plexity (IGC)) is given by,

ṽol [Dθ (τ)]
def
=

1
τ

∫
τ

0
dτ
′vol

[
Dθ

(
τ
′)] . (36)

Note that the tilde symbol in (36) denotes the operation of tem-
poral average. The volume vol [Dθ (τ

′)] in the RHS of (36) is
given by,

vol
[
Dθ

(
τ
′)] def

=
∫

Dθ(τ′)
ρ(Ms, g)

(
θ

1,..., θ
n)dn

θ, (37)

where ρ(Ms, g)
(
θ1,..., θn

)
is the so-called Fisher density and

equals the square root of the determinant of the metric tensor
gµν (θ) with θ≡

(
θ1,..., θn

)
,

ρ(Ms, g)
(
θ

1,..., θ
n) def

=
√

g(θ). (38)

The integration space Dθ (τ
′) in (37) is defined as follows,

Dθ

(
τ
′) def

=
{

θ : θ
k (0)≤ θ

k ≤ θ
k (

τ
′)} , (39)

where k = 1,.., n and θk ≡ θk (s) with 0≤ s≤ τ′ such that,

d2θk (s)
ds2 +Γ

k
lm

dθl

ds
dθm

ds
= 0. (40)

The integration space Dθ (τ
′) in (39) is an n-dimensional sub-

space of the whole (permitted) parameter space D(tot)
θ

. The
elements of Dθ (τ

′) are the n-dimensional macrovariables {θ}
whose components θk are bounded by specified limits of inte-
gration θk (0) and θk (τ′) with k = 1,.., n. The limits of inte-
gration are obtained via integration of the n-dimensional set of
coupled nonlinear second order ordinary differential equations
characterizing the geodesic equations. Formally, the IGE is de-
fined in terms of a averaged parametric (n+1)-fold integral (τ
is the parameter) over the multidimensional geodesic paths con-
necting θ(0) to θ(τ). Further conceptual details about the IGE
and the IGC can be found in [33].

APPLICATIONS

In the following, we outline several selected applications
concerning the complexity characterization of geodesic paths
on curved statistical manifolds within the IGAC framework.

Gaussian statistical models

In [32], [34], we apply the IGAC to study the dynamics of
a system with l degrees of freedom, each one described by
two pieces of relevant information, its mean expected value
and its variance (Gaussian statistical macrostates). This leads
to consider a statistical model on a non-maximally symmetric
2l-dimensional statistical manifold Ms. It is shown that Ms
possesses a constant negative scalar curvature proportional to
the number of degrees of freedom of the system, RMs = −l.
It is found that the system explores statistical volume elements
on Ms at an exponential rate. The information geometric en-
tropy SMs increases linearly in time (statistical evolution param-
eter) and, moreover, is proportional to the number of degrees of
freedom of the system, SMs

τ→∞∼ lλτ where λ is the maximum
positive Lyapunov exponent characterizing the model. The
geodesics on Ms are hyperbolic trajectories. Using the Jacobi-
Levi-Civita (JLC) equation for geodesic spread, we show that
the Jacobi vector field intensity JMs diverges exponentially and
is proportional to the number of degrees of freedom of the sys-
tem, JMs

τ→∞∼ l exp(λτ). The exponential divergence of the Ja-
cobi vector field intensity JMs is a classical feature of chaos.
Therefore, we conclude that RMs =−l, JMs

τ→∞∼ l exp(λτ) and
SMs

τ→∞∼ lλτ. Thus, RMs , SMs and JMs behave as proper in-
dicators of chaoticity and are proportional to the number of
Gaussian-distributed microstates of the system. This propor-
tionality, even though proven in a very special case, leads to
conclude there may be a substantial link among these informa-
tion geometric indicators of chaoticity.

Gaussian statistical models and correlations

In [35], we apply the IGAC to study the information con-
strained dynamics of a system with l = 2 microscopic degrees
of freedom. As working hypothesis, we assume that such de-
grees of freedom are represented by two correlated Gaussian-
distributed microvariables characterized by the same variance.
We show that the presence of microcorrelations lead to the
emergence of an asymptotic information geometric compres-
sion of the statistical macrostates explored by the system at a
faster rate than that observed in absence of microcorrelations.
This result constitutes an important and explicit connection be-
tween micro-correlations and macro-complexity in statistical
dynamical systems. The relevance of our finding is twofold:
first, it provides a neat description of the effect of information
encoded in microscopic variables on experimentally observable
quantities defined in terms of dynamical macroscopic variables;
second, it clearly shows the change in behavior of the macro-
scopic complexity of a statistical model caused by the existence
of correlations at the underlying microscopic level.

Random frequency macroscopic IHOs

The problem of General Relativity is twofold: one is how ge-
ometry evolves, and the other is how particles move in a given
geometry. The IGAC focuses on how particles move in a given
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geometry and neglects the other problem, the evolution of the
geometry. The realization that there exist two separate and dis-
tinct problems was a turning point in our research and lead to an
unexpected result. In [20], we explore the possibility of using
well established principles of inference to derive Newtonian dy-
namics from relevant prior information codified into an appro-
priate statistical manifold. The basic assumption is that there
is an irreducible uncertainty in the location of particles so that
the state of a particle is defined by a probability distribution.
The corresponding configuration space is a statistical manifold
the geometry of which is defined by the Fisher-Rao information
metric. The trajectory follows from a principle of inference,
the MrE method. There is no need for additional physical pos-
tulates such as an action principle or equation of motion, nor
for the concept of mass, momentum and of phase space, not
even the notion of time. The resulting entropic dynamics re-
produces Newton’s mechanics for any number of particles in-
teracting among themselves and with external fields. Both the
mass of the particles and their interactions are explained as a
consequence of the underlying statistical manifold.

Following this line of reasoning, in [36], [37] we present
an information geometric analogue of the Zurek-Paz quantum
chaos criterion in the classical reversible limit. This analogy is
illustrated by applying the IGAC to a set of n-uncoupled three-
dimensional anisotropic inverted harmonic oscillators (IHOs)
characterized by a Ohmic distributed frequency spectrum.

Regular and chaotic quantum spin chains

In [38], [39], we study the entropic dynamics on curved sta-
tistical manifolds induced by classical probability distributions
of common use in the study of regular and chaotic quantum en-
ergy level statistics. Specifically, we propose an information
geometric characterization of chaotic (integrable) energy level
statistics of a quantum antiferromagnetic Ising spin chain in
a tilted (transverse) external magnetic field. We consider the
IGAC of a Poisson distribution coupled to an Exponential bath
(spin chain in a transverse magnetic field, regular case) and that
of a Wigner-Dyson distribution coupled to a Gaussian bath (spin
chain in a tilted magnetic field, chaotic case). Remarkably, we
show that in the former case the IGE exhibits asymptotic loga-
rithmic growth while in the latter case the IGE exhibits asymp-
totic linear growth. In view of these findings, we conjecture our
IGAC might find some potential physical applications in quan-
tum energy level statistics as well.

Complexity reduction and statistical embedding

In [40], we characterize the complexity of geodesic paths on
a curved statistical manifold Ms through the asymptotic compu-
tation of the IGC and the Jacobi vector field intensity JMs . The
manifold Ms is a 2l-dimensional Gaussian model reproduced by
an appropriate embedding in a larger 4l-dimensional Gaussian
manifold and endowed with a Fisher-Rao information metric
gµν (θ) with non-trivial off diagonal terms. These terms emerge
due to the presence of a correlational structure (embedding con-
straints) among the statistical variables on the larger manifold
and are characterized by macroscopic correlational coefficients
rk. First, we observe a power law decay of the information geo-
metric complexity at a rate determined by the coefficients rk and
conclude that the non-trivial off diagonal terms lead to the emer-
gence of an asymptotic information geometric compression of
the explored macrostates on Ms. Finally, we also observe that

the presence of such embedding constraints leads to an atten-
uation of the asymptotic exponential divergence of the Jacobi
vector field intensity. We are confident the work presented in
[40] constitutes a further non-trivial step towards the character-
ization of the complexity of microscopically correlated multi-
dimensional Gaussian statistical models, and other models of
relevance in realistic physical systems.

Scattering induced quantum entanglement

In [41], [42], we present an information geometric analy-
sis of entanglement generated by s-wave scattering between
two Gaussian wave packets. We conjecture that the pre and
post-collisional quantum dynamical scenarios related to an elas-
tic head-on collision are macroscopic manifestations emerging
from microscopic statistical structures. We then describe them
by uncorrelated and correlated Gaussian statistical models, re-
spectively. This allows us to express the entanglement strength
in terms of scattering potential and incident particle energies.
Furthermore, we show how the entanglement duration can be
related to the scattering potential and incident particle energies.
Finally, we discuss the connection between entanglement and
complexity of motion. We are confident that the work presented
in [41], [42] represents significant progress toward the goal of
understanding the relationship between statistical microcorrela-
tions and quantum entanglement on the one hand and the ef-
fect of microcorrelations on the complexity of informational
geodesic flows on the other. It is also our hope to build upon
the techniques employed in this work to ultimately establish a
sound information geometric interpretation of quantum entan-
glement together with its connection to complexity of motion in
more general physical scenarios.

Suppression of classical chaos and quantization

In [43], we study the information geometry and the entropic
dynamics of a 3d Gaussian statistical model. We then compare
our analysis to that of a 2d Gaussian statistical model obtained
from the higher-dimensional model via introduction of an ad-
ditional information constraint that resembles the quantum me-
chanical canonical minimum uncertainty relation. We show that
the chaoticity (temporal complexity) of the 2d Gaussian sta-
tistical model, quantified by means of the IGE and the Jacobi
vector field intensity, is softened with respect to the chaoticity
of the 3d Gaussian statistical model. In view of the similar-
ity between the information constraint on the variances and the
phase-space coarse-graining imposed by the Heisenberg uncer-
tainty relations, we suggest that our work provides a possible
way of explaining the phenomenon of suppression of classical
chaos operated by quantization.

In the same vein of our work in [43], a recent investigation
claims that quantum mechanics can reduce the statistical com-
plexity of classical models [44]. Specifically, it was shown that
mathematical models featuring quantum effects can be as pre-
dictive as classical models although implemented by simulators
that require less memory, that is, less statistical complexity. Of
course, these two works use different definitions of complexity
and their ultimate goal is definitively not the same. However, it
is remarkable that both of them exploit some quantum feature,
Heisenberg’s uncertainty principle in [43] and the quantum state
discrimination (information storage) method in [44], to exhibit
the complexity softening effects.

Is there any link between Heisenberg’s uncertainty princi-
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ple and quantum state discrimination? Recently, it was shown
that any violation of uncertainty relations in quantum mechan-
ics also leads to a violation of the second law of thermodynam-
ics [45]. In addition, it was reported in [46] that a violation
of Heisenberg’s uncertainty principle allows perfect state dis-
crimination of nonorthogonal states which, in turn, violates the
second law of thermodynamics [47]. The possibility of distin-
guishing nonorthogonal states is directly related to the question
of how much information we can store in a quantum state. Infor-
mation storage and memory are key quantities for the character-
ization of statistical complexity. In view of these considerations,
it would be worthwhile exploring the possible thermodynamic
link underlying these two different complexity measures.

CLOSING REMARKS

In this Contribution, we presented our information geomet-
ric measure of complexity of geodesic paths on curved statis-
tical manifolds underlying the entropic dynamics of classical
physical systems described by probability distributions within
the IGAC framework. We also provided several illustrative ex-
amples of entropic dynamical models used to infer macroscopic
predictions when only partial knowledge of the microscopic na-
ture of the system is available. Finally, among other things, we
also presented entropic arguments to briefly address complexity
softening effects due to statistical embedding procedures.

All too often that which is correct is not new and that which
is new is not correct. Being moderately conservative people, we
hope that what we presented satisfies at least of one these two
sub-optimal situations. We are aware that several issues remain
unsolved within the IGAC framework and much more work re-
mains to be done. However, we are immensely gratified that
our scientific vision is gaining more attention and is becoming
a source of inspiration for other researchers [48].

To conclude, we would like to outline the three possible lines
of research for future investigations:

• Extend the IGAC to a fully quantum setting where density
matrices play the analogous role of the classical probability
distributions: since quantum computation can be viewed
as geometry [49], [50] and computational tasks have, in
general, a thermodynamic cost [51], we might envision a
thermodynamics of quantum information geometric flows
on manifolds of density operators whose ultimate internal
consistency check forbids the prediction of the impossible
thermodynamic machine.

• Understand the role of thermodynamics as the possible
bridge among different complexity measures: softening ef-
fects in the classical-to-quantum transitions can occur pro-
vided that the various quantum effects being exploited by
the different complexity measures do not violate the second
law of thermodynamics;

• Describe and understand the role of thermodynamics
within the IGAC: thermodynamics plays a prominent role
in the entropic analysis of chaotic dynamics [52]. Chaotic-
ity and entropic arguments are the bread and butter of the
IGAC. Furthermore, inspired by [53], we could investi-
gate the possible connection between thermodynamics in-
efficiency measured by dissipation and ineffectiveness of
entropic dynamical models in making reliable macroscopic
predictions.
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EXTENDED ABSTRACT 

 
Recently, the first author presented a new formulation of non- qu l b  um  h  m  y am c , ba       Jay   ’ max mum      py (MaxEnt) 

method, for the analysis of dissipative flow systems [1,2,3,4]. The analysis employs a flux entropy concept, representing the uncertainty 

associated with the set of instantaneous fluxes through the boundary of a fluid control volume, as well as the instantaneous rates of spontaneous 
chemical reactions within the control volume. Applying MaxEnt, these are constrained by mean values of the fluxes through and rates within the 
element. For an open system, this yields a new nonequilibrium thermodynamic potential (Massieu function), which can be termed the flux 
potential, which is minimised at steadystate flow. This minimum then reduces, in different circumstances, to a minimum or maximum in the rate 
of entropy production, suggestive of the respective extremum principles advocated by Prigogine [5] or Paltridge and Zeigler [6, 7]. The 
implications of the analysis for dissipative flow systems have subsequently been explored [1,2,3,4,8]. The analysis leads naturally to a 
thermodynamics-inspired mathematical formulation of flow systems, with conjugate extensive and intensive parameters (flows and gradients), 
first-order and second-order derivatives (giving susceptibilities, fluctuations and Maxwell reciprocal relations), a Legendre transformation 
between entropy- and potential-based representations, and a Riemannian geometric representation of the manifold of steady states [1,2,3,4,8]. 
This framework provides a new technique for prediction of the steady state of a flow system, subject only to summary information about the 
dynamics (e.g. without requiring the full, time-varying Navier-Stokes or energy equations). 

 

 
 

Figure 1: Types of systems amenable to analysis by MaxEnt: (a) equilibrium systems, (b) local and (c) global steady-state flowsystems 
[1,2,3,4] and (d) Galerkin reduced-order model [9,10,11]. 

 
In this study, a generic version of the derivation is first provided, encompassing four seemingly disparate formulations of (a) equilibrium 

thermodynamics; (b) local and (c) global steady-state flow in physical space; and (d) a Galerkin spectral model, based on a principal orthogonal 
decomposition of the flow field [9,10,11]. These are represented in Figure 1. The local and global flow system representations require careful 
control volume analysis [4], and lead into a discussion of scale effects, the definition of steady state, analysis by compartments and the effect of 
radiative transfer. In the Galerkin decomposition, the MaxEnt closure is applied to a seven-mode Galerkin model of an incompressible periodic 
cylinder wake at Re=100. The MaxEnt prediction of mean amplitude values is shown to be in close agreement with Direct Navier-Stokes 
simulations, at much lower computation cost. For all four representations, the choice of prior probabilities is critical to the analysis, and is 
examined in detail. 
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INTRODUCTION 

Since an early investigation by Ziegler [1], maximum 
entropy production (MaxEP) has been suggested as a general 
thermodynamic property of nonlinear non-equilibrium 
phenomena, with later studies showing that the MaxEP state is 
consistent with steady states of a variety of nonlinear 
phenomena. These include the general circulation of the 
atmosphere and oceans [2–4], thermal convection [5], 
turbulent shear flow [6], climates of other planets [7], oceanic 
general circulation [8, 9], crystal growth morphology [10] and 
granular flows [11]. While the underlying physical mechanism 
is still debated, the MaxEP state is shown to be identical to a 
state of maximum generation of available energy [12, 13]. 
Moreover, recent theoretical studies suggest that the MaxEP 
state is the most probable state that is realized by 
non-equilibrium systems [14, 15].  

It is known, however, that entropy production in a linear 
process tends to decrease with time and reach a minimum in a 
final steady state when a thermodynamic intensive variable 
(such as temperature) is fixed at the system boundary. This 
tendency was first suggested for a linear chemical process in a 
discontinuous system by Prigogine [16], and then extended to 
the case of a linear diffusion process in a continuous system 
[17]. Since then, this minimum entropy production (MinEP) 
principle has become widely known in the field of 
non-equilibrium thermodynamics. Although a number of 
attempts have been made to extend this MinEP principle to a 
general one including nonlinear processes, the results remain 
controversial and inconclusive (e.g. [18, 19]). In fact, 
Prigogine [20] noted that “it came as a great surprise when it 
was shown that in systems far from equilibrium the 
thermodynamic behavior could be quite different ⎯ in fact, 
even directly opposite that predicted by the theorem of 
minimum entropy production”.  

Sawada [21] pointed out the limitations of the MinEP 
principle, and instead proposed the MaxEP principle as a 
general variational principle for nonlinear systems that are far 
from equilibrium. Dewar and Maritan [22] showed using 
Jaynes’s maximum entropy method that a state of minimum 
dissipation (MinEP) is selected for a system without dynamic 
instability, whereas that of maximum dissipation (MaxEP) is 
selected for a system with dynamic instability. It seems 
therefore that the existence of dynamic instability plays a key 
role in determining the behavior of entropy production in 
nonlinear non-equilibrium systems. However, the nature of the 
dynamic instability as well as its relation to nonlinearity 
remains unclear. Moreover, until now, we do not have a 
reasonable specification of the dynamic conditions under 
which the MinEP or MaxEP state is realized.  

In order to clarify the issues in the phenomena mentioned 
above, we have investigated the behavior of time evolution of 
entropy production in a fluid system. Based on a general 
expression of entropy production and balance equations of 
energy and momentum, we present a condition under which 
the MinEP state is realized in the course of time in a system of 
linear diffusion. We then add nonlinear advection terms in the 
balance equations, and examine the condition under which the 
MinEP state becomes unstable and the MaxEP state is realized 
in the system. We show that the rate of advection of heat or 
momentum plays an important role in the enhancement of 
entropy production in a fluid system that possesses dynamic 
instability. Results obtained from this study are summarized, 
and a few remarks are presented concerning time evolution of 
nonlinear dynamic phenomena under different external 
conditions. This study is an extention of our previous work on 
thermodynamic properties of dynamic fluid systems by Ozawa 
and Shimokawa [23].  
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ABSTRACT 
A basic expression for entropy production due to irreversible flux of heat or momentum is formulated together with balance 
equations for energy and momentum in a fluid system. It is shown that entropy production always decreases with time when 
the system is of a pure diffusion type without advection of heat or momentum. The minimum entropy production (MinEP) 
property is thus intrinsic to a pure diffusion-type system. However, this MinEP property disappears when the system is subject 
to advection of heat or momentum. When the rate of advection exceeds the rate of diffusion, entropy production tends to 
increase over time. A simple stability analysis shows that the rate of change of entropy production is proportional to the growth 
rate of an arbitrary external perturbation. The entropy production increases when the perturbation grows in the system under a 
dynamically unstable state, whereas it decreases when the perturbation is damped in the system in a stable state. The maximum 
entropy production (MaxEP) can therefore be understood as a characteristic feature of systems with dynamic instability. 
Implications of the result for time evolution of nonlinear dynamic phenomena under different external conditions are discussed 
from this thermodynamic viewpoint.  
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LINEAR DIFFUSION 

Let us consider a fluid system in which several irreversible 
processes take place. These processes can be molecular 
diffusion of heat under a temperature gradient, molecular 
diffusion of momentum under a velocity gradient, or diffusion 
of a chemical component under a gradient of density of the 
chemical component. All these diffusion processes contribute 
to an increase in entropy of the total system consisting of the 
fluid system and its surroundings. A general expression for the 
rate of entropy production per unit time by these irreversible 
processes is given by 
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˙ " = J i #X i
i
$ dV

V
% ,  (1) 

where 

! 

˙ "  is the rate of entropy production, Ji is the i-th 
diffusive flux density, Xi is the gradient in the corresponding 
intensive variable that drives the flux, and the integration is 
taken over the whole volume of the system (e.g. [18]). If the 
flux density is heat, momentum, or a chemical component, the 
corresponding intensive variable is temperature (1/T), velocity 
(–v/T), or chemical potential (–µ/T) respectively. It should be 
noted that the diffusive flux Ji does not, in principle, include a 
flux due to advection (i.e. coherent motion of fluid), which is 
intrinsically a reversible process 1 . However, advection 
significantly enhances the local gradient of the intensive 
variable at the moving front, and hence entropy production is 
also enhanced. We will see how entropy production can 
change with and without advection.  

Heat Diffusion 

As the simplest example, let us discuss diffusion of heat 
under temperature gradient in a fluid system. In this case, Eq. 
(1) is 
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where Jh is the diffusive heat flux density due to heat 
conduction, T is the temperature and Lh is the kinetic 
coefficient relating the diffusive heat flux and the temperature 
gradient: Jh = Lh ∇(1/T) = –λ ∇T, with λ = Lh/T2 being the 
thermal conductivity in Fourier’s law. In Eq. (2) we have 
assumed linearity between the diffusive heat flux and the 
temperature gradient.  

We can show that the entropy production due to heat 
diffusion [Eq. (2)] is a monotonically decreasing function of 
time when the intensive variable (T) is fixed at the boundary of 
the system and when there is no advective heat transport in the 
system. Taking the time derivative of Eq. (2), and assuming a 
constancy of Lh in the temperature range of the system (dLh/dt 
= 0), we get 
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1 One can include a reversible flux due to advection in the balance 
equation of entropy, but it results in no contribution to entropy production 
after the integration over the whole volume of a fluid system (see, e.g., 
[24], Sec. 49; [13], Sec. 2.4).  

This expression leads, with integration by parts, to  
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where n is the unit vector normal to the system boundary and 
directed to outward, and A is the surface bounding the system. 
The first surface integral varnishes when the temperature is 
fixed at the boundary (i.e. ∂T/∂t = 0). Using Fourier’s law (Jh = 
–λ ∇T) and assuming the uniformity of λ in the system (∇λ = 
0), the second volume integral leads to  
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Equation (5) shows that the rate of change of entropy 
production is a function of the heat diffusion rate (λ ∇2T) and 
the rate of change of temperature (∂T/∂t). The heat diffusion 
rate is related to the balance equation for internal energy (e.g. 
[25]) as 
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where ρ is the fluid density, cv is the specific heat at constant 
volume, v is the fluid velocity, p is the pressure and Π  is the 
viscous stress. This equation shows that the rate of temperature 
increase is caused by the sum of the rates of heat advection, 
heat diffusion, cooling by volume expansion and viscous 
heating. Substituting λ∇2T from Eq. (6) into Eq. (5), and 
assuming a constancy of cv in the fluid system (dcv/dt = 0), we 
get 
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If we consider a situation with no convective motion (v = 0), 
Eq. (7) reduces to  
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where the suffix stat denotes the static state with no motion. 
The rate of change of entropy production is negative in this 
static case, because ρ and cv are positive definite. Equation (8) 
shows that entropy production due to pure heat conduction 
tends to decrease with time, and reaches a minimum in the 
final steady state (∂T/∂t = 0) provided there is no convective 
motion in the fluid. This tendency was first suggested by 
Prigogine [16], and is called the minimum entropy production 
(MinEP) principle. While several attempts have been made to 
extend this principle to a general one including dynamic 
motion, the results remain controversial and inconclusive [17, 
18]. As we shall see in a later section, when advection due to 
dynamic motion is nonzero, the local rate of entropy 
production can either increase or decrease, depending on the 
rate of heat advection (v·∇T); the sign of 

! 

d ˙ " h /dt becomes 
indefinite and even positive in some cases.  
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Momentum Diffusion   

A similar result can be obtained for the diffusion of 
momentum due to viscosity under a velocity gradient. Suppose 
that a viscous fluid with a uniform viscosity is flowing in a 
system with a constant temperature T. In this case, entropy 
production due to momentum diffusion is given by  
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Here, the numerator represents the scalar product of the 
viscous stress tensor and the velocity gradient, and is identical 
to the heating rate due to viscosity per unit volume per unit 
time in the fluid. Assuming a linear relation between the 
viscous stress and the velocity gradient, we can drive the time 
derivative of the rate of entropy production after a few 
manipulations2: 
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By a sequence of transformations similar to those from Eq. (3) 
to Eq. (5), we get 
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where µ is the viscosity of the fluid. Here we have assumed 
that velocity is fixed at the boundary (∂v/∂t = 0). The diffusion 
rate of momentum [µ ∇2 v + µ∇(∇⋅v)/3] is related to the 
balance equation of momentum ⎯ the Navier–Stokes equation 
⎯ as 
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Substituting Eq. (12) into Eq. (11) and eliminating the 
momentum diffusion rate, we get after a few transformations  
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Here we have assumed incompressibility (∇⋅v = 0) in Eq. (13). 
If we further assume a situation with no advection of 
momentum, then (v⋅∇)v = 0; that is, there is no velocity 
gradient along the flow direction, corresponding to a laminar 
flow in the Stokes approximation. In this specific laminar flow 
case, we get 
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2 Assuming linearity, Π :∇v = [2µ (∇v)s – (2/3)µ(∇⋅v)δ]:[(∇v)s + (∇v)a] = 
2µ (∇v)s:(∇v)s – (2/3)µ(∇⋅v)2, with δ  denoting the unit tensor, and Ts and 
Ta denoting symmetric and asymmetric parts of a tensor T. Then, 
∂(Π :∇v)/∂t = 2[2µ (∇v)s – (2/3)µ(∇⋅v)δ]:[∇(∂v/∂t)]s = 2 Π :∇(∂v/∂t).  

where the suffix lam denotes the laminar flow with no 
momentum advection. The rate of entropy production in an 
incompressible laminar flow tends to decrease with time and 
reach a minimum in the final steady state (∂v/∂t = 0). This 
result shows another aspect of MinEP for a laminar flow. In an 
isothermal condition, this tendency is akin to that of minimum 
dissipation of kinetic energy in a slow incompressible steady 
flow suggested by Helmholtz [26] and Rayleigh [27]. However, 
as we shall see in the next section, when advection of 
momentum is nonzero (i.e. turbulent flow), the sign of 

! 

d ˙ " m /dt 
becomes indefinite, and the entropy production can either 
decrease or increase depending on the rate of advection 
determined by the flow pattern produced in the fluid system.  

NONLINEAR ADVECTION  

We now discuss the effect of advection of heat or 
momentum on entropy production in a fluid system. The 
advection process is a typical nonlinear process since it is 
described as the product of the velocity and gradient of an 
intensive variable, which is also a function of the velocity. A 
fundamental difficulty arises from the presence of this 
nonlinear term in solving the balance equation of energy or 
momentum [Eq. (6) or (12)]. Exactly the same difficulty arises 
from this advection term in solving the equation of entropy 
production. We do not know, in a deterministic sense, how the 
rate of entropy production will change once advection 
becomes a dominant process in the transport of heat or 
momentum. However, advection of heat or momentum 
generally increases the local gradient of temperature or 
velocity at the moving front, which results in an enhancement 
of entropy production. Here we discuss the conditions under 
which advection enhances entropy production, using the 
general equations of entropy production [Eqs. (5) and (11)] as 
follows.  

Heat Advection 

Let us go back to the example of entropy production due to 
heat diffusion. With the presence of convective motion, the 
MinEP condition [Eq. (8)] cannot be justified since it requires 
v = 0. Even in this case, Eq. (5) for the rate of change of 
entropy production remains valid. Assuming a constancy of cv 
(dcv/dt = 0) in Eq. (6), and substituting the rate of change of 
temperature (∂T/∂t) into Eq. (5), we get 
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where the suffix adv denotes the presence of heat advection 
and κ = λ/ρcv is the thermal diffusivity. The approximation in 
Eq. (15) corresponds to an assumption that the cooling rate by 
volume expansion (∇⋅v) and the heating rate by viscous 
dissipation (Π :∇v) are negligibly small compared with 
diffusive heating (κ∇2T) and advective cooling (v⋅∇T). Under 
this assumption, we can get a sufficient condition for the 
increase of entropy production (

! 

d ˙ " h, adv /dt ≥ 0) as 
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v " #T $%#2T $ 0 or v " #T &%#2T & 0 '
d ˙ ( h, adv

dt
$ 0. (16) 

Condition (16) means that, when advective cooling (v⋅∇T) is 
greater than diffusive heating (κ∇2T), the local temperature 
decreases further (∂T/∂t ≤ 0) because of Eq. (6), and thus 
entropy production increases because of Eq. (5). Alternatively, 
when advective heating (–v⋅∇T > 0) is greater than diffusive 
cooling (–κ∇2T > 0), the local temperature increases further 
(∂T/∂t ≥ 0) because of Eq. (6), and thus entropy production 
increases because of Eq. (5). These conditions generally hold 
true during the development of convective motion (∂v/∂t > 0) 
in a fluid system whose Rayleigh number is larger than the 
critical value for the onset of convection. The rate of entropy 
production thus tends to increase with time and reaches a 
maximum value through the development of convective 
motion, as suggested from previous studies [5, 6]. Moreover, it 
is known from numerical simulations that a state of convection 
tends to move to a state with higher rate of entropy production 
when the system has multiple steady states and the system is 
subject to external perturbations [8, 9, 28]. These results are 
consistent with condition (16) under which entropy production 
increases with time through the development of convective 
motion in a system with dynamic instability.  

One can see from condition (16) that entropy production 
can decrease with time when the heat advection rate is smaller 
than the heat diffusion rate, i.e., ⎥v⋅∇T⎥ ≤  ⎥κ∇2T⎥. Such a 
situation can be realized in the relaxation period of a 
convection system towards a steady state, or in a convection 
system whose boundary temperature is unbounded so that the 
mean temperature gradient becomes smaller through the 
development of convective motion. One such example is 
thermal convection of a fluid system under fixed heat flux at 
the boundary. Entropy production as well as the overall 
temperature contrast at the boundary decreases with the onset 
of convection in this case (e.g. [29]). A quantitative analysis on 
the reduction of entropy production using Eq. (16) would 
therefore be attractive. Here it should be noted that the 
decrease of entropy production in this case is not in direct 
contradiction to the stability criterion of MaxEP, because 
relative stability of each steady state should be compared under 
the same boundary forcing condition, i.e., the same 
temperature contrast at the boundary characterized by the same 
Rayleigh number.  

Momentum Advection  

We can obtain a similar result for entropy production due to 
momentum diffusion. With the presence of advection of 
momentum [(v⋅∇)v ≠ 0], the MinEP condition [Eq. (14)] 
cannot be justified. Even in this case, Eq. (11) for the rate of 
change of entropy production remains valid. Assuming 
incompressibility of fluid and substituting the rate of change of 
velocity from Eq. (12) into Eq. (11), we get 
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where the suffix adv denotes the presence of momentum 
advection and ν = µ/ρ is the kinematic viscosity. We can then 

find a sufficient condition for the increase of entropy 
production (
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d ˙ " h, adv /dt ≥ 0) as  
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where e = ∇2v/⎥∇2v⎥ is the unit vector in the direction of ∇2v. 
Condition (18) means that, when advective export of 
momentum [(v⋅∇)v] plus pressure deceleration [∇p/ρ] in the e 
direction is greater than diffusive import of momentum ⎥ν∇2v⎥, 
the local velocity in that direction decreases further because of 
Eq. (12), and thus entropy production increases because of Eq. 
(11). Alternatively, when advective import of momentum 
[–(v⋅∇)v] plus pressure acceleration [–∇p/ρ] in the –e direction 
is larger than diffusive export of momentum ⎥ν∇2v⎥, the local 
velocity increases further because of Eq. (12), and thus entropy 
production increases because of Eq. (11). It is known that 
advection of momentum is negligibly small in laminar flows 
whereas it is considerably large in turbulent flows. Thus, this 
condition generally holds true during the development of 
turbulent motion in a fluid system whose Reynolds number is 
larger than the critical value for the onset of turbulence. The 
rate of entropy production thus tends to increase to a maximum 
value through the development of turbulent motion [5]. Malkus 
[30] and Busse [31] suggested that the observed mean state of 
turbulent shear flow corresponds to the state with the 
maximum rate of momentum transport by turbulent motion. 
Malkus [32] also showed that velocity profiles estimated from 
maximum dissipation of kinetic energy due to the mean 
velocity field and a smallest scale of motion at the system 
boundary resemble those of observations. Since the dissipation 
rate is proportional to the entropy production rate, these results 
are consistent with condition (18) under which entropy 
production increases with time towards a maximum value 
when the system is in a state of dynamic instability.  

One can also see from this condition (18) that entropy 
production can decrease with time when the momentum 
advection is less than the rates of diffusion and acceleration by 
the pressure gradient: [(v⋅∇)v + ∇p/ρ]⋅e ≤  ⎥ν∇2v⎥. Such a 
condition can be realized in the relaxation period of a turbulent 
fluid system, or in a fluid system whose boundary velocity is 
unbounded so that the momentum advection becomes less 
significant than the sum of momentum diffusion and pressure 
acceleration. Examples include turbulent shear flow under a 
fixed shear stress and turbulent pipe flow under a fixed 
pressure gradient. Entropy production as well as the overall 
velocity gradient is known to decrease with the onset of 
turbulence in these cases [33, 34]. Again, the decrease of 
entropy production in these cases is not in direct contradiction 
to the stability criterion of MaxEP, because relative stability of 
each steady state should be compared under the same boundary 
forcing condition, i.e., the same velocity contrast applied to the 
entire system characterized by the same Reynolds number.  

It should be noted that the condition [(16) or (18)] is a 
sufficient condition rather than a necessary and sufficient 
condition for 

! 

d ˙ " adv /dt ≥  0 ⎯ entropy production for the total 
system can increase even if local entropy production decreases 
in some places. In order to get the exact condition for 

! 

d ˙ " adv /dt 
≥ 0, we need to treat the integral equation [(5) or (11)]. In what 
follows we shall deal with the integral equation based on the 
concept of linear stability analysis.  
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Stability Analysis 

Suppose that a fluid system is subjected to a small 
disturbance. The disturbance is considered to be so small that 
its decomposition into spatial and temporal contributions may 
be possible. In this case, arbitrary small disturbances of 
temperature and velocity can be expanded into infinite Fourier 
series, whose components take the general forms:  
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"T = "T0 exp i(kx x + ky y + kz z) + pkt[ ],  (19) 
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"v = "v 0 exp i(kx x + ky y + kz z) + pkt[ ],  (20) 

where δT and δv are the disturbances of temperature and 
velocity, δT0 and δv0 are their amplitudes, k = 

! 

kx
2 + ky

2 + kz
2  is 

the wave number, and pk is the complex growth rate of the 
disturbance of the wave number k. When the real part of pk is 
negative for all k, the fluid system is stable with respect to the 
perturbation. The onset of instability is characterized by a 
critical condition beyond which the real part of pk becomes 
larger than zero (pk

(r) > 0) at a particular wave number (kc). The 
critical condition must be determined by solving the governing 
equations [(6) and (12)] with appropriate boundary conditions. 
For a fluid layer heated from below, the critical condition is 
expressed by the Rayleigh number: Ra > Ra*,  where Ra* is 
the critical value beyond which instability is manifested [35]. 
In the case of a fluid layer (thickness d) between two rigid 
boundary surfaces, it is known that Ra* ≈ 1708 and kc ≈ 3.12/d 
(cf. [24, 25]), as illustrated in Fig. 1.  

We shall then examine the behavior of entropy production 
at the onset of convective instability. Substituting the 
temperature disturbance Eq. (19) into Eq. (5), we get  
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where the suffix dis(k) denotes the presence of a disturbance 
with the wave number k. One can see from Eq. (21) that the 
rate of change of entropy production by the disturbance is 
proportional to the growth rate pk because all other factors [k2, 
λ, (δT/T)2] are positive definite. If pk

(r) is negative, then the 
disturbance is damped and entropy production thereby 
decreases3. This condition corresponds to the stable state with 
Ra < Ra* (Fig. 1). By contrast, when Ra exceeds the critical 
value Ra*, pk

(r) becomes larger than zero at the certain wave 
number kc, and entropy production starts to increase at the 
onset of convective instability. A similar result can be obtained 
for entropy production due to momentum diffusion under 
velocity gradient. By substituting Eq. (20) into Eq. (11), the 
rate of change of entropy production is shown to be 
proportional to pk. It is generally known that the onset of 
instability of such a system is determined by the Reynolds 
number: Re [36]. When Re becomes larger than a critical value 
(Re > Re*), pk

(r) of a certain wave number becomes positive 
and entropy production starts to increase. These results are 
consistent with the findings in the preceding sections that 
entropy production tends to increase when the system is in a 
state of dynamic instability.  

                                                             
3 The imaginary part of pk is zero when Ra > 0 in this case (cf. [24, 25]).  

 

Fig. 1. Relation between the Rayleigh number Ra and the 
dimensionless wave number a ≡ k d. The sold line corresponds to the 
marginal state for the onset of instability (cf. [24, 25]). Entropy 
production tends to decrease with time when Ra is less than the 
critical value: Ra < Ra*. Entropy production starts to increase at the 
onset of instability when Ra > Ra*.   

SUMMARY 

In this paper, we have discussed some general 
characteristics of entropy production in a fluid system. We 
have shown that entropy production always decreases with 
time when the system is of a pure diffusion type without 
advection of heat or momentum. Thus, the minimum entropy 
production (MinEP) property is intrinsic to a system of a pure 
diffusion type; e.g., heat conduction in a static fluid or 
momentum diffusion in laminar flow. However, this MinEP 
property is no longer guaranteed when the system is in a 
dynamically unstable state. In this state, entropy production 
tends to increase by the growth of the advection rate over the 
diffusion rate of the corresponding extensive quantity. The 
hypothesis of maximum entropy production (MaxEP) 
suggested as a selection principle for multiple steady states of 
nonlinear non-equilibrium systems [1, 6, 13–15, 21–23] can 
therefore be seen to be a characteristic feature of systems with 
nonlinear dynamic instability.  
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ABSTRACT
Like mechanics and electrodynamics, the fundamental laws of the thermodynamics of dissipative processes can be compressed
into a variational principle. This variational principle both in its differential (local) and in integral (global) forms was formulated
by Gyarmati helped by the present author in 1965. This principle was applied to several fields of irreversible processes: first of all,
his colleagues (Verhás [1], Böröcz [2], Farkas [3,4], Sándor [5], Vincze [6–8], Stark [9,10]); but also many others (Singh [11,12],
Bhattacharya [13,14], Dickel [15,16] etc.). Consistent application of both the local and the global forms of Gyarmati’s principle
provides all the advantages throughout explicating the theory of irreversible thermodynamics that are provided in the study of
mechanics and electrodynamics by the corresponding classical variational principles, e.g., Gauss’ differential principle of least
constraint, or Hamilton’s integral principle.

THE GOVERNING PRINCIPLE OF DISSIPATIVE PRO-
CESSES (GPDP)

Gyarmati’s principle is based on the fact that the generali-
zation of the dissipation functions — that were introduced by
Rayleigh and Onsager for special cases — always exist locally
in continua [17–22]. In linear theory these functions are defined
as:

Ψ(X) =
1
2 ∑

i,k
LikXiXk (1)

and

Φ(J) =
1
2 ∑

i,k
RikJiJk. (2)

The Rik coefficients (general resistivities) are the components of
the inverse of the conductivity matrix (Lik).

The most important property of the dissipation function is
that it is a homogeneous quadratic function of the Xi forces in
the strictly linear theory, while in the quasi-linear theory it de-
pends also on the state variables. The other fundamental prop-
erty of Ψ is that its partial derivative with respect to Xk is equal
to the current Jk conjugate to the force Xk in the entropy produc-
tion density:

Jk =
∂Ψ

∂Xk
(3)

Finally, the equality of the mixed second derivatives of Ψ with
respect to the forces are equivalent to Onsager’s reciprocal rela-
tions:

∂2Ψ

∂Xi∂Xk
=

∂Ji

∂Xk
= Lik = Lki

∂Jk

∂Xi
=

∂2Ψ

∂Xk∂Xi
. (4)

Because of the above properties, the function Ψ is called a dissi-
pation potential, more precisely: it is the flux-potential (see (3)).

The function Φ has similar properties. In the strictly linear
theory the function Φ is a homogeneous quadratic function of
the currents J, while in the quasi-linear case it depends also on
the local state variables (through the coefficients). The partial
derivative of the function Φ with respect to Jk equals Xk:

Xk =
∂Φ

∂Jk
(5)

Due to this relation the function Φ is also a dissipation potential,
more exactly: it is the force potential.

The equality of the mixed second derivatives of Φ with re-
spect to the J-s are equivalent to the Onsager relations, now
expressed in terms of the Rik resistances

∂2Φ

∂Ji∂Jk
=

∂Xi

∂Jk
= Rik = Rki =

∂Xk

∂Ji
=

∂2Φ

∂Jk∂Ji
(6)

Hence, it can be seen that the necessary and sufficient condition
of the existence of the dissipation potentials Ψ and Φ is the
existence of the Onsager reciprocal relations.

Some weighted potentials ΨG and ΦG can be defined, too.
They show all the essential properties of Ψ and Φ, but corre-
spond to the weighted entropy production Gσs. (G is any alwais
positive state function.)

The dynamic laws can be formulated in different forms by
the help of so-called representations and pictures which give
mathematically equivalent formulae. The general theory of the
“pictures” was worked out and applied by Gyarmati [23] and
Farkas [3] (see also [5, 13, 14, 24–27]). Different pictures are
obtained by multiplying both sides of the bilinear expression of
the entropy production by an always positive state function, G,
i.e.

Gσs = ∑
j

J jX jG. (7)
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The quantity Gσs is evidently non-negative, taking a zero value
in equilibrium only. The coefficients of the current, J j, namely,

XG
j = X jG (8)

regarded as forces, and substituted into the original form give
the linear laws in the “G-picture”:

Ji = ∑
k

1
G

LikXG
k = ∑

k
LG

ikXG
k . (9)

The coefficients obey the Onsager-Casimir reciprocal relations.
By choosing various functions for G, various pictures for the
description of dissipative processes are obtained [3, 28, 29].

Making use of equations (8) and (9), we obtain the forms of
the dissipation potentials in the general G-picture:

Ψ
G = GΨ, Φ

G = GΦ. (10)

Finally we note another essential property of the functions Ψ

and Φ; namely, that they are invariant scalar quantities with re-
spect to the linear transformations of the currents and forces.

THE LOCAL FORMS OF GYARMATI’S PRINCIPLE

Gyarmati’s variational principle of non-equilibrium thermo-
dynamics can be derived from the properties (3) and (5) of the
functions Ψ and Φ. We mention that this derivation does not
make use of the homogeneous quadratic forms of the functions
Ψ and Φ given in (1) and (2); thus the variational principle is
applicable to strictly non-linear phenomena that cannot be de-
scribed by the linear laws, yet the currents are uniquely deter-
mined by the forces and the local variables of state. This is the
situation with all the phenomena the Gyarmati-Li generalization

∂Ji

∂Xk
=

∂Jk

∂Xi
(11)

of the Onsager relations corresponds to. These relations are nec-
essary and sufficient conditions of the existence of dissipation
potentials, obeying equations (3) and (5).

Notice, that equation (5) can be written in the form

∂

∂Jk
(σs −Φ) = 0, (12)

where, in executing the partial differentiation, the currents must
be regarded variables independent of the forces and local state
variables. It means that the constitutive relations given by equa-
tion (5) are equivalent to the following statement: those currents
correspond to a given set of forces and state variables, at which
the function

LJ = σs −Φ (13)

has a stationary point in the space of the currents. This form
of the principle, which stands nearest to Onsager’s principle
for small fluctuations around an equilibrium in an adiabatically

closed discontinuous system, is called the flux representation of
Gyarmati’s principle [30].

The force representation of Gyarmati’s principle is obtained
by putting the relation (3) in the form

∂

∂Xk
(σs −Ψ) = 0. (14)

During partial differentiation the forces and the fluxes must be
regarded again as independent variables. Thus, those forces cor-
respond to a given set of currents and state variables at which
the function

LX = σs −Ψ (15)

has a stationary point in the space of the forces.
It is easily seen that the functions LJ and LX in (13) and

(15) can be put in the same form, as the subtraction of function
independent of the J-s from LJ has no influence on equation
(12). The function Ψ just fits the purpose. On the other hand,
Φ can be subtracted from LX (due to the same reasons). Now
a universal Lagrange density of Gyarmati’s principle has been
obtained:

L = LJ −Ψ = LX −Φ = σs −Ψ−Φ, (16)

by which the extremum properties (12) and (14) can be ex-
pressed universally.

It can be said, quite generally, that if a sufficient number of
the currents and forces is known — that is either every force
or every current, or even one part of the currents and the other
part of the forces — then the remaining variables must be cho-
sen so that the universal Lagrangian (16) is stationary. This is a
necessary and sufficient condition for the set of the currents and
forces describe a real process. In other words, the variation of
the universal Lagrangian in Gyarmati’s principle is zero around
the real forces and fluxes, with respect to the simultaneous vari-
ation of the currents and forces.

In the quasi-linear theory the functions Ψ and Φ depend on
the state variables through the conductivities Lik and resistivities
Rik due to (1) and (2). The matrices of the conductivities Lik and
resistivities Rik are reciprocal matrices:

∑
r

LirRrk = δik. (17)

Let us calculate the partial derivative of the L Lagrange density
with respect to a local state variable denoted by Γ:

∂L
∂Γ

=−1
2 ∑

i,k

∂Lik

∂Γ
XiXk −

1
2 ∑

i,k

∂Rik

∂Γ
JiJk. (18)

The partial derivatives ∂Rik/∂Γ, making use of (17), are ex-
pressed by the coefficients Rik and the derivatives ∂Lik/∂Γ as

∂Rik

∂Γ
=−∑

r,s
Rir

∂Lrs

∂Γ
Rsk. (19)
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Substituting this in (18) and applying the reciprocal relations,
the form

∂L
∂Γ

=−1
2 ∑

i,k

∂Lik

∂Γ
(Xi −∑

s
RisJs)(Xk +∑

s
RksJs). (20)

is obtained. Hence it is seen that the partial derivatives of the
universal Lagrangian with respect to the local state variables, at
real processes, are zero. So the parameters Γ can also be varied
independently.

This theorem is Gyarmati’s supplementary theorem [31],
which guarantees the validity of the universal local form of the
variational principle to the quasi-linear case, too.

The universal form of the local Gyarmati principle states,
consistently with the supplementary theorem, that the La-
grangian L = σs −Ψ−Φ has an extremum in all points that
describe a real process in the unified space of forces, currents
and state variables.

In examining the type of the extremum, instead of consid-
ering second variations, we had better use another form of the
Lagrangian which is advantageous in other respects, as well.
This form is

L =−1
2 ∑

i,k
Rik(Ji −∑

s
LisXs)(Jk −∑

s
LksXs). (21)

Executing the multiplications the form (16) of the universal La-
grange density is obtained again. This very form, however,
clearly shows that the extremum for real processes is always
a maximum and the value of this maximum is zero if no con-
straint is maintained; in other cases the Lagrangian is always
negative, since the Rik-s are the coefficients of a positive defi-
nite quadratic form and the variables of this quadratic form are
(Ji −∑s LisXs). This form of the local principle is considerably
similar to Gauss’ principle of least constraint, so this form is
often called the Gaussian form of Gyarmati’s principle. As the
value of (21) is zero only in the absence of local constraints,
while in other cases the value of this maximum depends on the
constraints, the Gauss type local principle is an excellent tool
for introducing the notion of thermodynamic constraint forces;
consequently it is of great help in discussing problems with lo-
cal constraints (Verhás [32], Gyarmati [29], Dickel [15]).

The local Gyarmati principle of irreversible thermodynamics
is of universal validity, yet its primary importance is that it is the
ground the integral principles are built on. Before the discussion
of integral principles, however, the place of the local principle
in the frame-work of the theory should be examined. To this
end, the local principle is resumed more explicitly.

The essence of the local principle is that it replaces the set
of linear laws by a single scalar function. If either the function
Ψ or the function Φ is known, the constitutive equations can be
obtained by the variational principle. Actually, it is sufficient to
know only one of the dissipation potentials Ψ or Φ, since the
matrix of the coefficients can be read from one of them, and the
other potential is determined by the elements of the reciprocal
matrix.. This calculation can be executed via a more elegant
method. Let us regard, for example, the function Ψ as the given
one. Then the Legendre-transformation of the function Ψ leads
to the function Φ

(
∂Ψ

∂X

)
. Putting J in the place of ∂Ψ

∂X the function
Φ is obtained. The function Ψ is got from Φ in the same way,
( [30, 31]).

The advantage of the method of Legendre transformation lies
in the fact that its formulation and application is independent of
the linear or quasi-linear character of the theory; thus it is ap-
plicable to dissipation potentials of entirely different character.
From the fact that the dissipation potentials Ψ and Φ are the
Legendre transforms of each other, it is also seen that the va-
lidity of Gyarmati’s supplementary theorem is not restricted to
the quasi-linear case, but holds to any strictly non-linear theory,
subject to the Gyarmati-Li generalized reciprocal relations (and
where the higher order coefficients also depend on the variables
of state). This, at the same time, means that the Lagrangian
L = σs −Ψ−Φ must be stationary at every point of space in
every instant of time in the case of any non-linear theory, pro-
vided that dissipation potentials exist at all.

The next question is how a dissipation potential can be con-
structed from the constitutive equations. The potential character
of the functions Ψ and Φ is defined by equations (3) and (5).
The condition to the existence of such functions with potential
character to a given (say: empirically proven) set of constitutive
equations is that they be subjected to the Gyarmati-Li general-
ized reciprocal relations. It is rather inconvenient that no gen-
eral physical law, or exact proof based on such laws, is known
which would guarantee the fulfillment of the Gyarmati-Li gen-
eralized reciprocal relations, or of other equivalent conditions,
for all possible constitutive equations. If, however, the recip-
rocal relations (11) hold in a particular case or approximation,
then the dissipation potentials can be given and the Gyarmati
principle can be applied. Dissipation potentials for non-linear
cases were given first (and independently) by Verhás [33], Ede-
len [34–37] and Presnov [38].

The function Ψ can be obtained from the bilinear form of the
entropy production with introducing equations (3); we get

σs = ∑
i

Xi
∂Ψ

∂Xi
= ∑

i
XiJi(X) = σs(X) (22)

for the entropy production. This expression can be regarded
as a quasi-linear inhomogeneous first order partial differential
equation. Its only solution subject to the condition Ψ(0) = 0 is
the function

Ψ(X) =

1∫
0

1
t

σs(tX)dt (23)

A similar formula is obtained for Φ(J):

Φ(J) =
1∫

0

1
t

σs(tJ)dt (24)

The knowledge of the function Ψ or Φ defined so, is equivalent
to the knowledge of the original constitutive equations.

THE GOVERNING PRINCIPLE OF DISSIPATIVE PRO-
CESSES

Though the local form of Gyarmati’s principle is indispens-
able for the description of local constraints, an integral form of
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the principle is of much greater importance in practical calcula-
tions. The integral forms are obtained by the integration of the
universal Lagrange density with respect to space or space and
time coordinates. The universal (global) principle, obtained so,
is called the governing principle of dissipative processes [31].

Since the universal Lagrange density is everywhere and al-
ways stationary, it is also true that

δ

∫
V

(σs −Ψ−Φ)dV = 0, (25)

and

δ

t2∫
t1

∫
V

(σs −Ψ−Φ)dV dt = 0. (26)

The governing principle of dissipative processes given by
Gyarmati can be regarded the most widely valid and the most
widely applied integral principle of irreversible thermodynam-
ics. From this principle the parabolic transport equations of ir-
reversible transport processes can be derived both in the linear
and quasi-linear case, as well as in all those non-linear cases
where dissipation potentials can be determined by (23) and (24)
due to the validity of the generalized reciprocal relations (11),
[3, 5, 7, 9, 10, 26–29, 34, 35, 39].

The application of the governing principle can be understood
through the properties of the local principle. The variational
principle alone does not contain sufficient information about the
system, the functional takes its absolute maximum in several
points of the (Γ,X ,J) space; but if the Γ and X values are given,
then J can be determined. Obviously, not only the knowledge
of Γ and X is suitable but any other restrictive circumstance
denoting an equivalent hypersurface in the (Γ,X ,J) space. Such
a restrictive condition is the ensemble of the balance equations
and the definition of the forces together with the equation of
state.

Hence it follows that the variational principles (25) and (26)
are to be understood with the above subsidiary conditions, and
thus the processes occurring in the system are uniquely de-
scribed.

The extraordinary importance of the formula (25) arises from
the fact that the Euler-Lagrange equations are identical to the
parabolic transport equations. Its use has the greatest advantage
in the entropy picture, since the substitution of Γ with the en-
tropy balance gives a particular form. The corresponding Euler-
Lagrange equations have a separable subsystem of differential
equations (viz. independently solvable) for the Γ parameters,
and neither the consideration of the balance equations as sub-
sidiary conditions nor the determination of the J currents is nec-
essary [29].

The situation with the time integrated form in equation (26) is
a bit different. The Euler-Lagrange equations do not display the
set of transport equations directly. The latter can be calculated
from transversality conditions and is obtained after a first inte-
gration of the Euler-Lagrange equations [40]. The other method
introduces some potential functions the Euler-Lagrange equa-
tions concern to and the customary transport equations results
after eliminating them [18, 19, 41, 42].

The governing principle of dissipative processes — like any
other integral principle of physics — contains information on

the boundary conditions, too. They have to be given so as the
absolute maximum be provided, viz. any further weakening of
the proper boundary conditions may not increase the value of
the maximum.

We mention that for strictly linear problems there are two
partial forms also valid:

δ

∫
V

(σs −Ψ)dV = 0, δJ = 0, (27)

and

δ

∫
V

(σs −Φ)dV = 0, δX = 0. (28)

The first of these is called force, and the second is called flux
representation. Both representations were widely applied to the
solution of several practical problems. [9–11, 26, 27, 43]. It is
also well known that the force representation of Gyarmati’s gov-
erning principle is equivalent to the local potential method of
Prigogine and Glansdorff [44], while the flux representation is
the equivalent of the variational methods of Biot [45, 46]. (For
details see references [11, 12, 31, 47–52].)

Here a more or less ”classical” framework of Gyarmati’s
variational principle has been surveyed but life does not stop;
new fields of applications and new aspects emerge. The unifica-
tion of the different approaches is a permanent task. I mention
only some works of P. Ván here [53–57].

ACKNOWLEDGMENT

This work has been supported by the Hungarian National
Scientific Research Funds, OTKA (62278 and K81161).

NOMENCLATURE

G Any positive state function [variant]
i, j,k,r,s Runing indices [integer, no unite]
Ji the j-th of the generalized currents [variant]
J any of the generalized currents [variant]
JG

i the j-th of the generalized currents in ”G” picture [variant]
JG any of the generalized currents in ”G” picture [variant]
Lik a conductivity coefficient [variant]
L any of the conductivity coefficients [variant]
LG

ik a conductivity coefficient in ”G” picture [variant]
LG any of the conductivity coefficient in ”G” picture [variant]
Rik a resistivity coefficient [variant]
R any of the resistivity coefficient [variant]
RG

ik a resistivity coefficient in ”G” picture [variant]
RG any of the resistivity coefficient in ”G” picture [variant]
t runing integration variable [real number, no unite]
Xi the i-th thermodynamic force [variant]
X any of the thermodynamic forces [variant]
XG

i the i-th thermodynamic force in ”G” picture [variant]
XG any of the thermodynamic force in ”G” picture [variant]
L , LJ , LX Lagrangian [W/K m3]
Γ a state variable [variant]
σs entropy production density [W/K m3]
Φ force-potential [W/K m3]
ΦG force-potential [variant]
Ψ flux-potential [W/K m3]
ΨG flux-potential [variant]
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INT RODUCTION 

The maximum entropy production principle (MEPP) is a 
thermodynamic postulate developed by Ziegler [1], which 
uniquely determines the “easiest and most accessible” [2] 
evolution path of a non-equilibrium thermodynamic system. 
Extensive applications of MEPP have been reported in 
different sciences (see, e.g., recent reviews by Kleidon & 
Lorenz [3] and Martyushev & Seleznev [4]), however, in the 
absence of compelling evidence to support its applicability, 
whether experimental or theoretical [2, 4]. Martyushev [2] left 
us with two essential questions around MEPP, “(i) can this 
principle claim to be the basis of all non-equilibrium physics? 
and (ii) is it possible to prove MEPP?” In this paper, we make 
an effort to answer question (i) from a mathematical point of 
view.  

The relationship between MEPP and the second law of 
thermodynamics has been an issue of long-standing interests. 
Ziegler [1] and Ziegler & Wehrli [5] suggested that the second 
law of thermodynamics be covered by MEPP, which gives a 
positive answer to question (i). However, such idea has not yet 
been well accepted, because, when applied to different 
sciences, MEPP definitely involves constrains more than the 
second law of thermodynamics [4, 6-8]. Thus, the principle 
should be identified as a postulate, or a reasonable 
classification of behavior for certain non-equilibrium systems 
instead of a general thermodynamic law. To have a better 
understanding of MEPP and its scope of application, we may 
first “divide” the space of non-equilibrium states into several 
significant subspaces based on their distance with respect to 
equilibrium.  

Figure 1 shows a sketch of the space of possible non-
equilibrium states for a given thermodynamic system. The 
origin represents the equilibrium point. When the state of the 
system is infinitely close to equilibrium, the irreversible 
processes are governed by the well-known Onsager reciprocal  

 
 
relation (Onsager flux in Fig. 1) [9], which is the defining 
characteristic of the linear subspace. The linear subspace is 
subsumed in the near-equilibrium subspace, which is 
characterized in definition by the non-linear Onsager 
reciprocal relation (non-linear Onsager flux in Fig. 1) by 
Edelen [10, 11]. The reason why the subspace is labelled 
“near-equilibrium” will be explained later. In a series of 
studies by Yang et al. [12-15], it has been proved that MEPP 
(Ziegler flux in Fig. 1) is a sufficient condition of the non-
linear Onsager reciprocal relation, which means MEPP condi-
tionally holds for near-equilibrium processes and thus its 
scope is not as broad as Ziegler [1] supposed. However, we 
shall show it in this paper that MEPP can still work as a basic 
element to describe any near- and far-from-equilibrium 
processes that do not satisfy the principle itself. The 
conclusions may help to understand the way MEPP acts in 
complex phenomena. 

From a mathematical point of view, the thermodynamic 
theories mentioned above including MEPP focus on the 
dependences of the thermodynamic fluxes on their conjugate 
thermodynamic forces. To embody rigorous definitions of the 
thermodynamic flux and force, the theoretical context is 
formulated in the framework of normality structure. As an 
internal variable approach, the normality structure proposed 
by Rice [16, 17] has been an appealing constitutive 
framework for solids undergoing irreversible thermodynamic 
processes. Nevertheless, the conclusions might be extended to 
any well-defined non-equilibrium systems because we do not 
refer to any special properties of solids at the level of 
thermodynamic flux and force.  
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ABSTRACT  
In this paper, we investigate the microscopic structure of the maximum entropy production principle (MEPP) from a 
mathematical point of view. It is shown that a MEPP-governed thermodynamic flux or a Ziegler flux is a subclass of the non-
linear Onsager flux that is potential or non-rotational in the constrained affinity space, which means MEPP conditionally
holds for near-equilibrium processes. A non-linear Onsager flux can be represented in Maclaurin series of which each term is 
a Ziegler flux. For a far-from-equilibrium process whose thermodynamic flux is non-potential or rotational, the flux can be 
represented by a series of weighted non-linear Onsager fluxes using the Darboux theorem. The two levels of representation 
indicate that Ziegler fluxes can serve as the basic elements to construct any complex thermodynamic flux from near to far-
from equilibrium. In other words, any complex phenomena can be described elementally by MEPP.  
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Figure 1  A sketch of the space of non-equilibrium states and 
its division 

PRELIMINARIES 

Internal variable approach for solids 

Consider a material sample of size �. Introduce the specific 
free energy � and its Legendre transform � with respect to 
strain, 

 � � ���, �, 	

� � ���, �, 	
 � �: �

� � � (1) 

 
where �  denotes temperature; �  denotes any strain tensor, 
objective and symmetric, that measures deformation from an 
arbitrary reference state; � denotes the symmetric conjugate 
stress such that �: δ�  is the work per unit volume of the 
adopted reference state in any virtual deformation δ� ; 	 
denotes symbolically the current pattern of microstructural 
rearrangement of constituent elements of the materials. At 
fixed 	 , variations of �  and �  necessarily induce a purely 
elastic response. Then the first law of thermodynamics leads 
to the stress-strain relations, 

 

� � ���, �, 	

� , � � ���, �, 	


�  (2) 

 
Consider two neighbouring patterns of microstructural 
rearrangement denoted by 	 and 	 � d	 , respectively. It is 
assumed that a set of incremental scalar internal 
variables d� � �d��, d��, … , d���  characterizes the specific 
local rearrangements, which is represented collectively by d	, 
at sites throughout the material sample. The d� and d	  are 
related by 

 1
� ��d�� � 1

� � � d� � �d � � d � (3) 

 
where  

 d � � ���, �, 	 � d	
 � ���, �, 	

d � � ���, �, 	 � d	
 � ���, �, 	
 (4) 

 
Equation (3) also defines a set of scalar thermodynamic forces � � ���, ��, … , ��� conjugate to the internal variables,  

� � ���, �, 	
  or  � � ���, �, 	
 (5) 
 
The corresponding set of total internal variables,  
 � � ���, ��, … , ��� (6) 
 

generally are not state variables in the sense that 
thermodynamic state functions are not direct functions of �, 
but instead depend on the path history of �. Only if the � is 
one set of explicit state variables, the conjugate forces can be 
determined as 

 

� � �� ∂���, �, �

� � � ∂���, �, �


�  (7) 

 

Kinetic rate law 

This paper focuses on the kinetic rate law of the internal 
variable set �, namely, the dependence of the thermodynamic 
flux �$  on the thermodynamic force � . In the constrained 
affinity space %�  coordinated by �  with fixed external 
variables, the general kinetic rate law can be written as 

 
�$ � �$��
 (8) 

 
The kinetic rate law Eq. (8) is constrained only by the second 
law of thermodynamics, which leads to the dissipation 
inequality, i.e., the entropy production rate & should be always 
non-negative, 

 

& � 1
�� � � �$ ' 0 (9) 

 
The most fundamental form of the kinetic rate law is the 

well-known Onsager reciprocal relation [9], that is, �$  depends 
linearly on �,  

 
�$ � ) � �, ) � )* (10) 

 
where ) is the second order tensor of kinetic coefficients in 
%� that is symmetric and independent of �$  and �. As required 
by the dissipation inequality Eq. (9), )  should be positive 
semidefinite. A thermodynamic flux is termed an Onsager flux 
if it satisfies Eq. (10).  

The number of degrees of freedom (DOFs) of a 
thermodynamic flux is defined as the number of independent 
scalar functions in %� to determine all its components. Thus, 
the number of DOFs of a general thermodynamic flux given 
by Eq. (8) is +. And the number of DOFs of an Onsager flux is 
1 because all its components can be derived from a quadratic 
potential function ,, 

 

�$ � -�,, , � ,��
 � 1
2 � � ) � � (11) 

 
where -� denotes the gradient operator in %�, -�� ∂ ∂�⁄ . 
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NON-LINEAR ONSAGER FLUX AND NEAR-
EQUILIBRIUM 

Rice flux and normality structure 

The theory of normality structure is proposed by Rice [16, 
17], who simplified Eq. (8) by assuming that each flux 
component depends only on its own conjugate force 
component, as termed the Rice flux, 

 
�$� � �$����
, �0 � 1,2, … , +
 (12) 

 
As a result, the number of DOFs is reduced from +  to 1 
because a flow potential ,  exists such that the flux 
components are related in the following form 
 

�$ � -�,, , � ,��
 � 1 �$�d��
�

2
 (13) 

 
With the kinetic rate law given by Eq.(13), the normality 
structure for solids can be easily shown, 

 d �
d3 � 1

�
∂,
� (14) 

 
where d � denotes the inelastic part of strain, because, known 
form Eq. (2) and Eq. (3), 
 d �

d3 � 1
d3

∂d �
� � 1

�
∂�
� � �$ � 1

�
∂,
� (15) 

 
The Rice flux Eq. (12) is a very strong restriction because 

the flux components are required to be fully decoupled in %�. 
It is only a sufficient condition for the normality structure or 
the existence of a flow potential ,. 

Non-linear Onsager flux 

As discussed by Yang et al. [12-15], the sufficient and 
necessary condition for normality structure is the non-linear 
Onsager reciprocal relation proposed by Edelen [10, 11], 

 
�$��4 � �$4

��   or  -�� � �-� (16) 

 
A thermodynamic flux is termed a non-linear Onsager flux if 
it satisfies Eq. (16), which encompasses both Rice flux and 
Onsager flux as subclasses. Know from the Green theorem 
and Stokes theorem, the following four statements are 
equivalent: 
a) the thermodynamic flux is a non-linear Onsager flux as 

defined by Eq. (16); 
b) the flux components can be derived from a flow potential ,,  

 

�$ � -�,, , � ,��
 � 1 �$ � d��
2

 (17) 

 
which means the number of DOFs of �$  is 1 and the 
normality structure Eq. (14) holds; 

c) the thermodynamic flux is potential or non-rotational, 
 

5 �$ � d� � 0  or  -� 6 �$ � 7 (18) 

 
where 6 denotes the exterior product in %�;  

d) �$ � d�  is a total differential or a differential 1-form of 
Class 1, 
 

�$ � d� � d, (19) 
 

The non-linear Onsager flux is employed in this paper as 
the criterion to distinguish between near- and far-from 
equilibrium processes. That is to say, the behavior of a 
thermodynamic system in states near equilibrium is dominated 
by the thermodynamic flux that is potential or non-rotational 
in a sufficiently small neighborhood of an equilibrium state. 
The criterion can be formulated by anyone of the conditions 
from Eq. (16) to Eq. (19). Such criterion was suggested by 
Edelen [11] who put stress on the existence of a potential 
function (Eq. (17) or Eq. (19)) that characterizes near-
equilibrium states: 

“Thermostatics is based on the assumption that the system 
under study is always at or sufficiently close to an equilibrium 
state that the thermodynamic potential functions (internal 
energy, free energy, etc.) can be defined as functions of the 
state variables, which are independent of the time and 
independent of the history of the system.” 

 In a few studies, the Onsager flux Eq. (10) was taken as 
the criterion, which, however, is somewhat narrow because 
Onsager fluxes occur only in an infinitesimal neighborhood of 
equilibrium and thus it is not convincing to conclude that a 
process violating Eq. (10) is far from equilibrium. Figure 1 
shows a clearer vision: the linear subspace is subsumed in the 
near-equilibrium subspace. 

MEPP NEAR EQUILIBRIUM 

Ziegler flux and its scope 

Let �$  be continuously differentiable with respect to �, the 
MEPP can be written in the form of orthogonality condition [1, 
5],  

 
�$ � 8-�& (20) 

 
where &  denotes the entropy production rate and 8  is a 
Lagrangian multiplier required by MEPP. Substituted with Eq. 
(9), Eq. (20) becomes 

 
-��$ � � � 9�$  (21) 

 
where  

 

9 � 1
8�� � 1 (22) 

 
Known from the Euler's homogeneous function theorem, Eq. 
(21) shows that �$  should be a homogeneous function of degree 9 in its conjugate force �. A thermodynamic flux satisfying Eq. 
(21) is termed a Ziegler flux. Obviously, Onsager flux is a 
subclass of Ziegler flux when 9 � 1. 

Taking the derivative of Eq. (21) with respect to �, one 
obtains 
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�$-� � -���$ � � � 9-��$ (23) 
 
Noting that the second order tensor -���$ � � is symmetric, Eq. 
(23) minus its transpose yields  

 
-��$ � �$-� (24) 

 
Equation (24) means Ziegler flux is a subclass of non-linear 
Onsager flux, as indicated by Fig. 1. Therefore, the scope of 
application of MEPP is limited to near equilibrium processes.  

Representation of a Non-linear Onsager flux in a series of 
Ziegler fluxes  

Consider a generic non-linear Onsager flux �$  that is 
determined by the flow potential , in the form of Eq. (17). 
Let ,  be expanded in Maclaurin series at the equilibrium 
point ,�7
 � 0, 

 

,��
 � : 1
;! �= > -�=,�7


?

=@2
 (25) 

 
where > denotes the complete inner product and the ;-th order 
tensor -�=,�7
 is full symmetric and constant. Note that the 
zeroth and the first terms vanish, i.e., 

 1
0! �2 > -�2,�7
 � ,�7
 � 0

1
1! �� > -��,�7
 � � � A,

� B�@2 � � � �$�7
 � 0
 (26) 

 
Substituting Eq. (25) to Eq. (17), �$  is represented as 

 

�$ � -�, � �$ C�D � �$ CED � F � : �$ C=D
?

=@�
 (27) 

 
where �$ C=D is the ;-th term of the Maclaurin series, 

 

�$ C=D � 1
�; � 1
! �=G� > -�=,�7
 (28) 

 
Obviously, �$ C=D �; � 2,3, … , +
 is a series of Ziegler fluxes of 
degree ; � 1, because 

 
-��$ C=D � � � �; � 1
�$  (29) 

 
And the first term �$ C�D is an Onsager flux, 

 

�$ C�D � ) � �, ) � A�,
�� I

�@2
� )* (30) 

 
Equation (27) shows that, any non-linear Onsager flux can be 
represented in a series of Ziegler fluxes and the classical 
Onsager reciprocal relation holds strictly when and only when 
the current state is in an infinitesimal neighborhood of 
equilibrium. Therefore, any near-equilibrium processes can be 
approximately described using such representation, where the 
number of the terms can be arbitrary and determined by the 
required accuracy of the description.  

Prigogine’s minimum entropy production principle 

One may refer to Martyushev & Seleznev [4] and 
Rajagopal & Srinivasa [7] for thorough discussions on the 
significance of the Prigogine’s minimum entropy production 
principle [18] and its relationship between MEPP. Here we 
simply prove that the Prigogine’s principle is an inevitable 
result of the second law of thermodynamics for a given 
Ziegler flux with 9 ' 0.  

The Prigogine’s principle states that, if some of the 
thermodynamic forces are fixed at zero, i.e., 

 �� � 0, 0 � 1,2, … , J �J K +
 (31) 
 
the entropy production reaches the minimum if and only if the 
remained thermodynamic fluxes vanish, namely, 
 

�$� � 0, 0 � J � 1, J � 2, … , + (32) 
 
is the sufficient and necessary condition of 
 

& � 1
�� � � �$ L min (33) 

 
The proof goes as follows. Equation (33) equals to 
 

-��&
 � 1
�� P�$ � -��$ � �Q � 1 � 9

�� �$ � 7
� � -���&
 � � � 1 � 9

�� � � -��$ � � � �1 � 9
9& ' 0
 (34) 

 
Obviously, Eq. (34a) is exactly Eq. (32) and Eq. (34b) is the 
second law of thermodynamics as long as the degree 9  is 
positive. 

MEPP FAR FROM EQUILIBRIUM 

Representation of a rotational flux in a series of non-linear 
Onsager fluxes  

In this section, we consider thermodynamic fluxes far away 
from equilibrium. The fluxes are rotational and cannot be 
derived from a potential function. Let �$��
  be a generic 
rotational flux. Using the +dimensional generalization of the 
Helmholtz representation theorem [19], �$  can be decomposed 
into two parts, 
 

�$��
 � �$ ��
 � �$R��
 (35) 
 
where �$ ��
 is the potential part that is curl free and can be 
determined by the potential function ,, 
 

�$ � -�,, , � ,��
 � 1 �$�S�
 � �dS�
2

 (36) 

 
and �$R��
 is the purely rotational part  
 

�$R � 1 SP-��$�S�
 � �$�S�
-�Q � �dS�
2

 (37) 

 
which also satisfies 
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�$R � � � 0 (38) 
 
The properties of �$  have been discussed in the previous two 
sections and here we only have to focus on �$R. 

Consider the differential 1-form �$R��
 � d� . Known from 
the Darboux theorem [19], it should be of Class 2T  with T ' 1 and can be represented as 
 

�$R��
 � d� � : UC=D��
d,C=D��

V

=@�
 (39) 

 
where UC=D  and ,C=D  are independent scalar functions of total 
number 2T. Thus, the �$R is determined as 
 

�$R � : UC=D��
-�,C=D��

V

=@�
 (40) 

 
which indicates that the number of DOFs of �$R  is 2T . It 
should be noted that the representation of �$R  by Darboux 
theorem is totally different from the representation of �$  in 
Maclaurin series as given by Eq. (27). First, the number of 
terms of Eq. (27) is arbitrary while in Eq. (40) T is a nature of 
the given flux: T  increases as the flux removes from 
equilibrium. Second, in Eq. (27), each term is a high-level 
minimal of its preceding term, but in Eq. (40) all terms are of 
equal status.  

Combining Eq. (40) with Eq. (35), a generic flux  �$��
 that 
is far from equilibrium can be represent by a series of 
weighted non-linear Onsager fluxes in the following form 
 

�$ � �$ � UC�D�$ C�D � UC�D�$ C�D � F � UCVD�$ CVD (41) 
 

where �$ C=D  �; � 1,2, … , T
  denote T  non-linear Onsager 
fluxes determined by the potential ,C=D��
  and weight 
functions are force-dependent, UC=D � UC=D��
 . On the other 
hand, any non-linear Onsager flux can be represented by a 
series of Ziegler fluxes, so we can conclude that any flux far 
from equilibrium can be finally represented by a series of 
weighted Ziegler fluxes through the two levels of 
representation. This might be the way MEPP acts in far-from-
equilibrium processes. Finally, we may answer the question (i) 
proposed by Martyushev [2]: MEPP could be a basis of all 
non-equilibrium physics, but not in a straightforward way.  

An example: the non-Darcy flow 

Take the Darcy’s law for example, which is a constitutive 
equation for the flow of a fluid through a porous medium. The 
Darcy’s law establishes the linear relation between the 
pressure gradient and the velocity. For one-dimensional flow, 
it can be written as 

 

�-W � X
Y Z (42) 

 
where -W denotes the pressure gradient, Z the velocity, X the 
fluid viscosity and Y the permeability of the porous medium. 
A well-known non-linear extension of the Darcy’s law is the 
Forchheimer equation [20], which is quadratic, 

 

�-W � X
Y Z � [\Z� (43) 

 
where [ and \ denote respectively the fluid density and the 
non-Darcy coefficient. In general, the non-Darcy effect can be 
presented in the polynomial form [21],  

 

� Y
X -W � Z � 1

Z ��Z, Z
 � 1
Z� ]�Z, Z, Z
 � F (44) 

 
where � and ] are bilinear and trilinear functions, respectively.  
The nonlinear extensions can be supported in thermodynamics 
with the proposed representation theorems. 

CONCLUSIONS 

In this paper, a non-equilibrium process is considered as 
near equilibrium if there exists a potential function from 
which all components of the thermodynamic flux can be 
derived. Such flux is termed non-linear Onsager flux. By 
contrast, a process is considered as far from equilibrium if the 
flux is non-potential or rotational.  

The maximum entropy production principle (MEPP) by 
Ziegler is a reasonable classification of behavior for certain 
non-equilibrium systems instead of a general thermodynamic 
law. A MEPP-governed thermodynamic flux or a Ziegler flux 
is actually a homogenous non-linear Onsager flux. Thus, the 
scope of application of MEPP is not universe but limited to 
near-equilibrium processes.  

Any non-linear Onsager flux can be represented in 
Maclaurin series of which each term is a Ziegler flux. 
Therefore, any near-equilibrium processes can be 
approximately described using such representation, where the 
number of the terms of the representation can be arbitrary and 
determined by the required accuracy of the description.   

For a far-from-equilibrium process, the rotational flux can 
be represented by a series of weighted non-linear Onsager 
fluxes using the Darboux theorem. The number of the terms of 
the representation is a nature of the rotational flux: the number 
increases as the flux removes from equilibrium. 

The two levels of representation indicate that Ziegler fluxes 
can serve as the basic elements to construct any complex 
thermodynamic flux from near to far-from equilibrium. In 
other words, any complex phenomena can be described 
elementally by MEPP.  
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ABSTRACT
As well as many other people, we have felt, both as students and as teachers, that some traditional approaches present ambiguities
and logical inconsistencies in the exposition of the basics of thermodynamics. Since the late ’80s we have adopted an approach
developed over thirty years of course and research work at M.I.T.: rooted in the work of Hatsopoulos and Keenan [1], it has
been presented in a systematic and detailed way by Gyftopoulos and Beretta [2]. On the basis of our teaching experience we
believe that this approach is particularly suited for students attending engineering programs and our goal here is to underline the
most important reasons of its success. In the paper we summarize and discuss how we have adapted the sequence of arguments
proposed in [2, Chaps. 2-14] to meet the needs of undergraduate engineering students.

INTRODUCTION

A large variety of expositions of the foundations of ther-
modynamics are available in textbooks and scientific literature.
Roughly, two groups of approaches can be identified. The con-
cise exposition by Fermi [3] or the popular textbook by Ze-
mansky [4] are among the best examples of the first group of
approaches, that could be called traditional. Heat and empiri-
cal temperature are usually introduced at the outset of the log-
ical development. Sometimes they are assumed as primitive
concepts, sometimes the authors try to explain the difference
between heat and work in terms of mechanical illustrations,
mostly based on statistical arguments. As well as many other
students or teachers, we have felt discomfort with some of these
expositions because of ambiguities and logical inconsistencies.
Moreover, we think that any confused reference to microscopic
physics or statistical mechanics, which do not belong to the
background of most engineering students, should be avoided
when teaching thermodynamics in engineering programs.

The second group is based on an axiomatic approach. Ex-
amples can be traced back to the work of Carathéodory [5] and
include textbooks as the one by Giles [6], or the popular one
by Callen [7], or the recent work by Lieb and Yngvason [8].
These expositions are rigorous, but rather abstract, and do not
seem a suitable choice for engineering students. As a matter
of fact, Giles in the Preface of his book identifies his potential
readers among “physicists who are not entirely satisfied with
the logical basis of their subject, [...] mathematicians who may
be interested to discover a novel application of pure mathemat-
ics, and [...] phylosophers” [6, p. XII], without any mention of
engineers.

As a result of long-time conversations and discussions with
our friend and colleague G.P. Beretta, since the late ’80s we
have adopted an approach developed over thirty years of course
and research work at M.I.T.: rooted in the work of Hatsopou-

los and Keenan [1], it has been presented in a systematic and
detailed way by Gyftopoulos and Beretta [2]. The exposi-
tion follows an axiomatic approach which is characterized by
a two-fold goal. On one hand the basic concepts are introduced
and developed trying to avoid equivocal definitions and logical
short-circuits. On the other hand, the operational approach typ-
ical of the best traditional expositions is preserved. Particular
attention is paid to fundamental questions of important practi-
cal consequences, like the amount of energy of a system that
can be used to perform a useful task. Here “to perform a useful
task” means to produce mechanical effects such as rise weights,
compress springs, moving electrical charges. Ideally most en-
gineering applications can be reduced or described in terms of
a set of useful tasks to be performed. Studying mechanics a
student is led to think that all the energy of a system can be
used to perform a useful task, whereas exposition to thermody-
namics conveys the fundamental idea that, in general, only part
of the energy can be exploited. In some case (systems in sta-
ble equilibrium states) energy is not available at all. Starting
from the question: “how much energy can be extracted from
a system to perform work?” two properties are introduced, the
adiabatic availability and the available energy. They are defined
for any system in any state. Then, entropy is defined as a linear
combination of energy and available energy differences. The
definition is operational and describe an ideal way to measure
entropy. Moreover entropy results to be a property of systems in
any state, just like energy, momentum, mass, etc. Another key
feature of this approach, particularly important for engineering
students, is that it naturally leads to the physical interpretation
of entropy as a measure of the energy of a system that cannot be
used to perform work and underlines the strong interrelation be-
tween entropy generation by irreversibility and loss of potential
to perform work.

Following Gyftopoulos and Beretta [2; 9; 10], in our courses
we introduce the basic concepts according to the following
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order: system; properties; state; energy and energy balance;
classification of states and existence of stable equilibrium
states; available energy; entropy (both for equilibrium and non-
equilibrium states) and entropy balance; properties of stable
equilibrium states; temperature in terms of energy and entropy;
pressure; work and heat. In this paper we discuss how we have
adapted the sequence of arguments proposed in [2, Chaps. 2-14]
to meet the needs of engineering students with different back-
ground (mechanical, industrial, civil, etc.), attending the course
either during their 2nd or their 3rd year of program. On the ba-
sis of our teaching experience we believe that this approach is
particularly suited for students attending engineering programs
and our goal here is to underline the most important reason of
its success.

UNIT 1: SYSTEMS, PROPERTIES, AND STATES

The first course hour is devoted to the introduction of the
concepts of system, property and state.

A set or collection of constituents is called a system when it
is clearly specified what follows.

1. Type of each constituent and allowed range of values of the
corresponding amount.

2. Type and allowed range of values of the parameters that
fully characterize any external forces exerted on the con-
stituents by bodies other than the constituents. The external
forces may depend on coordinates of the constituents of the
system only.

3. The internal forces among constituents, such as intermolec-
ular forces.

A force parameter can be a quantity that appears in the equa-
tion describing an external force field like g in the uniform grav-
itational field near the Earth ground, or like the charge q in the
electrical field that it generates. In some cases the force field
expression is not even necessary to describe its effects on the
constituents: for many applications the effects of the walls of a
container that confines a gas are fully described by the volume V
of the enclosure, and we do not need to specify its actual geom-
etry. Furthermore, point 2. expresses the fundamental request
of separability of constituents of a system from other bodies.
Constituents that are not separable cannot be considered a sys-
tem: as an illustrative example from mechanics, consider a set
A of material points subject to a force potential depending on
coordinates of other material points external to A: in this case it
is not possible to define the corresponding potential energy of A
and, as a consequence, to determine the value of A’s energy.

Everything that is not included in the system is the environ-
ment, which is thought as a system itself.

For a system with r constituents, we denote their amounts
by the vector n = (n1, n2, . . . , nr). For a system with external
forces described by s parameters we denote the parameters by
the vector βββ = (β1, β2, . . . , βs). For most systems studied in the
course, volume is the only parameter, s = 1 and β1 =V .

The notion of system can be suitably illustrated with exam-
ples from mechanics and electromagnetism: like a set of mate-
rial points of different masses (type of constituents), in a uni-
form gravitational field characterized by the parameter g and
subject to internal elastic forces.

At any instant of time, the amount of each constituent and the
parameters of each external force have specific values, but these
do not suffice to characterize completely the condition of the
system: we need to know the values of a larger, specific set of

properties. For example, referring to systems of material points,
we need to specify position and velocity of each particle.

A property is a system attribute that can be quantitatively
evaluated at any given instant of time by means of a set of well-
defined measurements and operations provided that the value is
independent of the measuring devices, other systems in the en-
vironment and other instants of time. The difference of instan-
tenous velocity and average velocity can be used to illustrate the
difference among properties and other physical observables.

Two properties are said to be independent if the value of one
can be varied without affecting the value of the other. The char-
acterization of the condition of a system at an instant of time
is given by the values of a complete set of independent prop-
erties: this set of values is called the state of the system. The
expression complete set denotes a set of properties which are
sufficient to determine the values of all other properties: the ex-
istence of complete sets of independent properties is implicitly
assumed here. As a final remark, we underline that the amounts
of constituents and the force parameters are system properties.

As already mentioned, we try to follow a gradual approach
from mechanics to thermodynamics. Definitions and results we
are teaching must encompass as a special cases the ones known
from introductory physics courses. This is the case, for exam-
ple, with the definitions of system, property, and state which are
valid without change in any physical theory.

UNIT 2: CHANGES OF STATE, PROCESSES

The second course unit takes into consideration the time evo-
lution of systems and how it can be described. Roughly, it takes
one hour.

It is self-evident that the state of a system may change in
time. Two or more systems interact among them, when corre-
lated changes of their properties can be observed. Through ex-
amples from mechanics (elastic collisions) or electromagnetism
(contact between charged conductors) it is underlined that some
property changes can be thought of as due to an exchange be-
tween interacting systems (momentum, electric charge), while
other properties are not exchanged (velocity, electric potential).
Interactions among systems are classified in terms of properties
exchanged and modes of exchange.

In mechanics students learn that to describe the time evolu-
tion of a system, one has to solve an equation of motion to find
a trajectory in a proper phase space. For more general systems
such an equation is not available, thus we are content with a
less strong description of motion. A collision experiment can
be used to illustrate the concept. Even if we do not know ex-
actly the internal forces acting during the collision, and there-
fore we are not able to reconstruct the particles motion, we do
know that collision will results in an exchange of momentum
and energy: both momentum and energy (kinetic plus internal
potential energy) are conserved. In some cases one measures
masses and velocities before and after the collision, to evaluate
the amount of properties which have been exchanged. In other
cases, one takes advantage of the conservation principles to de-
termine properties of the initial or the final states that have not
been measured.

As well as a collision among particles can be fully described
in terms of values of properties before and after the collision, to
describe system evolutions we introduce the concept of process
that is the specification of the initial and the final states plus the
interactions active during the change of state.

Different types of processes can be identified. A class of pro-
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cesses of particular importance for the subsequent development
of the exposure are the so-called mechanical processes. A pro-
cess is denoted mechanical if the only net effect in the environ-
ment is a mechanical one. By mechanical effect we mean the
change of elevation of a weight in a uniform gravitational field,
the change of momentum of a material point, the change of dis-
tance of two masses or two electrical charges, the change of
length of a spring etc. As taught in introductory physics courses
all these examples are perfectly equivalent: it is always possi-
ble, for example, to modify the elevation of a weight without
any other net effect but a change of the distance between two
electrical charges. Without loss of generality, the change of el-
evation of a weight is taken as representative of all mechanical
effects. The processes studied in mechanics and electromag-
netism are all of this type.

A type of process which does not pertain to mechanics is the
spontaneous process. Upon studying real systems one realizes
that some changes of state are not induced by other systems nor
produce a non-zero effect in the environment. Several exam-
ples from everyday life can be successfully used to exemplify
this concept: some milk carefully poured into a cup of coffee
will slowly change into white coffee even without any stirring
or shaking from the environment; the battery of a cell phone
left off for a few weeks will not supply enough charge to oper-
ate the phone. In some cases it is clear, in others it may require
prolonged and careful observations, but one has to conclude that
some changes of properties of a system are uncorrelated to any
change of properties of any other system: these are called spon-
taneous changes of state. Systems which undergo only to spon-
taneous changes of state are said isolated. Consideration and
analysis of spontaneous processes is a distinct feature of ther-
modynamics with respect to mechanics.

Finally, we introduce the concept of steady processes (when
the state of the system does not vary in time, in spite of ac-
tive interactions with other systems) and of reversible processes
(when it is possibile to perform a second process that restores
the initial state of both the system and its environment).

UNIT 3: FIRST LAW, ENERGY, ENERGY BALANCE

This unit requires two hours at most to introduce the First
Law of Thermodynamics and its main consequences, first of all
the existence of a property, energy, which is defined for all states
of any system. The First Law is stated as follows:

Any two states of a system may always be the end states of a
mechanical process. Moreover, for a given weight m, the value
of the product mg∆z is fixed by the end states of the system, and
independent of the details of the mechanical process.

Here m is the mass of the weight, g the gravitational acceler-
ation and ∆z the weight elevation change.

Commenting on this statement in class, it is important to un-
derline that although any pair of states can be connected through
a mechanical process, nothing can be said about the direction of
the process. It is not guaranteed that each of the two states can
be either the initial or the final state: in general, therefore, the
mechanical process can be either reversible or irreversible.

The main consequence of the First Law is that every system
A in any state A1 has a property called energy, with a value
denoted by EA

1 . If one chooses a reference state A0 to which is
assigned an arbitrary reference value EA

0 , then the energy EA
1 can

be evaluated performing a mechanical process that connnects A0

and A1,

EA
1 = EA

0 −mg(z1− z0) (1)

Next we introduce the concept of composite system, that is
a set of two or more systems, which can be considered a sys-
tem itself. On the other hand, a partition of a system does not
guarantee that the single parts are systems themselves.

A series of important results for energy are proved. Con-
servation: energy is conserved in any spontaneous process (a
spontaneous process is a zero-net-effect mechanical process,
mg∆z = 0). Additivity: the energy of a composite system is the
sum of the energies of its subsystems. Transferability: consid-
ering spontaneous processes of a composite system, it is shown
that energy is a property that can be exchanged among systems
when they interact. Energy balance: for any process of any sys-
tem A it holds,

EA
2 −EA

1 = EA← (2)

Here EA← denotes the net energy transferred to A from all the
other interacting systems during the process that changes the
state of A from A1 to A2. The energy gained by a system A must
be accounted for by the energy transferred across the bound-
ary of the system, because energy neither can be generated nor
destroyed in A.

UNIT 4: EQUILIBRIUM STATES

This unit requires about one hour and is a necessary intro-
duction to the Second Law statement. It should be illustrated to
classes with examples from mechanics.

For most systems the number of possible states is infinite.
Among these infinite states there are some that have important
characteristics. We introduce a classification of states based on
their time evolution in spontaneous processes.

A non-equilibrium state is one that changes spontaneously
as a function of time. An equilibrium state is one that does not
change as a function of time while the system cannot interact
with other systems: it is a state that does not change sponta-
neously.

Equilibrium states can be divided further in non-stable equi-
librium states and stable equilibrium states. Is it possible to
perform a process that starts with the system in a non-stable
equilibrium state and ends in a different state, with non-zero
exchange of properties during the process, but without net fi-
nal effects in the environment. A stable equilibrium state is
an equilibrium state that can be altered to a different state only
by interactions that leave net effects in the environment of the
system. These definitions are equivalent to the ones presented
in mechanics in introductory physics courses, but encompass a
larger set of states than those encountered in mechanics. The
motion of a material point in a force field with potential energy
with relative minima (metastable states) and maxima (unstable
states) and an absolute minimum (stable state) can be used to
illustrate the concept.

UNIT 5: SECOND LAW, AVAILABLE ENERGY

This unit which takes about two hours, starts with the presen-
tation of the Second Law of Thermodynamics, formulated as a
statement about the existence of stable equilibrium states.

Among all the states of a system with given values of the en-
ergy, the amounts of constituents, and the parameters, there ex-
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ists one and only one stable equilibrium state. Moreover, start-
ing from any state of a system it is always possible to reach
a stable equilibrium state with arbitrarily specified values of
amount of constituents and parameters by means of a reversible
mechanical process.

In this exposition the crucial difference between systems as
studied in mechanics and electromagnetism, and systems as
studied in thermodynamics, is the existence of a moltitudo of
stable equilibrium states of a system, as experience and exper-
imental evidence show. In mechanics and in electromagnetism
a system has only one stable equilibrium state (ground state).
At ground state the energy of the sistems attains its minimum
value: thus it is usually chosen as reference state and its energy
is set equal to zero. In thermodynamics, it is stated that for fixed
values of amounts of constituents and parameters, there exist
one stable equilibrium state for each energy value and not for
the ground energy value only. Moreover the stable equilibrium
state corresponding to a value of E is unique.

Let’s turn to what we could call a fundamental engineering
problem: given a system with energy E, which fraction of it
could we extract to perform useful tasks such as rise weights,
compress springs, moving electrical charges?

In a mechanical process starting either from a non-
equilibrium or a non-stable equilibrium state, a system can
transfer energy out. In mechanics, the maximum transfer of en-
ergy to the environment occurs in a process ending in the ground
state. If ground energy is set equal to zero, we convey the idea
that all the energy of a system can be extracted in a mechanical
process.

Therefore, in mechanics the answer to the previous question
is “all”, while, upon introduction of the Second Law, the answer
is “only a fraction of it”: furthemore, if the initial state is a stable
equilibrium one the answer is “none”. The latter conclusion is
known as the impossibility of the perpetual motion machine of
the second kind.

At this point a new property defined for any state of any sys-
tem is introduced: the adiabatic availability Ψ. The adiabatic
availability of system A in state A1 represents the maximum
energy that can be extracted from A by a mechanical process
starting from state A1, without changing amounts of constituents
and parameters. Let’s consider all conceivable mechanical pro-
cesses starting from state A1 that do not change the amounts
of constituents and the parameters, and compare the values of
the energy extracted from A: the maximum value of the en-
ergy extracted satisfies all the independence requirements for a
physical observable to be a property. The adiabatic availabil-
ity is the maximum energy that can be extracted from a system
in a given state to perform useful tasks (without vary amounts
of constituents and parameters): it is equal to zero for any sta-
ble equilibrium state and it is positive for any other state. It
allows to state a criterion for reversibility of a mechanical pro-
cess: given two states A1 and A2 with the same amounts of the
constituents and parameters, a mechanical process from A1 to
A2 can be performed if and only if ΨA

1 −ΨA
2 ≥ EA

1 −EA
2 . If the

two differences are equal, the process is reversible. Unlike en-
ergy, adiabatic availability is not additive and does not satisfy a
balance equation.

UNIT 6: THE ROUTE TO ENTROPY

This unit is the longest one and it may take up to three hours
of lecturing. However it is possible to skip some minor points
or proofs and save about an hour.

The fact that adiabatic availability is not additive represents
a limitation to its extended use. In this unit we restrict to con-
sider systems which are composed by a generic system and a
special reference system, called reservoir. Upon studying the
mechanical processes of the composite of a system and a reser-
voir, we are lead to introduce a new property which captures the
important features of adiabatic availability and is additive: the
available energy.

More than one property, available energies form a class of
properties that differ by the reservoir taken as reference. So we
speak of available energy with respect to the reservoir R and
denote it as ΩR. Each available energy is a property defined
for any system in any state: (ΩR)A

1 is the available energy with
respect to R of system A in state A1.

In class we spend some time explaining with examples that
in Nature many systems behave like a reservoir and, in particu-
lar, that the natural environment acts like a reservoir: the com-
posite of a system and a reservoir is a realistic model of most
engineering systems. As a consequence, it is of great practical
importance to investigate how much energy can be extracted out
of such a composite system in a mechanical process.

Let’s consider all conceivable mechanical processes for AR –
the composite of sytem A with reservoir R, that do not change
the amounts of constituents and the parameters of both A and
R and start with system A in state A1, and compare the values
of the energy extracted from AR: the maximum value of the
energy extracted satisfies all the independence requirements for
a physical observable to be a property of A. We call it available
energy of A in state A1 (with respect to R).

As a matter of fact (ΩR)A is the energy extracted from AR in
a reversible, mechanical process of AR that ends with A and R in
mutual stable equilibrium without changes in amounts of con-
stituents and parameters of A and R. It follows that the available
energy (ΩR)A

1 of system A coincides with the adiabatic availabil-
ity ΨAR

1 of composite system AR, whereas it is larger or equal to
the adiabatic availability ΨA

1 of system A.
The criterion for reversibility of a mechanical process of A

can be stated in terms of (ΩR)A also: given two states A1 and
A2 with the same amounts of the constituents and parameters, a
mechanical process from A1 to A2 can be performed if and only
if (ΩR)A

1 − (ΩR)A
2 ≥ EA

1 −EA
2 . If the two differences are equal,

the process is reversible. Unlike adiabatic availability, available
energy is additive.

The energy E and the available energy with respect to a ref-
erence reservoir R, ΩR determine a third property that is called
entropy and denoted as S. In [2] is described the measurement
procedure that allows to determine the value of S for any state
A1 of any system A. It is needed the auxiliary reservoir R, a ref-
erence state A0 with energy E0 and available energy (ΩR)A

0 , to
which is assigned a reference value S0, then S1 is evaluated by
the expression

SA
1 = SA

0 +
1
cR

{
(EA

1 −EA
0 )−

[
(ΩR)A

1 − (ΩR)A
0
]}

(3)

where cR is a well-defined positive constant that depends on the
auxiliary reservoir R only. Entropy S is shown to be independent
of the reservoir, which is introduced only because it facilitates
the definition of S. It is also shown that the reference value SA

0
can be chosen in such a way that S is always non-negative.

The proof of the independence of S from the particular reser-
voir chosen as reference is given in Par. 7.4 of [2], but in our
experience is too abstract to be proposed in a ten-twenty hours
introductory course to Engineering Thermodynamics.
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The points that we underline and stress in class are the fol-
lowing. Entropy is a property in the same sense that energy, mo-
mentum, electric charge are properties. Entropy is not restricted
to equilibrium states: it is defined for both equilibrium and non-
equilibrium states because energy and available energy are de-
fined for all states. Being defined in terms of energy and avail-
able energy, its measure requires only energy difference mea-
surements which, in principle, can be determined upon mea-
surement of the changes of elevation of weights which occur
in mechanical processes. Entropy definition does not involve
the concepts of heat and temperature which have not yet been
defined.

Entropy is an additive property being a linear combination of
additive properties: energy and available energy1.

Next, the reversibility criterion established for available en-
ergy, yields the following series of results.

Criterion for reversibility of a mechanical process: given two
states A1 and A2 a mechanical process from A1 to A2 can be
performed if and only if SA

2 −SA
1 ≥ 0, moreover if SA

2 = SA
1 , the

process is reversible.
Entropy increases in any irreversible spontaneous process

(which is a zero-net-effect mechanical process): a phenomenon
which is due to creation of entropy. Any process of any system
may always be regarded as a process of a composite isolated
system consisting of all the systems interacting with the first
one. If the process of the composite system is irreversible, its
entropy does increase. It is natural to think that it is the sum of
the entropy created inside the single interacting systems. The
entropy created in an irreversible process is called entropy gen-
erated by irreversibility and denoted by Sirr.

Analysis of a reversible process of a composite system shows
that entropy is a property that can be exchanged among systems
when they interact. Therefore, the entropy gained by a system
A can be accounted for by the entropy transferred across the
boundary of the system and by the entropy created inside the
system. Entropy does satisfy a balance equation: for any pro-
cess of any system A it holds,

SA
2 −SA

1 = SA←+Sirr, Sirr ≥ 0 (4)

At this point, in class, we usually make two comments. First,
the combined use of energy and entropy balance is the key to the
solution of almost every thermodynamics problem. Second, the
entropy of a system can even decrease in an irreversible process:
it is sufficient that the entropy transferred out of the system be
larger than the entropy created. Although this statement may
seem obvious, many students tend to confuse the source term
Sirr with the entropy system change SA

2 − SA
1 , perhaps they are

confused by high-school reminiscences like “Entropy is always
increasing”.

The dimensions of S depend on the dimensions of both en-
ergy and cR. It turns out that the dimensions of cR are indepen-
dent of mechanical dimensions, and are the same as those of
temperature (defined later).

1Both adiabatic availability and available energy have been defined in terms
of mechanical processes that do not change amounts of constituents and param-
eters of the system A. It is possible to consider also mechanical processes that
end in states of A with assigned values of n′ and βββ

′ different from those of the
initial state. That yields to the so-called generalized adiabatic availability and
available energy. These properties share the same features of adiabatic availabil-
ity and available energy, but can assume negative values also. Actually, entropy
is defined in terms of energy and generalized available energy.

UNIT 7: STABLE EQUILIBRIUM STATES

Also this unit is quite long, taking about three hours of lec-
turing.

One of the most important consequence of the Second Law
statement is the existence of strong interrelations among the
properties of the system when in stable equilibrium states.

For given values of E, n, and βββ there exists one and only one
stable equilibrium state, that implies the existence of a bijective
relation between the set of E, n, and βββ and the stable equilibrium
states of A. Recalling that state is the set of values of all the
system properties, the value of any property P at equilibrium
can be expressed as

P = P(E,n,βββ) (5)

this result will be referred to as the state principle and functions
as Eq. 5 will be called state equations.

Borrowing the concept of basis from Vector Algebra, we say
that (E,n,βββ) form a convenient basis to represent any other
property of stable equilibrium states. As in Algebra the choice
of a basis is not unique, in Thermodynamics any other set of
(1+ r+ s) independent properties can be used to determine sta-
ble equilibrium states: (S,n,βββ) is another useful choice. Among
the state equations a special role is played by the fundamental
relation:

S = S(E,n,βββ), entropy form (6)
E = E(S,n,βββ), energy form (7)

Both S(E,n,βββ) and E(S,n,βββ) are almost everywhere analytic
funtions.

The first derivatives of the fundamental relations will play
an important role in the subsequent developments of the sub-
ject presented in class. They are: the absolute temperature
T = ∂E/∂S; the i−th total potential µi = ∂E/∂ni, i = 1,2, . . . ,r;
the force conjugated to the j−th parameter f j = ∂E/∂β j, j =
1,2, . . . ,s. In particular, the force conjugated to the parameter
V , volume, is the opposite of pressure, p =−(∂E/∂V ).

By a simple argument we make the student understand that
the abstract and somehow obscure quantity−(∂E/∂V ) does co-
incide with the idea of pressure introduced in mechanics, that is
the ratio between normal force and the surface area on which it
acts. After this proof it is easier for them to accept to call tem-
perature the partial derivative of energy with respect to entropy!

At this point we introduce and prove the highest-entropy
principle – among all the states with the same energy and given
values of (n,βββ) the state of stable equilibrium has maximum en-
tropy – and the lowest-energy principle – among all the states
with the same entropy and given values of (n,βββ) the state of
stable equilibrium has minimum energy. The highest-entropy
principle is the basis to derive necessary conditions for mu-
tual equilibrium between interacting systems. We usually prove
explicitly that when two systems may exchange energy a nec-
essary condition for mutual equilibrium is equality of temper-
ature, then by analogy we simply state other conditions like
equality of i-th total potential (for systems that may exchange
i-th constituent) or equality of pressure (for systems that may
exchange volume). Further developments of the last proof, al-
low to obtain the following results: temperature is a positive
quantity; temperature is a non-decreasing function of energy
(and entropy); entropy fundamental relation S(E,n,βββ) is con-
cave with respect to energy, whereas energy fundamental rela-
tion E(S,n,βββ) is convex with respect to entropy; the constant cR
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Figure 1. Energy vs. entropy graph for assigned values of n and V .

of a reservoir coincides with its temperature; last, but not least,
in a spontaneous interaction between systems (without changes
of n and βββ) initially at different temperatures energy and en-
tropy are transferred from the hotter to the colder (which is the
Second Law formulation due to Clausius).

To conclude this unit, relative temperature scales are intro-
duced and illustrated. We point out that temperature measure-
ment procedures require mutual equilibrium between two sys-
tems that can exchange energy, but neither constituents nor vol-
ume: the system whose temperature has to be measured and the
thermometer. These remarks should remove any residual doubt
about the identification of ∂E/∂S with temperature.

UNIT 8: WORK AND HEAT

This is a quite short unit which takes one hour at most.
Eventually the concepts of work and heat are introduced:

both are modes of energy transfer. In UNIT 2 we said that it
is possible to classify interactions on the basis of property ex-
changed and mode of exchange: the first criterion adopted is
the transfer of entropy. Any interaction that results in a net ex-
change of energy, but no exchange of entropy is called a work
interaction. The energy exchanged during a work interaction is
called work.

Any interaction that results in entropy exchange is called
non-work interaction. Any process that involves at least one
non-work interaction is said diabatic.

Consider a diabatic process for systems A and B that do not
experience change of constituents or parameters. It can be re-
produced as a sequence of a diabatic process that ends with one
of the two system, say A, in the final state A2, followed by a me-
chanical process of the second system B that ends in final state
B2. For this reason we say that the non-work interaction can be
regarded as partly non-work and partly work. It is proved – but
usually we do not do it in class – that if the initial states A1 and
B1 are stable equilibrium states, in the limit (T A

1 −T B
1 ) tending to

zero, the work transferred in the mechanical process vanishes:
it can be said that in this limit the non-work interaction is totally
distinguishable from work and it will be called heat interaction.
Moreover, in the limit (T A

1 − T B
1 ) tending to zero the ratio be-

tween the energy and the entropy exchanged between A and B
tends to the almost common value of the initial temperatures
T A

1
∼= T B

1 .
Thus, we define heat interaction an interaction that results

in a net exchange of energy and entropy but no constituents be-

1A

2A

021 EE

1E

2E

E

S

1A
2A1E

2E

E

S

Figure 2. Allowed end states of a mechanical process starting from A1:
energy is extracted out of the system in processes ending in the darker
region. Small graph: the darker region collapses as the starting state
approaches stable equilibrium.

tween two systems that are in stable equilibrium states at almost
the same temperature TQ, and such that the ratio of the amount
of energy transferred to the amount of entropy transferred is
equal to TQ. The energy transferred is called heat.

The heat definition – we may called it, strong definition – just
cited appears to many students rather puzzling. Why the inter-
acting systems must be initially in stable equilibrium states with
temperatures almost equal? Isn’t it too a special case? After all
when one thinks of heat, he thinks of systems whose tempera-
tures are rather different. To answer to these objections a weak
definition is introduced: in general, we talk of heat interaction
between systems A and B which are not even in stable equilib-
rium states, if the interaction is localized into two subsystems A′

and B′ that satisfy the strong definition. We conclude quoting
or anticipating that in conductive and convective heat transfer,
the interaction between media always occurs through layers ad-
jacent to the media interface that are almost at the same temper-
ature.

We underline that the interacting systems must be almost at
the same temperature because only in this case heat is entirely
distinguishable from work. If it were not, one could not write

EA
2 −EA

1 = QA←−W A→ (8)
SA

2 −SA
1 = SA←+Sirr (9)

where QA← is the total energy transferred into A by heat in-
teractions and W A→ is the total energy transferred out of A by
work interactions. SA← is the total entropy transferred into A:
SA← = QA←

1 /TQ1 if there is only one heat interaction at temper-
ature TQ1 ; SA← = QA←

1 /TQ1 +QA←
2 /TQ2 if there are two heat in-

teractions at temperatures TQ1 and TQ2 , respectively; etc. Equa-
tions 8 and 9 hold for processes that do not involve changes of
constituents. We conclude quoting [10, p. 215]: “Work and heat
are ingenious concepts. For given end states of a system, they
allow the quantitative distinction between entropy generated by
irreversibility and entropy exchanged via interactions with other
systems. As such, these two concepts provide practical means
for identifying opportunities to reduce the entropy generation by
irreversibility and, hence, improve the performance of the sys-
tem. The identification of these opportunities would be missed
if heat were defined as just any interaction that is not work, i.e.,
any non-work interaction.”
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Figure 3. Graphical representation of adiabatic availability.

UNIT 9: ENERGY-ENTROPY GRAPHS

As a conclusion of this series of lessons we introduce the
energy-entropy graphs. Although their use is not widespread,
we consider them a very powerful educational tool. In particu-
lar, they are a simple mean to review and to put on firm basis the
material presented in the preceding units. The graphs supply a
clear and suggestive illustration of many concepts and make it
easier for the student to grasp and retain the fundamental ideas.
The material can be presented in about two hours.

For simplicity, but without loss of generality, we restrict our-
selves to consider systems with one parameter only, the volume
V . Then we represent on the plane S-E all the states of the
system with prescribed values of n and V (see Fig. 1). Only
points in the gray region and on its boundary correspond to pos-
sible states of the system. The boundary of the gray region is
called the curve of the stable equilibrium states. It is the graph
of the fundamental relation E(S,n,V ): each point of it corre-
sponds to a single state of stable equilibrium and viceversa.
Each point in the gray area represents several – usually infi-
nite – non-equilibrium or non-stable equilibrium states. Points
outside would have a combination of entropy and energy values
that is not compatible with the assigned pair (n,V ): it is a conse-
quence of either the highest-entropy principle or lowest-energy
principle.

The slope of the stable equilibrium state curve, ∂E/∂S = T
is the geometric representation of the temperature. The curve
is convex, since ∂2E/∂S2 ≥ 0, therefore its slope T increases
(better, non-decreases) with both S and E.

Mechanical process end states: the grey regions in Fig. 2
show which states can be end states of a mechanical process
starting in state A1, without changes of n and V . System en-
tropy can not diminish in such a process. Furthermore, in pro-
cesses ending in the light grey region energy is transferred into
the system, in processes ending in the dark grey region energy
is extracted out of the system. The latter processes are those
“performing a useful task”. Considering a sequence of states
approaching the stable equilibrium state curve, it is readily seen
that the dark grey region quickly reduces, until collapsing in a
state of stable equilibrium: that is the graphical representation
of the impossibility of PMM2.

Adiabatic availability: it is the maximum energy that can be
extracted from a system in a given state to perform useful tasks
(without vary n and V ), a glance at Fig. 3 shows that is the en-
ergy extracted in the reversible, mechanical process from state

E

S
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irrS

1E EA1

A

1

0

Figure 4. Graphical representation of a spontaneous process. As sys-
tem state tends towards stable equilibrium, entropy increases by internal
generation, whereas adiabatic availability is lost.

A1 to the stable equilibrium state A1s with the same values of S,
n and V .

Spontaneous process: Fig. 4 represents a spontaneous pro-
cess starting from non-equilibrium state A1. As time proceeds
the system state approaches the stable equilibrium state curve
along a horizontal path (neither E, nor V , nor n can vary) while
its entropy increases due to production by irreversibility. At the
end the system will reach the stable equilibrium state A1e: it is
possible to determine a relaxation time, τs, characteristic of the
internal spontaneous mechanisms that drive the system towards
equilibrium. In a spontaneous process like the one in Fig. 4,
system energy does not change, but as system entropy increases
by irreversibility, adiabatic availability decreases. The poten-
tial of extracting energy from the system to perform a useful
task is progressively lost. It reduces to zero when stable equi-
librium is attained: we do think that this graph is an important
tool for students to understand the strict relation between en-
tropy creation by irreversibility and destruction of capability of
performing work.

Another remark that we consider enlightener, is the follow-
ing. The internal spontaneous mechanisms towards stable equi-
librium are always active causing entropy generation and de-
struction of adiabatic availability. If one wants to extract as
much energy as possible from a non-equilibrium state by a me-
chanical process, it has to do it fast: in order to minimize en-
tropy production the characteristic time scale of the mechani-
cal process, τm, must be much shorter than the relaxation time,
τm << τs. Some students have the wrong idea that a process
close to be reversible can be performed only proceeding slowly,
through a quasi-steady evolution. Here it is shown that quasi-
reversible processes can be obtained operating fast, much faster
than spontaneous mechanisms towards equilibrium.

Sound propagation is an interesting illustration of this con-
cept. The time period of the sequence of reversible compres-
sion and rarefaction induced by a sound wave in gas through
which it propagates, is much shorter than the time scale of dis-
sipative heat exchange between hot, compressed layers of gas
and the adjacent, colder, rarefied layers: thus sound attenuation
is a secondary effect, which has to be taken into consideration
only over long distance propagation.

Available energy: Fig. 5 illustrates the graphical representa-
tion of available energy of system A and shows in the small dia-
gram the stable equilibrium state curve for a reservoir (a straight
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Figure 5. Graphical representation of available energy with respect to
reservoir R. Small graph: the E vs. S graph for R.

line). In the energy-entropy graph of system A, state A0 is the
state of mutual equilibrium with reservoir R, that is the stable
equilibrium state at T A

0 = TR. Usually we show in class that
available energy of state A1 can be obtained as follows. Draw
the tangent line at the stable equilibrium state curve through A0,
draw the vertical line through A1, find the intersection a of the
two lines: (ΩR)A

1 is equal to the difference between the energy
EA

1 and the energy level corresponding to point a.

CONCLUSIONS

After these lectures devoted to the foundations of thermody-
namics, we proceed practicing the use of energy and entropy
balances on heat engines and refrigeration units, introducing
the concept of simple systems, i.e. systems whose behavior
is somehow independent of the amounts of constituents, and
deriving Gibbs, Maxwell, Euler and Gibbs-Duhem relations,
presenting heterogeneous states and the phase-rule. Then, we
address processes that result in exchanges of constituents and,
upon introduction of the bulk-flow interaction, we extend bal-
ance equations of mass, energy, and entropy to these processes
also. Eventually energy conversion devices and other standard
applications are considered.

In our experience this exposition is particularly suited to un-
dergraduate students of engineering programs. Its key points
are the following.

It starts from concepts studied in mechanics and that are fa-
miliar to students, and try to use them to investigate a larger set
of phenomena without resorting to empirical ideas of heat and
temperature.

Spontaneous processes, easily recognizable in everyday life,
and the existence of stable equilibrium states for any set of val-
ues of energy, amounts of constituents, and parameters are dis-
tinct features of thermodynamics with respect to mechanics: in
any system in a non-equilibrium state are active internal mecha-
nisms that spontaneously drive the system towards equilibrium.

Energy does not coincide with the possibility of performing
work. Due to spontaneous evolution towards stable equilibrium,
energy is conserved, but at the same time the possibility of ex-
tracting energy to perform work decreases reaching zero at sta-
ble equilibrium.

The maximum energy that can be extracted from a system

and from the composite of a system and a reservoir, to perform
work, are identified as system properties: adiabatic availability
and available energy. They are defined for any state of any sys-
tem and they can be measured in terms of the change of eleva-
tion of a weight in a gravitational field. They are progressively
destroyed in spontaneous evolution towards equilibrium. The
engineering student faces here one of the challenges of his pro-
fession: devices, machines, and systems that perform work effi-
ciently must be designed to operate on time scales much shorter
than the relaxation time scales of spontaneous irreversible pro-
cesses.

Entropy is defined in terms of energy and available energy,
for both equilibrium and non-equilibrium states. The definition
is operational, i.e. it is expressed in terms of a sequence of
operations and measurements: this feature is usually missing in
axiomatic exposition of thermodynamics.

Balance equations of energy and entropy are derived and ex-
tensively used as powerful tools to analyse processes and to im-
prove their efficiency.

Last, but not least, the use of energy vs. entropy diagrams as
an effective educational tool to illustrate in a graphical way most
of the concepts presented in these lectures. In particular, they
show in a clear way the close relation between the creation of
entropy by irreversibility and the destruction of the possibility
of performing useful task.
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ABSTRACT 

 
Entropy is the most important and at the same time the most difficult-to-understand term of thermodynamics. Many students are discontent 

with its classical definition dS= δQ/T since it is based on “temperature” and “heat” which both cannot be accurately defined without entropy. The 
physicists Elliott Lieb and Jakob Yngvason have recently developed a formulation of thermodynamics [1] which is free of these problems and 
defines entropy in a mathematically rigorous way in terms of adiabatic accessibility. Whereas the Lieb-Yngvason entropy-definition is readily 
accessible to scientists and engineers with previous knowledge and working experience in engineering thermodynamics, the question whether 
this accurate definition can be used in undergraduate engineering thermodynanics education for mechanical engineers was an open question until 
recently. Ths present communication describes a series of lectures and course material [2] aimed at introducing the Lieb-Yngvason entropy-
definition into second-year engineering thermodynamics courses for mechanical engineers at Ilmenau University of Technology (Germany). The 
lecture will share the experience accumulated since 2007 with more than 2000 undergraduate students and indicate some ways in which the Lieb-
Yngvason theory can help making undergraduate engineering thermodynamics eduation more mathematically rigorous. 
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EXTENDED ABSTRACT 

 

Multi-scale hierarchical organization of a population is understood here as the grouping of elements of this population into aggregates, these 
aggregates being grouped themselves into higher order aggregates, and so forth, to form a multi-scale organization. The characterization of such 
systems has been considered for various situations, going from particle clustering in  fluidized beds, to collective behavior of micro-organisms in 

ecology, and including some attempts at modeling human organizations. 

Entropy seems an appropriate concept to characterize order or organization. However, the classical statistical approach is not immediately 
transposable to this situation. The subject of the present communication is to illustrate the nature of the difficulty, which somehow connects to 
the non-extensivity issue addressed by the "new" entropies of Tsallis or Renyi. 

The situation investigated differs from that of classical statistical thermodynamics in several respects. First, the multi-scale character requires 
a specific combinatorial analysis of particular ensembles, leading to a reformulation of the classical statistical entropy. Second, we are not dealing 
here with organization along dimensional physical quantities such as time, space or energy, but with organization in numbers. The corresponding 
entropy is therefore somehow analogous to probabilistic entropy or to informational entropy. Third, we are looking for the most ordered 
configurations, thus for distributions that minimize total entropy, rather than maximizing it. Fourth, we are considering systems with a small 
number of elements, in which the classical large number limits are not applicable or not useful. 

Defining an entropy-like function that has suitable properties seems rather arbitrary.  The approach explored here consists in defining 
entropies of the different scales in a nearly conventional way, and then weighting their contributions to account for their interdependence. Of 
course, this approach is not unique. 

As an illustration, the value of trial functions having minimal properties is calculated with a very simple example, concerning the 
homogeneous organization of Ntot =144 "elements" in n = 3 levels of aggregation such that Ntot = N3= q1q2q3 , where q1 is the number of 
elements in the first level aggregates A1, q2 is the number of aggregates A1 in the second level aggregates A2 and q3 is the number of A2 
aggregates in the largest aggregate A3, as illustrated in the figure. 
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The choice of 144 is because this relatively small number has many integer divisors, leading to 90 triplet configurations of aggregates with 

integer numbers of elements or sub-aggregates. In the figure, we have the triplets q = (4,6,6), N = (4, 24, 144) 
In this example, the entropy of an aggregation level is defined from the number of permutations of the elements within an aggregate of this 

level, multiplied by the number of aggregates. The total entropy is then assumed to be a weighted sum of the entropies of each aggregation level, 
so that we have for example: 

 

with: n=3; N0=1; Nn= Ntot, while k is a weighting factor discussed below. 

The total entropy  Stot can now be computed for the 90 configurations, assuming values of the weighting coefficients, and one may look for the 

configuration(s) that gives the smallest entropy.  For example, taking first k =1, we find that the following triplets have total entropies distinctly 

smaller than all others, and in addition the different terms of the sum have similar orders of magnitude. 

qa = (2,4,18); Sa= 143.5 (18 A2 aggregates, each containing 4 A1 aggregates, each containing 2 elements) 

qb = (3,4,12);  Sb= 144.1 
 

Note that taking i = 1 amounts to adding up the entropies of the different levels as if they were independent, thus to ignore the embedding of 

these levels. Taking different values for the  is a non-unique way to account for the hierarchical structure, and results in considerable changes in 

the "minimal" configuration. For example, taking the  triplet as  = (1,4,8), one finds the following minimal distribution: q = (9,4,4) i.e. 4 A2 

aggregates, each containing 4 A1 aggregates, of 9 elements each). This is a much more pyramidal configuration corresponding more to a human 
organization such as a research laboratory. 

 
Other trial functions are explored: for example, a non-logarithmic function (possibly related to Tsallis' entropy) based on the number of 

couples of sub-aggregates in an aggregate ½ q(1-q). It is found that with the same weighting factors, the minimal entropy configurations are 
almost the same as the above. 
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EXTENDED ABSTRACT 

 
In an axiomatic approach to equilibrium thermodynamics, developed more than a decade ago in collaboration with E.H. Lieb [1-4], the Second 
Law of Thermodynamics, understood as the increase of the entropy of equilibrium states in irreversible adiabatic processes, is derived from 
certain basic properties of the relation of adiabatic accessibility of states. This line of thought has its roots in the work of C. Carathéodory [5] that 

was taken up in subsequent work in the 1950’s and 60’s by P.T. Landsberg, H.A. Buchdahl, G. Falk, H. Jung and R. Giles [6-9], among others. 
In these earlier approaches it is usually taken for granted that two equilibrium states of the same chemical composition are always comparable 
with respect to the relation of adiabatic accessibility, i.e., that it is possible to transform at least one of the states into the other by means of a 
process whose only net effect on the surroundings is equivalent to the raising and lowering of a weight. By contrast, it is argued in [1-4] that this 
comparability is a highly nontrivial property and needs justification.  In fact, the analytic backbone of the approach of [1-4] is its establishment 
starting from more plausible assumptions that include convex combinations of states, continuity properties of generalized pressure, and 
assumptions about thermal contact. 
 
In the panel discussion it will be argued that adiabatic comparability is also of central importance for any attempt to extend the definition of 
entropy beyond thermodynamic equilibrium states. More specifically, we consider a situation where an (essentially unique) entropy function S is 

defined on a space  of equilibrium states that is contained in some larger space  * of nonequilibrium states of the same system. We assume that 
any nonequlibrium state can be generated by an adiabatic process starting from some equilibrium state, and conversely, that any nonequilibrium 

state can be brought to equilibrium through such a process. Under these assumptions we show that any function S* on the space  * that extends 
the entropy S and is monotone under adiabatic state changes necessarily lies between two extremes, denoted S- and S+. These two functions 

coincide, leading to a unique entropy function on  *, if and only if all states in  * are adiabatically comparable. We also argue that assuming 
that this property holds in general is highly implausible. A comparison with the definition of entropy (for equilibrium and nonequilibrium states) 
via the concept of generalized availability as in the monograph of Gyftopoulos and Beretta [10] will also be commented on. Some further details 
are given in ref. [11]. 
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ABSTRACT
A rigorous and general logical scheme for the definition of entropy is presented, which is based on a complete set of operational
basic definitions and is free of the unnecessary assumptions that restrict the definition of entropy to the stable equilibrium states
of simple systems. The treatment applies also to systems with movable internal walls and/or semipermeable walls, and with
chemical reactions and and/or external force fields. Preliminary and auxiliary to the definition of entropy are the definition
of thermal reservoir and an important theorem which supports the operational definition of temperature of a thermal reservoir.
Whereas the thermal reservoir must be a normal system, the definition of entropy applies, in principle, even to special systems,
i.e., system with both a lower and an upper bound in energy.

INTRODUCTION

From the origins of classical thermodynamics to the present
time, several methods for the definitions of thermodynamic tem-
perature and of entropy have been developed. If we exclude the
treatments based on statistical mechanics and those which di-
rectly postulate the existence and additivity of entropy, as well
as the structure of the fundamental relations [1], most of the
methods can be divided in three main categories, which we will
call as follows: classical methods, Carathéodory-derived meth-
ods, Keenan-school methods.

Classical methods start with the Zeroth-Law of thermody-
namics (transitivity of mutual thermal equilibrium) and the defi-
nition of empirical temperature, then define energy by a suitable
statement of the First Law, and finally define thermodynamic
temperature and entropy through the Kelvin-Planck statement
of the Second Law [2]: it is impossible to construct an engine
which, working in a cycle, produces no effect except the raising
of a weight and the cooling of a thermal reservoir.

In their original formulation, classical methods had a logical
loop in the definition of energy. In fact, the First Law was stated
as follows: in a cycle, the work done by a system is equal to the
heat received by the system,

Q =W . (1)

The energy difference between state A2 and state A1 of a sys-
tem A was defined as the value of Q−W for A in any process
of A from A1 to A2. Clearly, this definition is vitiated by a logi-
cal circularity, because it is impossible to define heat without a
previous definition of energy.

The circularity of Eq. (1) was understood and resolved in
1909 by Carathéodory [3], who defined an adiabatic process
without employing the concept of heat and stated the First Law
as follows: the work performed by a system in any adiabatic
process depends only on the end states of the system.

Among the best treatments of thermodynamics by the classi-
cal method we can quote, for instance, those by Fermi [4] and
by Zemansky [5].

In his celebrated paper [3], Carathéodory proposed also a
new statement of the Second Law and developed a completely
new method for the definitions of thermodynamic temperature
and entropy. The treatment refers to simple systems, stable
equilibrium states, and quasistatic processes, i.e., processes in
which the system evolves along a sequence of stable equilib-
rium states. A simple system is defined as a system such that:
a) its stable equilibrium states are determined uniquely by n + 1
coordinates, ξ0,x1, ...,xn, where x1, ...,xn are deformation coor-
dinates (i.e., coordinates which determine the external shape of
the system), while ξ0 is not a deformation coordinate.
b) in every quasistatic reversible process, the work performed
by the system is given by

δW = p1 dx1 + ...+ pn dxn , (2)

where p1, ... , pn are functions of ξ0,x1, ...,xn;
c) the (internal) energy U of the system is additive, i.e., equals
the sum of the energies of its subsystems.

Carathéodory stated the Second Law (Axiom II) as follows:
in every arbitrarily close neighborhood of a given initial state
there exist states that cannot be reached by adiabatic processes.
Then, by employing a mathematical theorem on Pfaffian equa-
tions, he proved that, on account of the Second Law, there exists
a pair of properties, M(ξ0,x1, ...,xn) and x0(ξ0,x1, ...,xn), such
that for every quasistatic process

dU +δW = M dx0 . (3)

Through other assumptions on the conditions for mutual sta-
ble equilibrium, which include the Zeroth Law (transitivity of
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mutual stable equilibrium), Carathéodory proved that there ex-
ists a function τ(x0,x1, ...,xn), called temperature, such that if
two systems A and B are in mutual stable equilibrium they have
the same temperature. Moreover, by applying the additivity of
energy, he proved that there exists a function f (τ), identical for
all systems, such that

M = f (τ)α(x0) , (4)

where α(·) is another function that varies from system to sys-
tem.

Finally, he defined thermodynamic temperature T and en-
tropy S as

T = c f (τ) , S−Sref =
∫ x0

x0|ref

α(x′0)
c

dx′0 , (5)

where c is an arbitrary constant and Sref an arbitrary value as-
signed to the reference state with x0 = x0|ref, and rewrote Eq.
(3) in the form

dU +δW = T dS . (6)

Although mathematically very elegant, Carathéodory’s defi-
nition of entropy is rather abstract. For this reason, several au-
thors proposed simplifications of Carathéodory’s treatment [6;
7; 8].

On the opposite side, more recently, Lieb and Yngvason [9]
developed a new treatment of the foundations of thermodynam-
ics which can be classified among the Carathéodory-derived
ones, because the key postulates concern adiabatic accessibility,
but is more abstract and complex than the original presentation
by Carathéodory. The treatment is based on 15 Axioms, which
regard adiabatic accessibility, simple systems, thermal equilib-
rium, mixtures and reactions. The treatment by Lieb and Yn-
gvason, like that by Carathéodory, refers exclusively to stable
equilibrium states of simple systems.

An alternative method for the treatment of the foundations of
thermodynamics was introduced by Keenan [10] and developed
by Hatsopoulos and Keenan [11], by Gyftopoulos and Beretta
[12], and, more recently, by Beretta and Zanchini [13; 14]. The
treatments developed along this line of thought will be called
Keenan-school methods.

Some advantages of the Keenan-school methods, with re-
spect to the Carathéodory-derived ones, are the following:
a) careful operational definitions of all the concepts employed
in the theory are given; thus, the definition of entropy is com-
pletely free of ambiguities, and an operational procedure to
measure entropy differences is clearly stated;
b) the treatment does not employ the concepts of simple system
and of quasistatic process, so that it is not necessarily restricted
to the stable equilibrium states of simple systems.

A disadvantage is the use, in analogy with the classical meth-
ods, of the concept of thermal reservoir, which, however, is de-
fined rigorously. This disadvantage will be removed in a re-
search work under development.

In this paper, some improvements of the method developed
in Refs. [13; 14] are introduced. In particular, the statements
of the First Law and of the Second Law are split in parts, to
form 5 independent Assumptions. This is done because the do-
main of validity could be different for different Assumptions.

Moreover, the restriction to normal systems is released. The
treatment presented here refers exclusively to closed systems.
A rigorous extension of the definitions of energy and entropy to
open systems can be found, for instance, in Ref. [14].

SUMMARY OF BASIC DEFINITIONS

We briefly recall here some definitions of the basic concepts
of thermodynamics employed in our treatment. A more com-
plete and more detailed set of operational basic definitions can
be found in Refs. [13; 14].

With the term system we mean a set of material particles, of
one or more kinds, such that, at each instant of time, the parti-
cles of each kind are contained within a given region of space. If
the boundary surfaces of the regions of space which contain the
particles of the systems are all walls, i.e., surfaces which cannot
be crossed by material particles, the system is called closed.

Any system is endowed with a set of reproducible measure-
ment procedures such that each procedure, if applied at an in-
stant t, yields a result which is independent of the previous time
evolution of the system; each procedure of this kind defines a
property of the system. The set of all the values of the proper-
ties of a system, at a given instant of time, defines the state of
the system at that instant.

A system can be in contact with other matter, or surrounded
by empty space; moreover, force fields due to external matter
can act in the region of space occupied by the system. If, at an
instant of time, all the particles of the system are removed from
the respective regions of space and brought far away, but a force
field is still present in the region of space (previously) occupied
by the system, then this force field is called an external force
field. An external force field can be either gravitational, or elec-
tric or magnetic, or a superposition of the three.

Consider the union of all the regions of space spanned by
a system during its entire time evolution. If no other material
particles, except those of the system, are present in the region
of space spanned by the system or touch the boundary of this
region, and if the external force field in this region is either
vanishing or stationary, then we say that the system is isolated.
Suppose that an isolated system I can be divided into two sub-
systems, A and B. Then, we can say that B is the environment
of A and viceversa.

If, at a given instant of time, two systems A and B are such
that the force field produced by B is vanishing in the region of
space occupied by A and viceversa, then we say that A and B are
separable at that instant. The energy of a system A is defined
only for the states of A such that A is separable from its envi-
ronment. Consider, for instance, the following simple example
from mechanics. Let A and B be rigid bodies in deep space, far
away from any other object and subjected to a mutual gravita-
tional force. Then, the potential energy of the composite system
AB is defined, but that of A and of B is not.

If, at a given instant of time, two systems A and B are such
that the outcomes of the measurements performed on B are sta-
tistically independent of those of the measurements performed
on A, and viceversa, we say that A and B are uncorrelated from
each other at that instant. The entropy of a system A is defined
only for the states of A such that A is separable and uncorrelated
from its environment.

We call process of a system A from state A1 to state A2 the
time evolution (AB)1 → (AB)2 of the isolated system AB from
(AB)1 (with A in state A1) to (AB)2 (with A in state A2), where B
is the environment of A. A process of A is reversible if the iso-
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lated system AB can undergo a time evolution (AB)2→ (AB)1,
which restores it in its initial state (AB)1 and is called reverse of
(AB)1→ (AB)2. A process of a system A is called a cycle for A
if the final state A2 coincides with the initial state A1. A cycle
for A is not necessarily a cycle for AB.

An elementary mechanical system is a system such that the
only admissible change of state for it is a space translation in a
uniform external force field; an example is a particle which can
only change its height in a uniform external gravitational field.
A process of a system A from state A1 to A2, such that both in
A1 and in A2 system A is separable from its environment, is a
weight process for A if the only net effect of the process in the
environment of A is the change of state of an elementary me-
chanical system.

An equilibrium state of a system is a state such that the sys-
tem is separable, the state does not vary with time, and it can be
reproduced while the system is isolated. An equilibrium state
of a closed system A in which A is uncorrelated from its envi-
ronment B, is called a stable equilibrium state if it cannot be
modified by any process between states in which A is separable
and uncorrelated from its environment such that neither the ge-
ometrical configuration of the walls which bound the regions of
space RRRA where the constituents of A are contained, nor the state
of the environment B of A have net changes. Two systems, A and
B, are in mutual stable equilibrium if the composite system AB
(i.e., the union of both systems) is in a stable equilibrium state.

DEFINITION OF ENERGY FOR A CLOSED SYSTEM

Assumption 1. First Law Statement - Part 1. The works
done by a system in any two weight processes between the same
initial and final states are identical.

Assumption 2. First Law Statement - Part 2. Every pair of
states (A1, A2) of a closed system A, such that A is separable
from its environment in both states, can be interconnected by
means of a weight process for A.

Definition of energy for a closed system. Proof that it is a
property. Let (A1, A2) be any pair of states of a closed system
A, such that A is separable from its environment in both states.
We call energy difference between states A2 and A1 either the
work W A←

12 received by A in any weight process from A1 to A2
or the work W A→

21 done by A in any weight process from A2 to
A1; in symbols:

EA
2 −EA

1 =W A←
12 or EA

2 −EA
1 =W A→

21 . (7)

The First Law yields the following consequences:
(a) if both weight processes A1

w−→ A2 and A2
w−→ A1 exist, the

two forms of Eq. (7) yield the same result (W A←
12 =W A→

21 );
(b) the energy difference between two states A2 and A1 depends
only on the states A1 and A2;
(c) (additivity of energy differences) consider a pair of states
(AB)1 and (AB)2 of a composite system AB, where both A and
B are closed, and denote by A1,B1 and A2,B2 the corresponding
states of A and B; then, if A, B and AB are separable from their
environment in the states considered,

EAB
2 −EAB

1 = EA
2 −EA

1 +EB
2 −EB

1 ; (8)

(d) (energy is a property) let A0 be a reference state of a system
A, in which A is separable from its environment, to which we
assign an arbitrarily chosen value of energy EA

0 ; the value of the
energy of A in any other state A1 in which A is separable from
its environment is determined uniquely by either

EA
1 = EA

0 +W A←
01 or EA

1 = EA
0 +W A→

10 , (9)

where W A←
01 is the work received by A in any weight process for

A from A0 to A1, and W A→
10 is the work performed by A in any

weight process for A from A1 to A0.
Rigorous proofs of these consequences can be found in Refs.

[12; 15], and will not be repeated here.

DEFINITION OF ENTROPY FOR A CLOSED SYSTEM

Lemma 1. Uniqueness of the stable equilibrium state for a
given value of the energy. There can be no pair of different
stable equilibrium states of a closed system A with identical re-
gions of space RRRA and the same value of the energy EA.

Proof. Since A is closed and in any stable equilibrium state it
is separable from its environment, if two such states existed, by
the First Law and the definition of energy they could be inter-
connected by means of a zero-work weight process. So, at least
one of them could be changed to a different state with no change
of the regions of space RRRA and no change of the state of the en-
vironment of A, and hence would not satisfy the definition of
stable equilibrium state.

Normal System. Every closed system A whose energy is
bounded from below and unbounded from above will be called
a normal system.

Assumption 3. Second Law Statement - Part 1. Starting from
any state, a normal system can be changed to a non-equilibrium
state with higher energy by means of a weight process for A in
which its regions of space have no net changes.

Comment. The additivity of energy implies that the union of
two or more normal systems, each separable from its environ-
ment, is a normal system, and thus fulfils Assumption 3.

In traditional treatments of thermodynamics, Assumption 3
is not stated explicitly, but is used, for example when one states
that any amount of work can be transferred to a thermal reser-
voir by a stirrer.

Theorem 1. Impossibility of a PMM2. If a normal system A is
in a stable equilibrium state, it is impossible to lower its energy
by means of a weight process for A in which the regions of space
RRRA occupied by the constituents of A have no net change.

Proof. (See sketch in Fig 1). Suppose that, starting from a
stable equilibrium state Ase of A, by means of a weight process
Π1 with positive work W A→=W > 0, the energy of A is lowered
and the regions of space RRRA occupied by the constituents of A
have no net change. On account of Assumption 3, it would
be possible to perform a weight process Π2 for A in which the
regions of space RRRA occupied by the constituents of A have no
net change, the weight M is restored to its initial state so that
the positive amount of energy W A← = W > 0 is supplied back
to A, and the final state of A is a nonequilibrium state, namely, a
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Figure 1. Illustration of the proof of Theorem 1.

state clearly different from Ase. Thus, the composite zero-work
weight process (Π1, Π2) would violate the definition of stable
equilibrium state.

Assumption 4. Second Law Statement - Part 2. Among all
the states of a closed system A such that the constituents of A
are contained in a given set of regions of space RRRA, there is a
stable equilibrium state for every value of the energy EA.

Lemma 2. Any stable equilibrium state Ase of a closed system A
is accessible via an irreversible zero-work weight process from
any other state A1 in which A is separable from its environment,
occupies the same regions of space RRRA and has the same value
of the energy EA.

Proof. By the First Law and the definition of energy, Ase and
A1 can be interconnected by a zero-work weight process for A.
However, a zero-work weight process from Ase to A1 would vi-
olate the definition of stable equilibrium state. Therefore, the
process must be in the direction from A1 to Ase. The absence
of a zero-work weight process in the opposite direction implies
that any zero-work weight process from A1 to Ase is irreversible.

Corollary 1. Any state in which a closed system A is separable
from its environment can be changed to a unique stable equi-
librium state by means of a zero-work weight process for A in
which the regions of space RRRA have no net change.

Proof. The thesis follows immediately from Assumption 4,
Lemma 1 and Lemma 2.

Systems in mutual stable equilibrium. We say that two sys-
tems A and B, each in a stable equilibrium state, are in mutual
stable equilibrium if the composite system AB is in a stable equi-
librium state.

Thermal reservoir. We call thermal reservoir a normal and
always separable system R with a single constituent, contained
in a fixed region of space, with a vanishing external force field,
with energy values restricted to a finite range in which any pair
of identical copies of the reservoir, R and Rd , is in mutual stable
equilibrium when R and Rd are in stable equilibrium states.

Comment. Every normal single-constituent system without in-
ternal boundaries and applied external fields, and with a number
of particles of the order of one mole (so that the simple system
approximation as defined in Ref. [12, p.263] applies), when re-
stricted to a fixed region of space of appropriate volume and to
the range of energy values corresponding to the so-called triple-

point stable equilibrium states, is an excellent approximation of
a thermal reservoir.

Indeed, for a system of this kind, when three different phases
(such as, solid, liquid and vapor) are present, two stable equi-
librium states with different energy values have, with an ex-
tremely high approximation, the same temperature (here not yet
defined), and thus fulfil the condition for the mutual stable equi-
librium of the system and a copy thereof.

Reference thermal reservoir. A thermal reservoir chosen once
and for all is called a reference thermal reservoir. To fix ideas,
we choose water as the constituent of our reference thermal
reservoir, i.e., sufficient amounts of ice, liquid water, and wa-
ter vapor at triple point conditions.

Standard weight process. Given a pair of states (A1,A2) of
a closed system A and a thermal reservoir R, we call standard
weight process for AR from A1 to A2 a weight process for the
composite system AR in which the end states of R are stable
equilibrium states. We denote by (A1R1→ A2R2)

sw a standard
weight process for AR from A1 to A2 and by (∆ER)sw

A1A2
the cor-

responding energy change of the thermal reservoir R.

Assumption 5. Second Law Statement - Part 3. Every pair
of states (A1, A2) of a closed system A, such that A is separable
and uncorrelated from its environment in both states, can be
interconnected by a reversible standard weight process for AR,
where R is an arbitrarily chosen thermal reservoir.

Comment. The combination of Assumption 5, Assumption 4
and Lemma 1 forms our re-statement of the Gyftopoulos-Beretta
statement of the Second Law [12, p. 62-63]. The motivation for
the separation of the statement proposed in Ref. [12] into three
parts is as follows: to extract from the postulate a part which
can be proved (Lemma 1); to separate logically independent as-
sumptions, i.e., assumptions such that a violation of the first
would not imply a violation of the second, and vice-versa.

Theorem 2. For a given closed system A and a given thermal
reservoir R, among all the standard weight processes for AR be-
tween a given pair of states (A1, A2) of A in which A is sepa-
rable and uncorrelated from its environment, the energy change
(∆ER)sw

A1A2
of the thermal reservoir R has a lower bound which

is reached if and only if the process is reversible.

Proof. Let ΠAR denote a standard weight process for AR from
A1 to A2, and ΠARrev a reversible one; the energy changes of R
in processes ΠAR and ΠARrev are, respectively, (∆ER)sw

A1A2
and

(∆ER)swrev
A1A2

. With the help of Fig 2, we will prove that, regard-
less of the initial state of R:
a) (∆ER)swrev

A1A2
≤ (∆ER)sw

A1A2
;

b) if also ΠAR is reversible, then (∆ER)swrev
A1A2

= (∆ER)sw
A1A2

;
c) if (∆ER)swrev

A1A2
= (∆ER)sw

A1A2
, then also ΠAR is reversible.

Proof of a). Let us denote by R1 and R2 the initial and the final
states of R in process ΠARrev. Let us denote by Rd the dupli-
cate of R which is employed in process ΠAR, and by Rd

3 and Rd
4

the initial and the final states of Rd in this process. Let us sup-
pose, ab absurdo, that (∆ER)swrev

A1A2
> (∆ER)sw

A1A2
, and consider

the composite process (−ΠARrev, ΠAR), where −ΠARrev is a re-
verse of ΠARrev. This process would be a weight process for
RRd in which, starting from the stable equilibrium state R2Rd

3 ,
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Figure 2. Illustration of the proof of Theorem 2: −ΠARrev is a reverse
of the reversible standard weight processes ΠARrev, and Rd is a dupli-
cate of R; see text.

the energy of RRd is lowered and the regions of space occupied
by the constituents of RRd have no net changes, in contrast with
Theorem 1. Therefore, (∆ER)swrev

A1A2
≤ (∆ER)sw

A1A2
.

Proof of b). If ΠAR is reversible too, then, in addition to
(∆ER)swrev

A1A2
≤ (∆ER)sw

A1A2
, the relation (∆ER)sw

A1A2
≤ (∆ER)swrev

A1A2
must hold too. Otherwise, the composite process (ΠARrev,
−ΠAR) would be a weight process for RRd in which, starting
from the stable equilibrium state R1Rd

4 , the energy of RRd is
lowered and the regions of space occupied by the constituents
of RRd have no net changes, in contrast with Theorem 1. There-
fore, (∆ER)swrev

A1A2
= (∆ER)sw

A1A2
.

Proof of c). Let ΠAR be a standard weight process for AR, from
A1 to A2, such that (∆ER)sw

A1A2
= (∆ER)swrev

A1A2
, and let R1 be the

initial state of R in this process. Let ΠARrev be a reversible stan-
dard weight process for AR, from A1 to A2, with the same initial
state R1 of R. Thus, Rd

3 coincides with R1 and Rd
4 coincides with

R2. The composite process (ΠAR, −ΠARrev) is a cycle for the
isolated system ARB, where B is the environment of AR. As a
consequence, ΠAR is reversible, because it is a part of a cycle of
the isolated system ARB.

Theorem 3. Let R′ and R′′ be any two thermal reservoirs and
consider the energy changes, (∆ER′)swrev

A1A2
and (∆ER′′)swrev

A1A2
re-

spectively, in the reversible standard weight processes ΠAR′ =
(A1R′1 → A2R′2)

swrev and ΠAR′′ = (A1R′′1 → A2R′′2)
swrev, where

(A1, A2) is an arbitrarily chosen pair of states of any closed sys-
tem A, such that A is separable and uncorrelated from its envi-
ronment in both states. Then the ratio (∆ER′)swrev

A1A2
/(∆ER′′)swrev

A1A2
:

a) is positive;
b) depends only on R′ and R′′, i.e., it is independent of (i) the
initial stable equilibrium states of R′ and R′′, (ii) the choice of
system A, and (iii) the choice of states A1 and A2.

Proof of a). With the help of Fig 3, let us suppose that
(∆ER′)swrev

A1A2
< 0. Then, (∆ER′′)swrev

A1A2
cannot be zero. In fact,

in that case the composite process (ΠAR′ , −ΠAR′′ ), which is a
cycle for A, would be a weight process for R′ in which, starting
from the stable equilibrium state R′1, the energy of R′ is low-
ered and the regions of space occupied by the constituents of
R′ have no net changes, in contrast with Theorem 1. Moreover,
(∆ER′′)swrev

A1A2
cannot be positive. In fact, if it were positive, the

work performed by R′R′′ as a result of the overall weight process
(ΠAR′ , −ΠAR′′ ) for R′R′′ would be

W R′R′′→ =−(∆ER′)swrev
A1A2

+(∆ER′′)swrev
A1A2

, (10)

1''R 2''R

'AR

''AR

1A

1'R

2A

2'R
1 2

' swrev( )R
A AE

1 2

'' sw( )R
A AE

Figure 3. Illustration of the proof of Theorem 3, part a): reversible stan-
dard weight processes ΠAR′ and ΠAR′′ , see text.

where both terms are positive. On account of Assumption 3 and
Corollary 1, after the process (ΠAR′ , −ΠAR′′ ), one could per-
form a weight process ΠR′′ for R′′ in which a positive amount
of energy equal to (∆ER′′)swrev

A1A2
is given back to R′′ and the latter

is restored to its initial stable equilibrium state. As a result, the
composite process (ΠAR′ , −ΠAR′′ , ΠR′′ ) would be a weight pro-
cess for R′ in which, starting from the stable equilibrium state
R′1, the energy of R′ is lowered and the regions of space occu-
pied by the constituents of R′ have no net changes, in contrast
with Theorem 1. Therefore, the assumption (∆ER′)swrev

A1A2
< 0 im-

plies (∆ER′′)swrev
A1A2

< 0.

Let us suppose that (∆ER′)swrev
A1A2

> 0. Then, for process −ΠAR′

one has (∆ER′)swrev
A2A1

< 0. By repeating the previous argument,

one proves that for process −ΠAR′′ one has (∆ER′′)swrev
A2A1

< 0.

Therefore, for process ΠAR′′ one has (∆ER′′)swrev
A1A2

> 0.

Proof of b). Choose a pair of states (A1, A2) of a closed sys-
tem A, such that A is separable and uncorrelated from its en-
vironment, and consider the reversible standard weight process
ΠAR′ = (A1R′1 → A2R′2)

swrev for AR′, with R′ initially in state
R′1, and the reversible standard weight process ΠAR′′ = (A1R′′1→
A2R′′2)

swrev for AR′′, with R′′ initially in state R′′1 . Then, choose
a pair of states (A′1, A′2) of another closed system A′, such that
A′ is separable and uncorrelated from its environment, and con-
sider the reversible standard weight process ΠA′R′ = (A′1R′1 →
A′2R′3)

swrev for A′R′, with R′ initially in state R′1, and the re-
versible standard weight process ΠA′R′′ = (A′1R′′1 → A′2R′′3)

swrev

for A′R′′, with R′′ initially in state R′′1 .
With the help of Fig 4, we will prove that the changes in

energy of the reservoirs in these processes obey the relation

(∆ER′)swrev
A1A2

(∆ER′′)swrev
A1A2

=
(∆ER′)swrev

A′1A′2

(∆ER′′)swrev
A′1A′2

. (11)

Let us assume: (∆ER′)swrev
A1A2

> 0 and (∆ER′)swrev
A′1A′2

> 0, which im-

plies, on account of part a) of the proof, (∆ER′′)swrev
A1A2

> 0 and

(∆ER′′)swrev
A′1A′2

> 0. This is not a restriction, because it is possible
to reverse the processes under consideration.

Now, as is well known, any real number can be approximated
with arbitrarily high accuracy by a rational number. There-
fore, we will assume that the energy changes (∆ER′)swrev

A1A2
and

(∆ER′)swrev
A′1A′2

are rational numbers, so that whatever is the value
of their ratio, there exist two positive integers m and n such that
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(∆ER′)swrev
A1A2

/(∆ER′)swrev
A′1A′2

= n/m, i.e.,

m (∆ER′)swrev
A1A2

= n (∆ER′)swrev
A′1A′2

. (12)

As sketched in Fig 4, let us consider the composite processes
ΠA and Π′A defined as follows. ΠA is the following composite
weight process for the composite system AR′R′′: starting from
the initial state R′1 of R′ and R′′2 of R′′, system A is brought from
A1 to A2 by a reversible standard weight process for AR′, then
from A2 to A1 by a reversible standard weight process for AR′′;
whatever the new states of R′ and R′′ are, again system A is
brought from A1 to A2 by a reversible standard weight process
for AR′ and back to A1 by a reversible standard weight process
for AR′′, until the cycle for A is repeated m times. Similarly, ΠA′

is a composite weight process for the composite system A′R′R′′

whereby starting from the end states of R′ and R′′ reached by
process ΠA, system A′ is brought from A′1 to A′2 by a reversible
standard weight process for A′R′′, then from A′2 to A′1 by a re-
versible standard weight process for A′R′; and so on until the
cycle for A′ is repeated n times.

Clearly, the whole composite process (ΠA, ΠA
′) is a cycle

for AA′. Moreover, it is a cycle also for R′. In fact, on account
of Theorem 2, the energy change of R′ in each process ΠAR′ is
equal to (∆ER′)swrev

A1A2
, regardless of its initial state, and in each

process −ΠA′R′ is equal to −(∆ER′)swrev
A′1A′2

. Therefore, the en-

ergy change of R′ in the whole composite process (ΠA, Π′A) is
m (∆ER′)swrev

A1A2
−n (∆ER′)swrev

A′1A′2
and equals zero on account of Eq.

(12). As a result, after (ΠA, Π′A), reservoir R′ has been restored
to its initial state, so that (ΠA, Π′A) is a reversible weight process
for R′′.

Again on account of Theorem 2, the overall energy change
of R′′ in the whole composite process is −m (∆ER′′)swrev

A1A2
+

n (∆ER′′)swrev
A1A2

. If this quantity were negative, Theorem 1
would be violated. If this quantity were positive, Theorem 1
would also be violated by the reverse of the process, (−Π′A,
−ΠA). Therefore, the only possibility is that −m (∆ER′′)swrev

A1A2
+

n (∆ER′′)swrev
A1A2

= 0, i.e.,

m (∆ER′′)swrev
A1A2

= n (∆ER′′)swrev
A′1A′2

. (13)

Finally, taking the ratio of Eqs. (12) and (13), we obtain Eq.
(11) which is our conclusion.

Temperature of a thermal reservoir. Let R be a given thermal
reservoir and Ro a reference thermal reservoir. Select an arbi-
trary pair of states (A1, A2) of a closed system A, such that A is
separable and uncorrelated from its environment in both states,
and consider the energy changes (∆ER)swrev

A1A2
and (∆ERo

)swrev
A1A2

in
two reversible standard weight processes from A1 to A2, one for
AR and the other for ARo, respectively. We call temperature of
R the positive quantity

TR = TRo
(∆ER)swrev

A1A2

(∆ERo
)swrev

A1A2

, (14)

where TRo is a positive constant associated arbitrarily with the
reference thermal reservoir Ro.

Clearly, the temperature TR of R is defined only up to the
arbitrary multiplicative constant TRo . If for Ro we select a ther-
mal reservoir consisting of ice, liquid water, and water vapor at
triple-point conditions, and we set TRo = 273.16 K, we obtain
the Kelvin temperature scale.

Corollary 2. The ratio of the temperatures of two thermal reser-
voirs, R′ and R′′, is independent of the choice of the reference
thermal reservoir and can be measured directly as

TR′

TR′′
=

(∆ER′)swrev
A1A2

(∆ER′′)swrev
A1A2

, (15)

where (∆ER′)swrev
A1A2

and (∆ER′′)swrev
A1A2

are the energy changes of
R′ and R′′ in two reversible standard weight processes, one for
AR′ and the other for AR′′, which interconnect the same pair of
states (A1, A2) such that A is separable and uncorrelated from its
environment in both states.

Proof. Let (∆ERo
)swrev

A1A2
be the energy change of the reference

thermal reservoir Ro in any reversible standard weight process
for ARo which interconnects the same states (A1, A2) of A. From
Eq. (14) we have

TR ′ = TRo
(∆ER′)swrev

A1A2

(∆ERo
)swrev

A1A2

, TR ′′ = TRo
(∆ER′′)swrev

A1A2

(∆ERo
)swrev

A1A2

, (16)

so that the ratio TR ′/TR ′′ is given by Eq. (15).

Corollary 3. Let (A1, A2) be any pair of states of a closed sys-
tem A, such that A is separable and uncorrelated from its envi-
ronment in both states, and let (∆ER)swrev

A1A2
be the energy change

of a thermal reservoir R with temperature TR, in any reversible
standard weight process for AR from A1 to A2. Then, for the
given system A, the ratio (∆ER)swrev

A1A2
/TR depends only on the

pair of states (A1, A2), i.e., it is independent of the choice of
reservoir R and of its initial stable equilibrium state R1.

Proof. Let us consider two reversible standard weight processes
from A1 to A2, one for AR′ and the other for AR′′, where R′ is
a thermal reservoir with temperature TR′ and R′′ is a thermal
reservoir with temperature TR′′ . Then, equation (15) yields

(∆ER′)swrev
A1A2

TR′
=

(∆ER′′)swrev
A1A2

TR′′
. (17)

Definition of (thermodynamic) entropy, proof that it is a
property. Let (A1 , A2) be any pair of states of a closed system
A, such that A is separable and uncorrelated from its environ-
ment in both states, and let R be an arbitrarily chosen thermal
reservoir placed in the environment B of A. We call entropy
difference between A2 and A1 the quantity

SA
2 −SA

1 =−
(∆ER)swrev

A1A2

TR
, (18)

where (∆ER)swrev
A1A2

is the energy change of R in any reversible
standard weight process for AR from A1 to A2, and TR is the
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Figure 4. Illustration of the proof of Theorem 3, part b): composite process (ΠA, ΠA′ ), see text.

temperature of R. On account of Corollary 3, the right hand
side of Eq. (18) is determined uniquely by states A1 and A2;
therefore, entropy is a property of A.

Let A0 be a reference state of A, in which A is separable and
uncorrelated from its environment, and assign to A0 an arbi-
trarily chosen value SA

0 of the entropy. Then, the value of the
entropy of A in any other state A1 of A in which A is separable
and uncorrelated from its environment is determined uniquely
by the equation

SA
1 = SA

0 −
(∆ER)swrev

A0A1

TR
, (19)

where (∆ER)swrev
A0A1

is the energy change of R in any reversible
standard weight process for AR from A0 to A1, and TR is the
temperature of R. Such a process exists for every state A1, on
account of Assumption 5.

Theorem 4. Additivity of entropy differences. Consider the
pair of states (C1 = A1B1,C2 = A2B2) of the composite system
C = AB, such that A and B are closed, A is separable and uncor-
related from its environment in both states A1 and A2, and B is
separable and uncorrelated from its environment in both states
B1 and B2. Then,

SAB
A2B2
−SAB

A1B1
= SA

2 −SA
1 +SB

2 −SB
1 . (20)

Proof. Let us choose a thermal reservoir R, with tempera-
ture TR, and consider the composite process (ΠAR, ΠBR) where
ΠAR is a reversible standard weight process for AR from A1
to A2, while ΠBR is a reversible standard weight process for
BR from B1 to B2. The composite process (ΠAR, ΠBR) is a
reversible standard weight process for CR from C1 to C2, in
which the energy change of R is the sum of the energy changes
in the constituent processes ΠAR and ΠBR, i.e., (∆ER)swrev

C1C2
=

(∆ER)swrev
A1A2

+(∆ER)swrev
B1B2

. Therefore:

(∆ER)swrev
C1C2

TR
=

(∆ER)swrev
A1A2

TR
+

(∆ER)swrev
B1B2

TR
. (21)

Equation (21) and the definition of entropy (18) yield Eq.
(20).

Comment. As a consequence of Theorem 4, if the values of en-
tropy are chosen so that they are additive in the reference states,
entropy results as an additive property.

Theorem 5. Let (A1, A2) be any pair of states of a closed sys-
tem A, such that A is separable and uncorrelated from its en-
vironment in both states, and let R be a thermal reservoir with
temperature TR. Let ΠARirr be any irreversible standard weight
process for AR from A1 to A2 and let (∆ER)swirr

A1A2
be the energy

change of R in this process. Then

−
(∆ER)swirr

A1A2

TR
< SA

2 −SA
1 . (22)

Proof. Let ΠARrev be any reversible standard weight process for
AR from A1 to A2 and let (∆ER)swrev

A1A2
be the energy change of R

in this process. On account of Theorem 2,

(∆ER)swrev
A1A2

< (∆ER)swirr
A1A2

. (23)

Since TR is positive, from Eqs. (23) and (18) one obtains

−
(∆ER)swirr

A1A2

TR
<−

(∆ER)swrev
A1A2

TR
= SA

2 −SA
1 . (24)

Theorem 6. Principle of entropy nondecrease. Let (A1,A2)
be a pair of states of a closed system A, such that A is separable
and uncorrelated from its environment in both states, and let
(A1→ A2)W be any weight process for A from A1 to A2. Then,
the entropy difference SA

2 −SA
1 is equal to zero if and only if the

weight process is reversible; it is strictly positive if and only if
the weight process is irreversible.

Proof. If (A1 → A2)W is reversible, then it is a special case of
a reversible standard weight process for AR in which the ini-
tial stable equilibrium state of R does not change. Therefore,
(∆ER)swrev

A1A2
= 0 and by applying the definition of entropy, Eq.

(18), one obtains

SA
2 −SA

1 =−
(∆ER)swrev

A1A2

TR
= 0 . (25)

If (A1 → A2)W is irreversible, then it is a special case of an
irreversible standard weight process for AR in which the ini-
tial stable equilibrium state of R does not change. Therefore,
(∆ER)swirr

A1A2
= 0 and Equation (22) yields

SA
2 −SA

1 >−
(∆ER)swirr

A1A2

TR
= 0 . (26)
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Moreover, if a weight process (A1→ A2)W for A is such that
SA

2 − SA
1 = 0, then the process must be reversible, because we

just proved that for any irreversible weight process SA
2 −SA

1 > 0;
if a weight process (A1→ A2)W for A is such that SA

2 −SA
1 > 0,

then the process must be irreversible, because we just proved
that for any reversible weight process SA

2 −SA
1 = 0.

CONCLUSIONS

A rigorous and general logical scheme for the definition of
entropy has been presented. The treatment is based on a com-
plete set of operational definitions and does not employ the con-
cepts of empirical temperature, of heat, of simple system and of
quasistatic process. Therefore, in this scheme, the domain of va-
lidity of the definition of entropy is not constrained necessarily
to the stable equilibrium states of simple systems. On the other
hand, the important concepts of separability and non-correlation
between system and environment have been introduced and the
role of these concepts in the definitions of energy and of entropy
has been pointed out.

With respect to previous presentations of this approach, some
improvements have been introduced. The statements of the First
Law and of the Second Law have been split in 5 separate As-
sumptions, each of which may have his own domain of validity.
Moreover, the restriction to normal systems in the definition of
entropy has been removed, so that the definition applies, in prin-
ciple, also to special systems, such as spin systems.
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ABSTRACT
In this paper we discuss a systematic procedure to assess the nucleation rate with the help of the non-equilibrium square gradient
model, which is also known as H-model or diffuse-interface model. We first distinguish between the density (concentration)
gradient caused by the phase coexistence in equilibrium and the density (concentration) gradient caused by the non-equilibrium
conditions in bulk phases. The non-equilibrium description of the interfacial region requires a proper Gibbs relation, which
is formulated in our theory. Non-equilibrium thermodynamics uses the constitutive relations between thermodynamic forces
and thermodynamic fluxes. It does not provide the values of the transport coefficients. We use the transport coefficients in the
interfacial region which follow from the square gradient model. Furthermore, the nonzero curvature of the surface modifies the
expressions for thermodynamic quantities in the interfacial region. Next we combine all these pieces in a systematic picture,
which gives a consistent description of heat and mass transport across curved interfaces.

INTRODUCTION

Nucleation is a dynamic process which involves formation
and growth of small nuclei of one phase in another phase [1].
One could think of formation of bubbles in liquid or drops in a
multicomponent fluid. This process requires formation of an in-
terface between two phases, a region where the density or con-
centration gradient are large. Furthermore, during nucleation
matter and heat are being transfered across the interface, which
moves the system towards equilibrium. The interface poses an
additional barrier to transport [2]. This barrier will affect the
standard Fourier’s or Fick’s laws in the interfacial region, where
the transport coefficients become dependent on the density gra-
dients. For small nuclei of the new phase the curvature is rather
high which will also modify the values of the integrated trans-
port coefficients [3]. The knowledge of the integrated surface
transfer coefficients, which determine the barrier of the inter-
face to heat and mass transfer, is useful for a correct prediction
of the nucleation rate.

In this paper we provide a systematic procedure to describe
a non-equilibrium interface of a bubble or droplet, which com-
bines non-equilibrium thermodynamics with the square gradient
model for a curved interface. Following [4], we distinguish the
following steps which are essential in any non-equilibrium ther-
modynamic theory: i) equilibrium thermodynamics; ii) Gibbs
relation; iii) balance equations; iv) constitutive relations. It is
the aim of this paper to emphasize the difference between these
parts and at the same time to bring them together. We will go
through these steps for spherical interface of one-component
fluid, however, the established framework is not restricted to
this particular case.

One of the interesting topics is the origin of so-called non-

equilibrium capillary forces, that are believed to cause the self-
propelled motion of bubbles [5]. Analyzing the structure of the
interface in equilibrium and non-equilibrium, we show that one
should distinguish between the gradients of the density (con-
centration) in the interfacial region on the one hand and the
gradients of the chemical potential or the pressure on the other
hand [2]. The former ones are present even in equilibrium sys-
tem and therefore cannot cause the motion of bubble interface
nor the bubble as a whole. In contrast, the latter ones are the
genuine measure of non-equilibrium and are not reduced to the
interfacial density gradients.

The paper is organized as follows. First, we summarize the
square gradient model for equilibrium interface. In particular,
we discuss the different quantities all of which have a mean-
ing of pressure. It is important to distinguish between them,
especially when coming to non-equilibrium. We identify the
meaning of these pressures. Next, we extend the equilibrium
description to non-equilibrium. Care should be taken when ex-
tending these quantities in the interfacial region. In particular,
we formulate the Gibbs relation for the interfacial region which
differs from the one for a homogeneous phase. Furthermore,
formulating the balance equations we identify the fluxes, which
are a measure of non-equilibrium. Next, we formulate and dis-
cuss the constitutive relations between the fluxes and the ther-
modynamic forces in the context of linear irreversible thermo-
dynamics. We discuss that on macro scale the surface can be
viewed as a separate thermodynamic system, which, in particu-
lar, increases the number of dissipative fluxes by one. Now it is
not only a diffusion flux, but also a component flux, which leads
to dissipation. We also discuss a particular example of a sim-
ple system, where the above considerations are implemented.
Finally, we give the concluding remarks.
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SQUARE GRADIENT MODEL FOR EQUILIBRIUM
SPHERICAL INTERFACE

In square gradient model one starts with the expression for
the Helmholtz energy density f v(r) which can be represented
as a sum of two terms [3]: the local contribution f v

0 (ρ(r),T ),
and the gradient contribution f v

∇ρ(∇ρ(r)),

f v(r) = f v
0 (ρ(r),T )+ f v

∇ρ(ρ(r),∇ρ(r)) (1)

where T is the temperature, ρ(r) is the local density, while
∇ρ(r) is the density gradient. For a spherical interface the den-
sity gradient has only nonzero component ρ′(r), the derivative
of the density with respect to the radial position r. For the sake
of clarity we provide the description for a one-component sys-
tem. The general analysis for multicomponent systems forming
planar interface can be found in [6].

The local contribution f v
0 (ρ(r),T ) is determined by an equa-

tion of state. A particular choice of the equation of state is not
important for the present analysis. In all further calculations we
use van der Waals equation of state. Equation (1) can be con-
sidered as a Taylor expansion in the density derivatives, since
in the interfacial region the density change abruptly. Therefore,
the gradient contribution f∇ρ(ρ(r),ρ′(r)) contains the first non-
local terms in the Taylor expansion

f v
∇ρ(ρ,ρ

′) =
1
2

κρ′(r)2 (2)

The coefficient κ(ρ) is independent of the temperature but may
depend on the density. Without restriction in generality we will
consider it to be independent of the density as well.

For a closed system with fixed total volume and mass the
density distribution is such that it minimizes the total grand po-
tential Ω =

∫
dr 4πr2 ( f v(r)−µeρ(r)), where µe is the equilib-

rium chemical potential of the system. The density distribution
satisfies therefore the equation

µe =
∂ f v

0 (ρ,T )
∂ρ

−κ
(

ρ′′+
2
r

ρ′
)

(3)

We note, that the system considered is highly inhomoge-
neous, which contains the density gradients even in equilibrium.
However, the condition of thermodynamic equilibrium requires
that the chemical potential is constant through the system. In-
deed, that is the case: the chemical potential µe, being the La-
grange multiplier of the variational minimization procedure, is
a number which characterizes the whole system. Even though
each term in Eq. (3) depends substantially on the position, the
entire right hand side of Eq. (3) is independent of the position.

The pressure

In the interfacial region the pressure is no longer a scalar:
it becomes a tensor. It is convenient therefore to consider its
structure in general tensorial form. The tensorial pressure σαβ

can be represented as

σαβ(r) = p(r)δαβ + γαβ(r) (4)

where

p(r) = µeρ(r)− f v(r) (5)

is the thermodynamic pressure and

γαβ(r) = ∇αρ(r)∇βρ(r) (6)

is the tension tensor. Here δαβ is the Kronecker symbol and ∇α

represents the partial derivative with respect to the α coordinate.
In equilibrium in the absence of external field it satisfies the
relation

∇ασαβ(r) = 0 (7)

where the summation convention over double Greek symbol is
used. In the presence of external field the right hand side of
Eq. (7) contains the density of external field.

Identification of the scalar and tensorial terms in Eq. (4) is
arbitrary. For instance, the thermodynamic pressure

p(r) = p0(ρ,T )−κρ∇2ρ− 1
2

κ |∇ρ|2 (8)

where p0(ρ,T ) is the homogeneous pressure which is given by
an equation of state. Equation (4) can therefore be written as

σαβ = p0(ρ,T )δαβ +ϖαβ (9)

where

ϖαβ(r)≡ γαβ(r)−κ
(

ρ∇2ρ+
1
2

κ |∇ρ|2
)

δαβ (10)

is the Korteweg tensor [7].
When using the pressure tensor in the interfacial region, it

is common to speak of the scalar and tensorial parts separately.
The particular identification may depend on the application one
uses it for. In this paper we show that distinguishing the thermo-
dynamic pressure and the tension tensor is natural in the context
of non-equilibrium thermodynamics.

For instance, the expression for the thermodynamic pressure,
Eq. (5), has the same functional form as in a homogeneous
phase. This is important when one introduces the hypothesis
of local equilibrium in non-equilibrium description. Further-
more, integral of the tension tensor over the interfacial region
determines the surface tension. Finally, since Eq. (7) represents
the condition of mechanical equilibrium, it is the gradient of the
total pressure tensor σαβ, not the Korteweg tensor ϖαβ, which
changes the momentum of the system. We will see this when
we discuss the balance equations.

For a spherical system the pressure tensor has a diagonal
form with two independent components, the normal pressure
pn(r) = p(r) + κρ′(r)2 and the tangential pressure pτ(r) =
p(r). The condition of mechanical equilibrium becomes

p′n(r)+
2
r

κρ′(r)2
= 0 (11)
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Figure 1. Profile of the normal, tangential and homogeneous pressure
across the interfacial region for cyclohexane at 330 K

Variations in the pressure are of two kinds. First, due to nonzero
curvature, the normal pressure is not constant across the inter-
facial region. The second term in Eq. (11) represents the local
form of the Laplace pressure and is nonzero for a spherical in-
terface. It is substantial for small bubbles and decreases when
the bubble grows, becoming zero for a planar interface. Next,
there exist variations in pressure which lead to the surface ten-
sion. They are present in the system even in the case of zero
curvature. For a planar interface the normal pressure is con-
stant through the interface, while the thermodynamic pressure
has a large negative dip. The variation of the tension tensor is
the opposite. Figure 1 represents typical profiles of the various
pressures for a spherical bubble of cyclohexane in equilibrium
at T = 330 K.

LOCAL EQUILIBRIUM AND BALANCE EQUATIONS

In order to use the above thermodynamic analysis in non-
equilibrium, one has to assume that there exist so-called local
equilibrium, i.e. that all the thermodynamic quantities and re-
lations in non-equilibrium have the same functional form as in
equilibrium. In formulating the local equilibrium hypothesis
it is important to do the correct identification of the thermo-
dynamic quantities. In homogeneous phase, where the spatial
variations of all the quantities are small, this is straightforward.
However, in the interfacial region, where the density changes a
lot, care should be taken. For instance, as was discussed above,
in the interfacial region one can identify at least three different
quantities with the meaning of pressure: the normal pressure
pn(r), the tangential pressure pτ(r) and the homogeneous pres-
sure p0.

We start with introducing the density ρ(r, t) and the temper-
ature T (r, t) as independent thermodynamic variables. Next we
define the non-equilibrium local Helmholtz energy f v(r, t) in the
interfacial region in the same way as in equilibrium, see Eq. (1).
In non-equilibrium the total grand potential does not have a min-
imum, so it is not possible to perform a variational minimization
procedure. Thus, the pressure and the chemical potential have
to be defined independently. We use Eq. (3) and Eq. (5) for this.
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Figure 2. Profile of the non-equilibrium chemical potential, non-
equilibrium homogeneous chemical potential and the equilibrium total
chemical potential for cyclohexane. Equilibrium temperature is 330 K,
while the non-equilibrium boundary temperature is 10 K higher than
equilibrium value in the center.

Namely, the non-equilibrium chemical potential is

µ(r, t) = µ0(ρ(r, t),T (r, t))−κ
(

ρ′′(r, t)+
2
r

ρ′(r, t)
)

(12)

and the non-equilibrium thermodynamic pressure is

p(r, t) = µ(r, t)ρ(r, t)− f v(r, t) (13)

We note, that unlike µe, the non-equilibrium chemical potential
µ(r, t) is not constant through the system. However, the spa-
tial variation of µ(r, t) is much less than the spatial variation of
µ0(ρ(r, t),T (r, t)). The former one is determined by the rate of
non-equilibrium perturbation, which is considered to be small,
and vanishing in equilibrium. The latter one is determined by
the rate of the density variation in the interfacial region, which
is large and non-zero even in equilibrium. Typical variations of
the chemical potential are represented in Figure 2.

The non-equilibrium normal pressure is defined with the help
of Eq. (4) as

pn(r, t) = p(r, t)+κρ′(r, t)2 (14)

Gibbs relation

An important part of specifying local equilibrium is to pro-
vide the rates of change of thermodynamic quantities, the Gibbs
relation. A particular Gibbs relation can be justified only by the
validity of the results, which follow from the analysis. We can,
however, provide arguments which elucidate a particular form
of the Gibbs relation.

In an inhomogeneous equilibrium system such as interfacial
region the local thermodynamic properties can vary in two dif-
ferent dimensions. First, they can change when the whole sys-
tem changes its thermodynamic state from, for instance, one
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temperature to another. Since the temperature and the chemical
potential are constant in equilibrium system, it means that every
small element of the system follows the same change in ther-
modynamic state, but locally. For a one-component system this
can be described by the ordinary Gibbs relation

T δs(r) = δu(r)+ p(r)δv(r) (15)

where symbol δ denotes a change in a thermodynamic state of
the entire system. Furthermore, u(r) = f v(r)v(r)− T s(r) is
the specific internal energy, s(r) = v(r)∂ f v(r)/∂T ) is the spe-
cific entropy, and v(r) = 1/ρ(r) is the specific volume. Next,
the thermodynamic properties in an inhomogeneous equilib-
rium system vary in space. This variation is not arbitrary and
is constrained by the conditions of mechanical equilibrium,
Eq. (4) and the conditions of the thermodynamic equilibrium,
T (r) = const and µ(r) = const. Using Eq. (5), we obtain

T ∇αs(r) = ∇αu(r)+ p(r)∇αv(r)− v(r)∇βγαβ(r) (16)

Equation (16) has the form of Eq. (15) except the las term. Since
it accounts for spatial changes of thermodynamic properties, we
will call it the spatial Gibbs relation. We note, that both Eq. (15)
and Eq. (16) are exact in equilibrium.

The next step is to formulate the non-equilibrium Gibbs re-
lation. One can observe that the change of a thermodynamic
quantity in thermodynamic state at a given spatial position cor-
responds to the partial time derivative of this quantity, while its
change in spatial position at a given thermodynamic state cor-
responds to the partial spatial derivative. Multiplying Eq. (16)
with barycentric flow velocity v and adding it to Eq. (15) we
obtain

T
d s
d t

=
d u
d t

+ p
d v
d t

− Jm,α v2 ∇βγαβ (17)

where Jm ≡ ρv is the mass flux across the interface and we have
omitted the arguments (r, t), as now all the quantities depend
on position and time. Equation (17) is the Gibbs relation for
a non-equilibrium interfacial region. The last term is nonzero
only in the interfacial region and vanishes in the homogeneous
phase, leading to the ordinary form of the Gibbs relation. The
last term can be considered as a work required to transfer an
element of specific volume v across the interface. We note that it
is the tension tensor which comes to the non-equilibrium Gibbs
relation, not the Korteweg tensor.

Balance equations

For a one-component system we can write four balance equa-
tions, for mass, energy, momentum and entropy respectively:

∂ρ
∂t

= −∇ ·Jm (18)

∂ev

∂t
= −∇ ·Je (19)

∂ρvα

∂t
= −∇β Jp,αβ (20)

∂sv

∂t
= −∇ ·Js +σs (21)

Here Jm, Je, Jp,αβ, Js are the mass flux, the energy flux, the mo-
mentum flux and the entropy flux respectively. Furthermore, ev

is the total energy density, sv is the entropy density and σs is
the local entropy production. The form of the balance equations
in an inhomogeneous region is the same as in an homogeneous
region. In particular, the momentum flux Jp,αβ consists of the ki-
netic term ρvαvβ and the mechanical pressure tensor σαβ. When
there is no flux, the momentum balance equation, Eq. (20), re-
duces to the condition of mechanical equilibrium, Eq. (4). It
is clear, therefore, that it is the total pressure tensor σαβ which
contributes to the momentum flux.

Using the Gibbs relation, Eq. (17), and the above balance
equations we can derive the expression for the entropy produc-
tion. In spherical coordinates it takes the following form

σs = Jq

(

1
T

)′
(22)

where the heat flux Jq ≡ Je − Jm(u+ v2/2+ pv) is the measur-
able heat flux.

CONSTITUTIVE RELATIONS AND TRANSPORT CO-
EFFICIENTS

We must provide constitutive relations between the ther-
modynamic driving forces and the fluxes. In case of one-
component system the thermodynamic force is the radial tem-
perature gradient, (1/T )′ while the flux is the heat flux Jq. In
order for the entropy production to be positive, they must be
related linearly, i.e.

(

1
T

)′
= rqq(r)Jq (23)

where rqq(r) is the local resistivity to the heat transfer. A par-
ticular expression for the resistivity coefficient does not follow
from the theory and must be given in addition. In the context of
the square gradient theory we model the resistivity coefficient
similarly to the local Helmholtz energy, Eq. (1), i.e.:

rqq(r) = rqq,0(ρ,T )+ rqq,∇ρ(ρ,∇ρ) (24)

In this form the resistivity coefficient resembles the equilibrium
profiles of the density and the density gradient. Even though
it depends on the density gradient, it does not contribute to the
driving force, as is expected in linear non-equilibrium thermo-
dynamics. All the effects of non-equilibrium perturbation are
therefore due to the nonzero heat flux Jq.

In equilibrium thermodynamics a smooth variation of local
density profile across the interface leads to the surface excess
properties, such as the interfacial tension or the Laplace pres-
sure. For small bubbles or droplets these properties modify the
state of the system such that the surface becomes its important
part, together with the bulk phases. A similar situation is ob-
served in non-equilibrium. Due to smooth variation of the local
resistivity profile rqq(r) across the interface, the surface pos-
sesses excess resistance to the heat transfer. Additional resis-
tance is particularly large for small bubbles or droplets as it may
be comparable to the bulk resistance.

In a continuous description of a one-component non-
equilibrium system there exist only one irreversible flux, the
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heat flux, which is caused by the temperature gradient, as sug-
gested, in particular, by Eq. (23). However, description in
terms of the excess interfacial properties, in particular for bub-
ble and droplets, reveals existence of the cross effects. Thus,
the temperature gradient across the interface causes the mass
flux, while the gradient in the chemical potential causes the heat
flux. These phenomena are the essence of nucleation process,
so the correct account for these phenomena is crucial for un-
derstanding the nucleation. The reason for the existence of the
irreversible mass flux in the one-component system is the pres-
ence of surface. Its velocity does not necessarily coincide with
the barycentric velocity of the fluid. This leads to the mass flux
across the interface. This flux carries along additional heat due
to the temperature gradient.

One can perform the analysis of non-equilibrium transport
for a discrete system (see e.g. [8] or [2]) and in stationary states
obtain the following constitutive relations

∆
1
T

= Rqq Jg
q +Rqm Jm

−∆
µ
T
+hg ∆

1
T

= Rmq Jg
q +Rmm Jm

(25)

where ∆ indicates the difference between the extrapolated to the
surface bulk values of the corresponding quantities. Further-
more, hg is the specific enthalpy in the gas phase and Jg

q is the
measurable heat flux in the same phase. Equation (25) suggests
that there exist mass flux Jm across the interface, which depends
both on the temperature difference and the chemical potential
difference across the interface.

The coefficients Rqq, Rqm, Rmq, Rmm represent the excess in-
terfacial resistances to the heat and mass transfer. Just like the
local resistivity coefficient rqq(r), they can depend only on equi-
librium properties of the system and do not depend on the non-
equilibrium perturbation. They are related to the local resistivity
profile in the following way:

Rqq(x) = E[rqq](x)

Rmq(x) = Rqm(x) = E[rqq (hg −h)](x)

Rmm(x) = E[rqq (hg −h)2](x)

(26)

where

E[q](x)≡
∫ rℓ

rg
dr

x2

r2

(

q(r)−qgΘ(x− r)−qℓΘ(r− x)
)

(27)

In this expression Θ is the Heaviside step function, while rg and
rℓ are the positions in the homogeneous region of the gas and
liquid phase. Furthermore, qg and qℓ are the extrapolated to the
position x homogeneous values of the quantity q. E[q] repre-
sents therefore the excess of a quantity q(r) across the interfa-
cial region above the homogeneous values. Figure 3 illustrates
the idea of excess: it is basically the difference between the
shaded areas of different color. The value of the excess depends
on the position of the dividing surface. Depending on the kind
of profile it can be either positive or negative, such as in Fig-
ure 3(a), if the profile changes monotonically across the inter-
face, or always positive, such as in Figure 3(b), if the profile has

a peak inside the interfacial region. Equations (26) show that in-
terfacial resistances are the excesses of local profiles, which are
the combinations of resistivity profile and the enthalpy profile.

A PARTICULAR SOLUTION FOR STATIONARY
STATES

We consider here an example of solution for a bubble in sta-
tionary states. The balance equations 18-21 take the following
form

(r2 Jm)
′ = 0

(r2 Je)
′ = 0

(r2 Jp)
′ = 2r p(r)

(r2 Js)
′ = σs

(28)

where the momentum flux Jp = pn +ρv2. Unlike the planar in-
terface the mass, energy and momentum fluxes are not constant
through the interfacial region. Due to spherical symmetry, it is
r2 Jm and r2 Je which are constant. In addition, r2 Jp is not even
constant.

For a planar interface stationary states are typically realized
by keeping different values of the temperature and pressure on
the boundaries of the system. This leads to a flux of matter and
energy into the system at one side of it and out of the system
at the other side. An equivalent picture for a spherically sym-
metric system would be to control the temperature and pressure
at the spherical boundary. This would lead to a flux of matter
and energy through that boundary. In stationary states this flux
should be compensated by the corresponding source or sink in
the center of the bubble. Equation (28) suggests that this could
be realized either if the flux of matter or energy is zero every-
where or if they are infinite in the center. In the first case we get
equilibrium, while the second case is unphysical. In other words
the stationary non-equilibrium state for a bubble or a droplet is
not possible. It can either be in equilibrium, or grow (shrink).

The interfacial property of a bubble do not depend, however,
on its motion. Besides, the most convenient condition to study
these properties is stationary state. In order to circumvent the
above problem in stationary state we need to allow matter and
energy to be sinked not in the center of the bubble, but at some
finite radius. Our system would be therefore have not only the
outer boundary of the radius Lo, but also the inner boundary of
radius Li. The gas-liquid interfacial region lies entirely inside
the layer between these boundaries. With this geometry we can
control the temperature and pressure at the both boundaries.

To illustrate a particular solution we consider the case when
there is no mass flux across the boundary. In this case Eq. (23)
allows an analytic solution for the temperature:

1
T (x)

=
1
T i +

(

1
T o − 1

T i

) ∫ x

Li
dr

rqq(r)

r2

/

∫ Lo

Li
dr

rqq(r)

r2 (29)

The local resistivity profile depend only on equilibrium proper-
ties of the system. Equation (24) can take the following form

rqq(r) = ri
qq +(ro

qq − ri
qq)

ρeq(r)−ρi
eq

ρo
eq −ρi

eq
+α(ro

qq + ri
qq)

|∇ρeq|2

|∇ρeq|2max
(30)
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Figure 3. Illustration of the interfacial excess. The excess is the difference between the shaded areas of different color. (a) Depending on the position
of the dividing surface the excess may be both positive and negative; (b) Irrespectively of the position of the dividing surface, the excess is always
positive.
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Figure 4. Local resistivity profiles (a) and temperature profiles (b) for spherical layer filled with various amounts of cyclohexane, boundaries of which
are kept at 330 K and 336.6 K.

where superscripts i and o denote the values of the resistivity
and the density at the boundaries. Typical resistivity profiles for
different bubble sizes are given in Figure 4(a). Position of the
peaks in the profiles correspond to the positions of the interfa-
cial region. This lead to the temperature profiles illustrated in
Figure 4(b). We see that the temperature profiles has different
slopes in the gas and liquid phases. This is natural, since the gas
and liquid resistivity are different. Higher gas resistivity leads
to the more steep temperature profile in the gas phase. Another
interesting thing is that the extrapolated temperature profiles in
the gas and liquid phases are different at the interface.

CONCLUSIONS

In this article we have presented a systematic procedure for
the description of a non-equilibrium spherical interface. We

considered separately the equilibrium square gradient model,
non-equilibrium constitutive equations and the extension of the
equilibrium thermodynamic quantities in an inhomogeneous re-
gion to non-equilibrium. We emphasized the importance of this
extension as it allows one to identify correctly the forces which
drive the system away from equilibrium.

In particular we have summarized the role of pressure. It
was shown that one can identify several quantities with a mean-
ing of the pressure, namely the thermodynamic pressure, the
normal and tangential pressure, the tension tensor and the Ko-
rteweg tensor. In particular, the thermodynamic pressure is used
in the definition of local thermodynamic potentials, such as lo-
cal Helmholtz energy or local internal energy, and in the Gibbs
relation. In addition, the tension tensor appears in the Gibbs
relation for an inhomogeneous region, which illustrates an ad-
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ditional work required to transfer a volume element across the
interface. In contrast, the normal pressure is present in balance
equation for momentum, i.e. equation of motion.

We have discussed that non-equilibrium fluxes are deter-
mined by the gradients of the chemical potentials rather than
the gradients of the densities. While the variations of the ther-
modynamic quantities, such as p0 or µ0, determined from the
equation of state are large across the interfacial region, the non-
equilibrium flux of matter is determined by the slow variation
in the total chemical potential.

We have discussed the origin of an additional resistance met
by a bubble to heat and mass transfer, which is caused by the
interface. The excess resistance is essentially determined by the
peak in the local resistivity profile caused by the large density
gradients in the interfacial region. As the surface can be consid-
ered as a separate thermodynamic phase, its resistance is deter-
mined by the equilibrium properties, just like the resistance of
the homogeneous phase.

Finally we considered a simple example of a bubble in non-
equilibrium conditions. It illustrated the typical profiles of local
properties which are developed in non-equilibrium bubble or
droplet.

NOMENCLATURE

Vectors are indicated by the bold phase, tensors are indicated
by two Greek subscripts.
0 Subscript indicating the homogeneous phase
f v Helmholtz energy density [J/m3]
h Specific enthalpy [J/kg]
Jm Mass flux [kg/(m2s)]
Je Energy flux [J/(m2s)]
Jq Measurable heat flux [J/(m2s)]
Jp Momentum flux [Pa]
Js Entropy flux [J/(m2K)]
p Thermodynamic pressure [Pa]
pn Normal pressure [Pa]
pτ Tangential pressure [Pa]
r Position [m]
rqq Local heat resistivity coefficient [(m s)/(J K)]
Rqq Excess heat resistance coefficient [(m2s)/(J K)]
Rqm Excess heat resistance coefficient [(m2s)/(kg K)]
Rmm Excess heat resistance coefficient [(m2s)/(kg2 K)]

s Specific entropy [J/kg]
T Temperature [K]
t Time [s]
u Specific internal energy [J/kg]
v Specific volume [m3/kg]
v Velocity [m/s]
α, β Spatial components of vectors and tensors []
E Excess operator []
γαβ Tension tensor [Pa]
κ Square gradient coefficient [J m5/kg2]
µ Chemical potential [J/kg]
ρ Mass density [kg/m3]
σs Entropy production [J/(m3K)]
σαβ Pressure tensor [Pa]
ϖαβ Korteweg tensor [Pa]
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du mouvement des fluides si l’on tient compte des forces
capillares causés par les variations de densité. Arch.
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INTRODUCTION 

The type and magnitude of the molecular interactions that 
occur at interfaces are responsible for many of the phenomena 
that are observed in nature. A detailed knowledge of the 
interfacial behaviour is required to deal with many industrial 
technological processes, especially those ones related to 
separation and extraction. However, the modelling of 
interfacial properties remains as a challenge due to its 
inhomogeneous nature. Only theories that explicitly consider 
property fluctuations are able to reproduce the physics behind 
the interface. 

A quantitative evaluation of interfacial phenomena can be 
developed by starting from an accurate representation of the 
bulk homogeneous fluids. Among several possibilities, one of 
the most successful equations of state (EOSs) for fluid-phase 
equilibria is the statistical associating fluid theory (SAFT) [1], 
and its different versions. The general form of the SAFT 
expression for the Helmholtz free energy stems from the first-
order perturbation theory for associating systems by Wertheim 
[2]-[4]. The total free energy comprises a sum of terms that 
contribute to the total energy of the systems, each with a 
rigorous statistical mechanical foundation. 

A large body of literature has been devoted to the 
description and estimation of phase equilibrium properties of 
fluids following a variety of approaches. However, the 
application of theories of inhomogeneous systems is less 
common. One of the first successful approaches for the 
description of interfacial tensions in mixtures is the so-called 
parachor method, introduced by Macleod [5]. One can use this 
empirical approach to correlate the interfacial tension with the 
difference of the bulk coexisting densities. Despite its 
empirical basis, Fowler [6] showed that the relation can be  
derived as an explicit function of the intermolecular potential 
in the case of a stepwise density profile, which is a reasonable  

 
 
assumption far away from the critical point. Other popular 
approaches are based on the corresponding-states principle of 
Guggenheim [7], where empirical relations can be developed 
in terms of a specific reference fluid to provide an accurate 
representation of the surface tension [8]. Though useful in 
correlating data for the interfacial tension of fluid mixtures, 
these empirical relations offer little in way of predictive 
capability. This is the advantage of approaches developed 
from a more rigorous theoretical foundation such as the 
squared gradient theory (also referred to as density gradient 
theory (DGT)) and density functional theory (DFT). 

The DGT methodology is rooted in the original theory for 
inhomogeneous fluids of van der Waals [9], which was 
rediscovered and popularized by Cahn and Hilliard. [10] In 
DGT, the local free energy density is expanded as a Taylor 
series about the density profile to second order, i.e., to the 
second derivative of the profile with respect to the distance 
from the interface (which in this case also corresponds to the 
square of the density gradient). The first term of the DGT 
essentially corresponds to the Helmholtz free-energy density 
of the uniform fluid evaluated at the local density. The square-
gradient term can be expressed in terms of c(r), the direct 
correlation function [11] because the form of c(r) is generally 
unknown, it is often treated phenomenologically with the help 
of an adjustable parameter, the so-called “influence” 
parameter, which is estimated from real surface tension data.  

By contrast to DGT, the DFT formalism in principle offers 
an entirely predictive approach with no adjustable parameters. 
DFT methods are based on the construction of a free-energy 
functional from which the thermodynamic properties of the 
inhomogeneous system can be calculated. Several authors 
have discussed the general approaches for the construction of 
free-energy functionals and the different approximations that 
are commonly employed. Though the functional form of the 
free energy in typical DFTs is mathematically more complex 
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ABSTRACT 
In this work, a short review of different approaches to estimate the surface tension, density profiles and other interfacial 
properties of pure fluids and mixtures is described. Particular attention is paid to two relevant methods usually coupled to 
molecular based equations of state from the SAFT family: the Density Functional Theory (DFT) and the Density Gradient 
Theory (DGT). The DFT approach is based on the construction of a free-energy functional by generally dividing the free-
energy in two parts: a reference term that incorporates only the ideal and short-range interactions, and a perturbative term in 
which the long-range interactions are included. On the other hand, The DGT approach is based on the van der Waals theory for 
inhomogeneous fluids, as popularized by Cahn and Hilliard, where the Helmholtz free-energy density is expanded as a Taylor 
series in the density profile, which is truncated after the second term. Both treatments are physically well sounded and they are 
applicable to these type of EoSs, showing a very good performance to describe a wide variety of fluids, including 
hydrocarbons, amines, carbon dioxide, water and ionic liquids. Some examples will be shown here, highlighting the 
advantages and disadvantages of each methodology.  
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(involving iterative variational techniques for their solution) 
than for a DGT treatment, they have become quite popular 
because of the enhanced predictive capability. 

As a consequence, intermolecular parameters which have 
been estimated by optimization of experimental data for the 
bulk phases are sufficient to provide a predictive platform for 
the interfacial properties of the system within a DFT 
formalism without the need for additional surface tension data. 
The fundamental details of the DFT approach can be found in 
the seminal reviews by Evans [12] and Davis [13], including 
the various options for going from a general DFT formalism 
to an approximated theory that can be used to compute 
accurate results when applied to real fluids. 

The purpose of this contribution is to show the capability 
of combining a physically sounding SAFT-type equation of 
state with the DGT and DFT methods for the estimation of the 
surface tension, density profiles and other interfacial 
properties of pure fluids and mixtures. 

THEORY 

DGT 

The Density Gradient Theory (DGT) was originally 
proposed by van der Waals,[9] and rediscovered many years 
later by Cahn and Hilliard [10]. In the DGT approach, the 
Helmholtz free energy density is expanded in a Taylor series 
around a0, the free energy density term of the homogeneous 
fluid at the local density, and truncated after the second order 
term. 

( ) 3
0

1
 

2 ij i j
i j

A a c d rρ ρ ρ
 

= + ∇ ∇ 
 

∑∑∫
             (1) 

where a0 (ρ) is the Helmholtz free energy density of the 
homogeneous fluid at the local density ρ and ρi  and ρj are the 
molar densities of components i and j; cij is the influence 
parameter, which is treated as an adjustable temperature 
independent parameter  regressed from experimental data.  

Eq. (1) is usually simplified by assuming a planar interface 
and neglecting the density dependence of cij. Hence, the 
surface tension γ is related to the square gradient expression 
following 
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where ∆Ω is, by definition, the grand thermodynamic 

potential:  ( ) o

i

iiooji Pa +−=∆Ω ∑ ρµρρρ ,)(, .  µ0i and P0 

correspond to the equilibrium chemical potential and pressure, 
respectively, and z is the direction perpendicular to the 
interface. The right hand expression of Eq. (2) had infinite 
limits in the integration. Poser and Sanchez [14] applied a 
transformation from local space to density space, allowing a 
way to evaluate density profiles. For the particular case of a 
binary mixture, the equation reads: 
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where z0 denotes an arbitrary chosen origin and c’ is the 

result from the influence parameters of the pure components 
and the density profiles across the interface, and is described 
by,  
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The crossed parameter c12 is assumed to be given by the 

geometric mean combination rule, 2112 ccc β=  . β is an 

adjustable parameter, either fitted to the mixture experimental 
surface tension data or kept equal to one for predictive 
purposes. For a fair comparison with DFT, β has been set to 
unity in all cases. 

Using the above mentioned transformation, Poser and 
Sanchez [14] also derived an equation for the surface tension 
in binary mixtures that considers the change in the partial 
densities ρ1 and ρ2 within the interface, 

 

( )∫ ∆Ω
)(

)(

221

2

2

,'2

z

zo

dc=

ρ

ρ

ρρργ              (5) 

 
where the limits of integration are the bulk densities of 

component 2 in the coexisting phases. Further details 
concerning the computational performance of the grand 
thermodynamic potential for binary mixtures and how this can 
be coupled to a SAFT-type within framework can be found in 
literature [15]. 

 
DFT 

The Density Functional Theory (DFT) formalism is based 
on a standard perturbative approach in which the Helmholtz 
free-energy functional is approximated as the sum of a 
reference functional and a perturbative contribution.  
 

 (5) 
 
The theory is based on the grand potential functional 

Ω[ρm(r)] of an inhomogeneous system. Assuming an open 
mixture at temperature T and chemical potential µi for each 
component in a volume V, and in the absence of external 
fields: 
 

              (6) 
 

 
where A[{ρm(r)}] is the intrinsic Helmholtz free energy 
functional. The minimum value of Ω[{ρm(r)}] is the 
equilibrium grand potential of the system and the 
corresponding equilibrium density profiles ρeq,i(r) satisfy the 
condition 
 

 (7) 
 
The DFT approach tries to find an expression to relate the 

Helmholtz energy with the density of the system at the 
interface. From Eq. (5), the first term takes into account the 
short-range interactions between the segments that form the 
molecules. For a SAFT-type equation of state, they 
correspond to the ideal, hard-sphere, chain, and associative 
contributions, which are evaluated using the well-known local 
density approximation (LDA) [16].  

 (8) 
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The second term accounts for the long-range attractive 

interactions among the molecules of the system 
(corresponding to the first-order perturbation terms of the free 
energy): 

 

 (9) 
 
 At this point, two different approximations for the 

perturbative term can be applied: a full treatment in which the 
correlations between the chain segments are incorporated in 
an average manner through a set of approximations to estimate 
the pair distribution function of the inhomogeneous hard-
sphere mixture fluid [17], and a mean-field approach where 
the effect of the pair distribution function is neglected. 

The final expression using the full approach and applied to 
the case of the SAFT-VR equation of state reads:  

 

(10) 
The simplified mean-field expression is: 

  (11) 
 
The variation of the reference contribution with respect to 

densities ρi(r) correspond to the local chemical potential 
which can be obtained from derivation of the Helmholtz free 
energy by the density. Once the equilibrium density profile is 
known, the surface tension is determined by using the 
thermodynamic relation 

 

   (12) 
 

A final point to remark is the discussion about the effect of 
capillary waves on the surface tensions. The standard DFT 
approach washes out capillary fluctuations. These 
fluctuations, which can be viewed as a superposition of 
sinusoidal surface waves (or two-dimensional normal modes, 
provided their amplitudes are small), would become 
increasingly important close to the critical point. These 
capillary-wave fluctuations are not taken into account 
explicitly here, based on the fact that a significant contribution 
to the thermodynamic properties of the interface away from 
the critical region is not expected. In fact, Henderson [18] has 
shown that the interfacial tension described by a capillary 
wave theory is equivalent to the thermodynamic interfacial 
tension (accessible, e.g., through a DFT treatment) in the case 
of long wavelength fluctuations. However, this is a point for 
discussion among different authors who consider the effect of 
capillary waves to be important and necessary in order to have 
a proper estimation of the surface tension [19]. 

INTERESTING EXAMPLES 

In this section, we want to show the surface tension of 
different compounds calculated with the DGT and DFT 
treatments. We start first with the Density Gradient Theory, 
which has been used in conjunction with the soft-SAFT 

equation of state. Soft-SAFT is a variant of the original SAFT 
developed in 1997 by Vega and Blas [20] and it is mainly 
characterised by using a Lennard-Jones (LJ) interaction 
potential among the monomers that form each molecule. 

 In Fig. 1, the surface tension of  three common refrigerants 
(hydrofluorocarbons R134, R143 and R152) are modelled 
with the soft-SAFT equation of state + the DGT treatment. As 
it can be observed, excellent agreement with the experimental 
data is obtained in the whole range of temperatures 
corresponding to the vapour-liquid equilibrium line.  

 

 
 
Fig. 1. Vapor–liquid interfacial tension for R125(∆), R152a(+), 
R134a (□). Lines are the theoretical calculations and the symbols 
represent the experimental data [21]. 

 
The density at each point of the interface is calculated 

using soft-SAFT, which establishes a reliable molecular model 
for each molecule. Hence, an accurate density estimation is 
also a key requirement for a good calculation of the surface 
tension. Additionally, it is important to remark that the 
influence parameter cij  has been fitted to the surface tension 
data. This is the main disadvantage of the DGT approach, 
although in some cases, the influence parameter can be 
transferred from some compounds to others or related to the 
molecular weight within the same family of compounds [15]. 
An accurate estimation of the influence parameter is very 
important to have reliable predictions of mixtures. In Fig. 2, 
the surface tension of a mixture between two 
hydrofluorocarbons (R134 + R32) has been predicted from the 
information obtained for each pure compound [22]. No 
mixture data has been used. As it can be seen, the predicted 
results are in very good agreement with the experimental data. 

 

 
 
Fig. 2. Vapor–liquid interfacial tension of a R134 + R32 mixture at 
two different isopleths with a mass fraction of 0.4194 (∆) and 0.6084 
(○) of R32. 

 

171



 
The DGT treatment is a very versatile treatment, not only 

limited to classical fluids but also applicable to novel fluids, 
such as ionic liquids. In Fig. 3, the surface tension of several 
ionic liquids from the [Cnmim][Tf2N] family have been 
calculated using the soft-SAFT + DGT treatment. The surface 
tension estimation of ionic liquids is particularly difficult, due 
to several reasons associated to their structure and 
thermophysical properties: Firstly, ionic liquids are 
characterized by a negligible vapour pressure. Secondly, as 
observed experimentally, the value of the interfacial tension 
decreases as the alkyl chain length of the cation increases, 
contrarily to the behaviour of other organic compounds. 
Finally, these compounds are exceptional in terms of 
interfacial phenomena, as they show an almost constant value 
when the alkyl chain length increases, as it happens for the 
[Cnmim][Tf2N] family beyond [C7mim][Tf2N]. All these 
particularities can be captured with DGT, and very good 
agreement is obtained between the experimental data and the 
theoretical calculations. Moreover, the fitted influence 
parameter can be correlated with the molecular weight (or 
number of carbons CN) following a parabolic function [23], 
allowing the prediction of other ionic liquids of the same 
family with a longer chain in the cation tail. 
 

 
 
Fig. 3. Interfacial tensions for [C2mim][Tf2N] (□), [C4mim][Tf2N] 
(○), [C6mim][Tf2N] (∆), [C8mim][Tf2N] (+), and [C10mim][Tf2N] 
(◊). 

 
This is the expression obtained by fitting the ionic liquid 

members of the [Cn-mim][Tf2N] family with the alkyl chain 
length ranging from C2 to C8. 

 
][275.151872.02233.010 25219
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This correlation allows obtaining the interfacial behaviour 

of heavier compounds of the series not included in the fitting 
procedure. 

 The surface tension is not the only property that can be 
evaluated through the use of DGT. Density profiles are a 
supporting tool that provide a lot of information on the 
mixture and cannot be obtained experimentally. For the case 
of mixtures, they allow explaining deviations from the ideal 
behaviour, due to the relative enrichment of one compound in 
the interface. In Fig. 4, an example of the density profile of a 
[C4mim][NTf2] + [C2mim][NTf2] mixture. The dashed line 
corresponds to the [C4mim][NTf2] density profile, who is 
adsorbed in the interface, reaching a maximum. However, this 
is not affecting the total density profile (solid line) of the 
mixture. As mentioned, this information can become crucial in 
order to understand the non-ideal behavior of some mixtures 
[24]. 

 
 
Fig. 4. Density profiles across the interface at 298.15 K for 
[C4mim][NTf2] + [C2mim][NTf2]. 

 
Let us proceed to see some examples of the possibilities of 

the Density Functional Theory (DFT) methodology. As stated 
in the theory, this is a fully predictive approach, which can be 
particularly useful when experimental information is missing. 
The DFT theory has been coupled here with the SAFT-VR 
equation of state of Gil-Villegas and co-workers [25], another 
SAFT-type version that, in this case, uses a square-well 
potential to describe the interaction between the monomers of 
the system. 

In Fig. 5 the interfacial tension of two amines is provided 
using SAFT-VR + DFT. The surface tension of 
monoethanolamine (MEA) is depicted in Fig. 4a and the one 
of 2-amino-1-propanol (AMP) is shown in Fig. 4b. In both 
cases, excellent agreement is achieved with the experimental 
data, although for the AMP case, only a limited range of data 
is available for comparison. As for the DGT case, the density 
at each point of the interface is taken from the SAFT-VR 
calculation, hence, a reliable estimation of this property is 
absolutely necessary for obtaining the right trends. 

 

  
 
Fig. 5. Interfacial tensions for a) MEA b) AMP. More information is 
provided in reference [26]. 
 

The DFT treatment, as DGT, can also be applied to a wide 
variety of fluids and extended to mixtures. A very interesting 
field of application includes the carbon dioxide (CO2) + 
hydrocarbon mixtures for enhanced oil recovery purposes. 
The CO2 + n-decane mixture is particularly relevant because it 
is seen as a reasonable first approximation of a crude oil 
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mixture. In Fig. 6 an example of the surface tension of this 
mixture is shown. The SAFT-VR DFT (solid lines) is found to 
provide good predictions of the surface tension of the mixture 
over the whole range of pressures [27]. As for the mixtures of 
n-alkanes, the use of the mean-field approximation (dashed 
lines) is seen to lead to lower values of the vapour–liquid 
interfacial tension (in comparison with those corresponding to 
the version of the functional incorporating the correlations), 
especially at low pressures. 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Fig. 6. Vapour-liquid interfacial tensions of a Carbon Dioxide + n-
decane mixture at 344K (□) and 377K (○). 
 

Another interesting ability of the DFT treatment is that it 
can be used to calculate either vapour-liquid (VL) or liquid-
liquid (LL) interfacial tensions. In Fig. 7 the VL and LL 
interfacial tensions of a water + CO2 mixture are modelled 
with SAFT-VR-DFT. Good agreement is found in a very wide 
range of temperatures and pressures, moving from one type of 
equilibrium to another. The methodology is able to capture the 
change from an equilibrium to another one using an only set 
of parameters and without mixture data [28].   

 

Fig. 7. Interfacial tension modelling and measurements of the 
(H2O+CO2) system as a function of pressure for different isotherms: 
(▲) at 297.9 K; (●) at 312.9 K; (♦) at 333.5 K; (x) at 343.3 K; (■) at 
373.3 K.  

CONCLUSIONS 

A short review of different methodologies applied for the 
calculation of interfacial properties of fluid and fluid mixtures 
has been explored. In particular, the DGT and DFT treatments 
are highlighted based on their reliable physical background, 

easiness of application and accuracy of results. These 
treatments have been coupled into SAFT-type equations of 
state to reproduce the surface tension of compounds of 
different molecular nature. Both approaches can accurately 
reproduce the surface tension of pure fluids and binary 
mixtures. The DGT approach requires the use of an additional 
parameter, the so-called influence parameter “c”, although it 
keeps an elevated degree of predictability for mixtures, with 
excellent agreement in the calculation of the surface tension of 
complex ionic liquid mixtures. On the other hand, the DFT 
approach is fully predictive and it is accurate enough to 
estimate aqueous and CO2 mixtures in a semiquantitative way, 
although it is computationally more demanding and, as a 
consequence, more difficult to extend to multicomponent 
systems. Therefore, there are still some open questions for 
both approaches, like the use of the β binary parameter on 
DGT and the inclusion of the effect of capillary waves on 
DFT.  In any case, they both offer a reliable path for an 
accurate estimation of the interface of a wide variety of 
compounds.  
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NOMENCLATURE  

Symbol Quantity SI Unit 
   
A 
a0 

γ 
cij 

ρ 
µ 
z 
β 
Ω 
V 
T 
P 
gij 

kB 

m 
 

Helmholtz free energy 
Helmholtz free energy density 
Surface tension 
Influence parameter 
Density 
Chemical Potential 
Distance from the interface 
Crossed influence parameter 
Grand Potential 
Volume 
Temperature 
Pressure 
Pair radial distribution function 
Boltzmann constant 
Chain length SAFT parameter 

J/mol 

J/dm3 

mN/m 
J·m5/mol2 

mol/dm3 

J/mol 
Ǻ 
Adim. 
J/mol 
dm3 

K 
MPa 
Adim. 
J / K 
Adim. 

REFERENCES 

[1] W. G. Chapman, K. E. Gubbins, G. Jackson, M. Radosz, 
New reference equation of state for associating liquids, 
Ind. Eng. Chem. Res., vol. 29 pp.1709–1721, 1990. 

[2] M. S. Wertheim, Fluids with Highly Directional 
Attractive Forces. 1. Statistical Thermodynamics. J. Stat. 
Phys. vol. 35, pp.19-34, 1984. 

173



 
[3] M. S. Wertheim, Fluids with Highly Directional 

Attractive Forces. 2. Thermodynamic-Perturbation 
Theory and Integral-Equations. J. Stat. Phys. vol. 35, 
pp.35-47, 1984. 

[4] M. S. Wertheim, Fluids with Highly Directional 
Attractive Forces. 3. Multiple Attraction Sites. J. Stat. 
Phys. vol. 42, pp. 459-476, 1986. 

[5] D. B. Macleod, On a relation between surface tension 
and density. Trans. Faraday Soc., vol. 19, pp. 38-41, 
1923. 

[6] R. H. Fowler, A Tentative Statistical Theory of 
Macleod's Equation for Surface Tension, and the 
Parachor, Proc. R. Soc. London, Ser. A, vol. 159, pp. 
229-246, 1937. 

[7] E. A. Guggenheim, The principle of corresponding 
states. J. Chem. Phys., vol. 13, pp. 253-261, 1945. 

[8] Y. X. Zuo and E. H. Stendby, Corresponding-states and 
parachor models for the calculation of interfacial 
tensions, Can. J. Chem. Eng., vol 75, 1130, 1997. 

[9] J.D. van der Waals, Thermodynamische Theorie der 
Kapillarität unter voraussetzung stetiger, 
Dichteänderung, Zeitschrift fur Physikalische Chemie-
Leipzig, vol. 13, pp. 657–725, 1894. 

[10] J.W. Cahn, J.E. Hilliard, Free energy of a non-uniform 
system. I: interfacial energy, Journal of Chemical 
Physics, vol. 28, pp. 258–266, 1958. 

[11] J. S. Rowlinson and B. Widom, Molecular Theory of 
Capillarity, Clarendon, Oxford, 1982. 

[12] R. Evans, “Density functionals in the theory of 
nonuniform fluids” Fundamentals of Inhomogeneous 
Fluids, Dekker, New York, 1992. 

[13] H. T. Davis, Statistical Mechanics of Phases, Interfaces 
and Thin Films, VCH, Weinheim, 1996. 

[14] C. I. Poser, I. C. Sanchez, Interfacial tension theory of 
low and high molecular weight liquid mixtures, 
Macromolecules, vol. 14, pp. 361–370, 1981. 

[15] O. Vilaseca, L.F. Vega, Direct calculation of interfacial 
properties of fluids close to the critical region by 
amolecular-based equation of state, Fluid Phase 
Equilibria, vol 306, pp. 4-14, 2011. 

[16] D.E. Sullivan, Statistical mechanics of a nonuniform 
fluid with long-range attractions, Phys. Rev. A, vol. 25 
pp. 1669–1682, 1982. 

[17] F. Llovell, A. Galindo, F.J. Blas, G. Jackson, Classical 
density functional theory for the prediction of the surface 
tension and interfacial properties of fluids mixtures of 
chain molecules based on the statistical associating fluid 
theory for potentials of variable range, J. Chem. Phys. 
133, 024704, 2010. 

[18] J. R. Henderson, Statistical Mechanics of Spherical 
Interfaces in Fluid Interfacial Phenomena, Wiley, New 
York, 1986. 

[19] J. Gross, A density functional theory for vapor–liquid 
interfaces using the PCP-SAFT equation of state, J. 
Chem. Phys. 131, 204705, 2009. 

[20] F.J. Blas, L.F. Vega, Thermodynamic behaviour of 
homonuclear and heteronuclear Lennard-Jones chains 
with association sites from simulation and theory, Mol. 
Phys. vol. 92, pp. 135–150, 1997. 

[21] NIST Chemistry Webbook; 
http://webbook.nist.gov/chemistry. 

[22] O. Vilaseca, F. Llovell, J. Yustos, R. M. Marcos, L. F. 
Vega. Phase equilibria, surface tensions and heat 
capacities of hydrofluorocarbons and their mixtures 
including the critical region. J. Supercrit. Fluids, 55 pp.  
755–768, 2010. 

[23] F. Llovell, E. Valente, O. Vilaseca, L. F. Vega, 
Modeling Complex Associating Mixtures with 
[Cnmim][Tf2N] Ionic Liquids: Predictions from the Soft-
SAFT EquationJ. Phys. Chem. B vol. 115, pp. 
4387−4398, 2011. 

[24] M. B. Oliveira, M. Domínguez-Pérez, M. G. Freire, F. 
Llovell, O. Cabeza, J. A. Lopes-da-Silva, L. F. Vega, J. 
A. P. Coutinho. Surface Tension of Binary Mixtures of  
1- Alkyl – 3 - methylimidazolium 
Bis(trifluoromethylsulfonyl)-imide Ionic Liquids: 
Experimental Measurements and Soft-SAFT Modeling, 
J. Phys. Chem. B, 116, pp. 12133−12141, 2012. 

[25] A. Gil-Villegas, A. Galindo, P.J. Whitehead, S.J. Mills, 
G. Jackson, A.N. Burgess, Statistical associating fluid 
theory for chain molecules with attractive potentials of 
variable range, J. Chem. Phys., vol. 106, pp. 4168–4186, 
1998. 

[26] N. Mac Dowell, N. MacDowell, F. Llovell, C.S. 
Adjiman, G. Jackson, A. Galindo, Modelling the fluid 
phase behaviour of carbon dioxide in aqueous solutions 
of monoethanolamine using transferable parameters with 
the SAFT-VR approach, Ind. Eng. Chem. Res., vol. 49, 
pp. 1883–1899, 2010. 

[27] F. Llovell, N. Mac Dowell, F. J. Blas, A. Galindo, G. 
Jackson, Application of the SAFT-VR density functional 
theory to the prediction of the interfacial properties of 
mixtures of relevance to reservoir engineering, Fluid 
Phase Equilib. vol 336, pp. 137-150, 2012.  

[28] A. Georgiadis, F. Llovell, A. Bismarck, F.J. Blas, A. 
Galindo, G. C. Maitland, J. P. M. Trusler, G. Jackson, 
Interfacial tension measurements and modelling of 
(carbon dioxide + n-alkane) and (carbon dioxide + 
water) binary mixtures at elevated pressures and 
temperatures, J. Supercrit. Fluids vol. 55, pp. 743–754, 
2010. 

 
 
 

 

174



12th Joint European Thermodynamics Conference 
Brescia, July 1-5, 2013 

 

 

 

PHASE FIELD MODELING OF MULTIPHASE SYSTEMS 
 

Roberto Mauri 
 

Department of Civil and Industrial Engineering,  
Laboratory of Reactive Multiphase Flows, 

Università di Pisa, 56126 Pisa, Italy. 
 
 

EXTENDED ABSTRACT 

 
Research on multiphase flows is very active, even if its beginning dates back in the 19th century, when Young, Laplace and Gauss developed the 
first theory of multiphase flow, assuming that different phases are separated by a sharp interface, that is a surface of zero thickness. At the end of 
the 19th century, though, another approach was proposed by Van der Waals [1], who assumed that interfaces have a non-zero thickness, i.e. they 

are "diffuse" over a region where the interfacial forces are smoothly distributed. Later, in 1901, Korteweg continued this work and proposed an 
expression for the capillary stresses, which are generally referred to as Korteweg stresses, showing that they reduce to surface tension when the 
region where density changes from one to the other equilibrium value shrinks on to a sharp interface (see review articles in [2]).  
 
We can appreciate the importance of the phase field, or diffuse interface, method when we compare it to traditional multiphase flow modeling. In 
classical multiphase fluid mechanics, we assume that each phase is at chemical equilibrium (i.e. its density and composition correspond to their 
equilibrium value at the given pressure and temperature) and are separated from each other by a zero thickness interface, where appropriate 
boundary conditions are imposed. On the other hand, in the phase field method the interface consists of a transition zone between the phases, of 
finite thickness, where all the properties of the mixture vary continuously. Clearly, the classical model ceases to apply when the lengthscale of the 
phenomenon is comparable with the interface thickness, as it happens in the motion of contact lines along solid surfaces, in the breakup and 
coalescence of bubbles and droplets, and, of course, in multiphase flows in micro devices. Instead, the phase field approach remains valid in all 
these cases and therefore, in particular, can describe microfluidic phenomena, which the classical multiphase approach cannot model.  In 
addition, because the composition of the mixture is a continuous function, no separate description of the time evolution of the sharp interface is 
required, thus avoiding mathematical complexities and numerical instabilities typical of interface tracking. 
 
Perhaps the best-known example of phase field model is the Cahn-Hilliard equation [3], that is used for modeling the phase separation of binary 
alloys that are quenched into the unstable region of their phase diagram. Here, the relaxation of the order parameter (i.e. the mixture composition) 
is driven by local minimization of the free energy, subjected to phase field conservation and as a result, the interface layers do not deteriorate 
dynamically. Other applications for which phase field models are particularly well suited are structure formation and evolution in flow systems, 
an area of technological impact in soft materials processing. There, hydrodynamics can be introduced by coupling the convective Cahn-Hilliard 
equation of mass transport to a modified Navier-Stokes equation of momentum transport, that includes a phase field-dependent body force, which 
is generally referred to as Korteweg force. This latter is proportional to the chemical potential gradients and, accordingly, since at thermodynamic 
equilibrium the chemical potentials are uniform, it can be seen as a non-equilibrium body force that tends to restore chemical equilibrium. [4] 
 
The main drawback of the phase field approach is that its characteristic length coincides, approximately, with the interface thickness. 
Accordingly, even introducing corrections (which however are rigorously correct only for regular mixtures) to increase the size of the computing 
domain, we can simulate volumes of, at most, one millimeter size. Therefore, we can simulate the whole domain only when we are dealing with 
microfluidic problems. Unfortunately, though, fully implicit numerical treatment of interfacial terms yields expensive schemes while explicit 
discretization quickly lead to numerical instability or impose impractical time-stepping constraints. Here, we would like to propose an efficient 
and robust numerical method for the coupled Cahn-Hilliard/Navier-Stokes system. 
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EXTENDED ABSTRACT

The solidification of metallic alloys gives rise to the spontaneous formation of a large variety of different microstructures. This is a subject of
fundamental interest as a well-controlled example of pattern formation, and of practical importance because of its applications in metallurgy [1].
These patterns arise from a subtle interplay between the destabilizing effects linked to the transport of heat and/or chemical constituents, and the
stabilizing effect of interfacial properties such as capillarity and interface dissipation. In recent years, the phase-field technique has become the
method of choice for the numerical modelling of solidification [2]. In its basic formulation, it can be obtained from Ginzburg-Landau free energy
functionals through the standard phenomenological equations of out-of equilibrium thermodynamics that make use of variational principles. Its
main advantage is that the explicit tracking of boundaries and interfaces is avoided by the introduction of scalar functions, the phase fields, which
indicate the local state of matter and exhibit diffuse interfaces at phase boundaries. Moreover, this construction of the model implies that capillarity
and interface dissipation are “automatically” contained in the equations.

For maximum computational efficiency, one would like to control independently the bulk and surface properties of the model. For alloy solidi-
fication, it can be shown that this is not the case in the formulations based on free-energy functionals [3; 4]. The basic underlying thermodynamic
reason is that interface motion is controlled by the transport of an extensive quantity (chemical constituents), whereas interfacial equilibrium is
controlled by the conjugate intensive quantities (the chemical potentials). Therefore, any model that describes the thermodynamics and transport
phenomena in the bulk in terms of the extensive variables (compositions) makes the description of interface equilibrium (and the identification of
the driving forces for interface motion) difficult. In contrast, a grand-canonical description in terms of the chemical potentials makes is easy to
choose interpolation functions between the different phases that decouple bulk and interface properties [4]. In this formulation, the starting point
is a grand-potential functional rather than a free-energy functional, and the dynamical variable is the local chemical potential. A complete analogy
can be established between this formulation and the phase-field models for the solidification of a pure substance, which have traditionally used the
temperature (the intensive quantity) as the dynamic variable. In this contribution, the formulation of the grand-canonical phase-field model for a
binary alloy, its relation to the pure-substance model, and its extension to multi-component systems [5] will be discussed. Furthermore, a perspective
for the construction of new phase-field models for other physical systems will be outlined.
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EXTENDED ABSTRACT 

 
Surface rheological properties like surface shear viscosities, or surface dilatational moduli often play an important role in the stability and 
dynamic behavior of emulsions, foam, biological fluids, liquid jets, coatings flows, or immiscible polymer blends [1]. This is particularly true 
when the interfaces in these systems have a complex microstructure, for example, when the surface active components stabilizing the interface 

form a 2d gel phase, a 2d glass phase, or 2d (liquid) crystalline phase. Such 2d mesophases are typically formed when interfaces are stabilized by 
colloidal particles, proteins, protein aggregates, protein-polymer complexes, or amphiphilic polymers [1]. Applied deformations induce changes 
in the microstructure of the interface, and the resulting changes in surface rheological properties (such as surface shear thinning, shear thickening, 
or thixotropic behavior) affect the behavior of the multiphase system on a macroscopic scale. Most currently available constitutive models for the 
surface extra stress tensor either do not account for the strain (rate) dependence of surface rheological properties, or are appropriate only for 
infinitesimally small rates, where departures from linear behavior are very small [1]. In this paper we will discuss recent advances in the 
development of nonlinear constitutive equations for the stress-deformation behavior of fluid-fluid interfaces in the framework of nonequilibrium 
thermodynamics. We will focus on two frameworks: the classical irreversible thermodynamics (CIT) framework, and the general-equation-for-
the-nonequilibrium-reversible-irreversible-coupling (GENERIC) framework. We will illustrate the construction of surface rheological 
constitutive equations within these two frameworks for a specific example: interfaces stabilized by anisotropic colloidal particles, in the dilute 
particle concentration regime. In both frameworks we construct models describing the effect of microstructural changes on the nonlinear response 
of an interface to a deformation through a dependence of the surface stress tensor on a set of scalar and a tensorial structural variables. We 
present the time evolution equations for these structural variables, and evaluate the ability of these types of models to describe the shear thinning 
behavior typically observed experimentally for such interfaces. We compare the models in both simple and oscillatory shear. We find that both 
frameworks allow us to construct nonlinear expressions for the surface extra stress tensor capable of describing shear thinning behavior, but the 
CIT model gives realistic predictions only for small departures from equilibrium, whereas the GENERIC framework allows us to create models 
valid also far from equilibrium. Besides giving more accurate predictions for the shear thinning behavior the GENERIC model also predicts the 
existence of in-plane normal stresses (normal to the direction of flow), and effect of which its existence has been hypothesized, but that has so far 
not been observed experimentally. These results show that microstructural models developed using nonequilibrium thermodynamic frameworks 
provide a valuable tool for the analysis of the highly nonlinear dynamics of multiphase systems with complex liquid-liquid interfaces. 
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INTRODUCTION 

In classical thermodynamics, the surface of a chemically 
pure liquid is considered as a thermodynamic system, whose 
thermodynamic equilibrium state is uniquely given by the 
surface area, A, and the (absolute) temperature, T. The surface 
tension,  , is then defined by the relation 

 

AW d de        (1) 

 
for the work required to change the surface area by the 

infinitesimal amount Ad  in a quasistatic process. It is 

commonly assumed in classical thermodynamics that the 
surface tension is independent of A, i.e. a function of T only, 

with )(T   representing the thermal equation of state of 

the surface. Furthermore, measurements as well as molecular 
models indicate that the value of the surface tension of 
common liquids is nearly independent of the surrounding gas, 
which may be a vapour or an inert gas. 

The entropy, S , of the surface is defined by Gibbs’ 

fundamental equation 
 

AUST d d d        (2) 

 

for a quasistatic process. Since the internal energy, U  , and 

the entropy, S , are quantities of state, Ud  and Sd  have 

to satisfy the conditions for total differentials, leading to the 
following relation between the thermal and caloric quantities 
of state: 
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where u  is the internal energy of the unit surface area, while 

the heat capacity of the unit surface area, c , is defined by the 

relation 
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Since   is a function of T only, the same is true for u  and 

c , i.e. )(Tuu    and )(Tcc   , and from equations (3) 

and (4) one obtains 
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Note that sometimes the temperature dependence of the 

surface tension is approximated by assuming const d/d T . 

This, however, implies a vanishing surface heat capacity 
according to Eq.(5). 

As u is independent of A, Eq.(3) can easily be integrated. 

There appears an unknown function of T, which, however, 
must be a constant in order to be in accord with Eqs.(4) and 

(5). Thus const  AuU , or 
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ABSTRACT 
To deal with negative surface heat capacities that are observed for many liquids, surfaces are treated as non-autonomous 

thermodynamic systems, i.e. together with the liquid that forms the surface. First, a few examples of lumped heat capacities are 
presented. Both quasistatic and non-static area changes of plane liquid films are considered. To provide a criterion for the 
applicability of the quasistatic limit, one-dimensional thermo-capillary waves in liquid films are investigated. Next, heat 
transfer at surfaces is considered. Various forms of the energy equation of surfaces are presented, non-dimensional parameters 
characterizing the relative importance of the surface heat capacity are defined, and a few applications are given. If the surface 
heat capacity is negative, a heat pulse supplied to the surface initially leads to a decrease of the surface temperature. 
Furthermore, negative surface heat capacities give rise to amplifications of small perturbations of the surface temperature. This 
physical instability may also cause numerical instabilities when solving heat conduction problems. Finally, the dependence of 
the surface tension on the radius of nano-droplets serves as a motivation for extending the relevant thermodynamic relations to 
systems with area-dependent surface tension. The implications for Kelvin’s equation for the vapour pressure at small droplets 
are discussed. 
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Here, and in what follows, the subscripts 1 and 2 refer to an 
initial and a final state, respectively. 

Making use of Eq.(3), Gibbs’ fundamental equation, 
Eq.(2), gives 
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Introducing, finally, the entropy of the unit surface area, s , 

according to  AsS  , gives 
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Note that the entropy of a surface can be responsible for 

the irreversibility of evaporation processes [1]. For instance, 
in order to completely evaporate a plane liquid film with 
surface area A under isothermal conditions, a supply of heat is 
required that is smaller than the evaporation enthalpy of the 

liquid by the amount Au , cf. Eq.(3). The entropy change due 

to the disappearance of the surface, however, is not equal to 

TAu / , but only equal to TuAAs /)(   . The 

difference, which represents the work that is necessary to 
generate the surface in an isothermal process, indicates that 
the process of complete evaporation of a plane liquid film, 
being associated with the disappearance of the surface, is 
inherently irreversible. In most cases, however, it turns out 
that the entropy change due to the disappearance of the 
surface is very small in comparison with the entropy change 
due to the evaporation of the liquid. This justifies, in general, 
the idealization of a quasistatic isothermal evaporation process 
as a reversible process.   

Since, according to the second law, the entropy is an 
extensive quantity of state, it follows from Eq.(7) that 
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Note, however, that   and u  vanish as the critical point is 

approached. From Eq.(3) it follows that 0d/d T  for 

cTT  , with cT  denoting the critical temperature. 

While, according to Eq.(9), positive values of Td/d  are 

excluded as a consequence of  the second law, the second law 

does not tell us anything about the sign of Tu d/d   or c . A 

Carnot cycle, for instance, can be constructed for the surface 

as a thermodynamic system irrespective of the sign of c . 

While the isothermal changes of state are characterized by 

const  , the isentropic changes of state satisfy the relation 
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which follows from Eqs. (2) to (4). Observing Eq.(9), one can 
see from Eq.(10) that the isentropic temperature increase in 
the Carnot cycle is associated with a decrease or increase of 

the surface area, depending on whether c  is positive or 

negative, and vice versa for the isentropic temperature 
decrease. But the thermal efficiency of the cycle is smaller 
than 1 in both cases, in accord with the second law.  

In fact, positive as well as negative values of c  have been 

measured, and also calculated on the basis of molecular 
models, for various liquids in certain temperature regimes [1] 
[2] [3]. There is, however, a problem of stability. Let us 
assume that the thermodynamic equilibrium state (T, A) is 

perturbed by a small surface-area change, 0A . According 

to Eq.(10) together with Eq.(9), the system reacts with a 

temperature change 0T  and 0  if 0c . The 

increase of the surface tension will then lead to 0d A , 

driving the surface back to the equilibrium state. The opposite 

is true in the case 0c , leading to the thermodynamic 

instability that is to be expected of any system with a negative 
heat capacity. Thus it is usually argued that the surface must 
not be considered as an “autonomous” system, but rather 
ought to be treated together with the liquid that forms the 
surface [4]. This, however, is sometimes easier said than done. 
The present contribution to the symposium is intended to 
provide a basis for the discussion of problems associated with 
considering the surface as a non-autonomous system. In 
accord with many applications, the discussion will be 
restricted to thermodynamic systems that consist of only one 
chemical substance, i.e. mixtures will not be considered, and 
phase transitions will not be taken into account in what 
follows.  

LUMPED HEAT CAPACITIES 

Isentropic film-area change 

Consider a quasistatic, adiabatic, i.e. isentropic, change of 
the surface area, A, of a plane liquid film of constant mass, m. 
The liquid film is surrounded by an inert gas. The mass 
density of the liquid may be assumed constant, thereby 
allowing to neglect work due to volume changes. Accounting 
for the internal energy of the liquid with isochoric specific 

heat capacity vc , one obtains in the same way as above the 

following relation [1]: 
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Note that Acmcv  represents the “lumped” heat capacities 

of the two parts of the system, i.e. of the bulk liquid and the 
surface. As an approximation, lumped heat capacities are well 
known from the theory of heat transfer, but in the present case 
they result from the quasistatic limit, which implies thermal 
equilibrium between all parts of a system. 

With 2/Am  , where   is the mass density of the 

liquid and   is the thickness of the film with two free 

surfaces, the condition for a positive lumped heat capacity, as 

required for stability reasons, becomes   vcc /2 . 

Estimates on the basis of known properties of various liquids, 
e.g. water (cf. [1], p. 94, and [5])  or argon (cf. [6], p. 12),  
show that a film thickness of the order of the size of molecules 
is sufficient to give a positive lumped heat capacity.  

For film thicknesses that are much larger than the 

molecular size, Ac  may be neglected in comparison with 

vmc , and upon integration one obtains from Eq.(11) the 

following relation between the area change 12 AA   and the 

temperature change from 1T  to 2T : 
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or, using Eq.(3), 
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Equation (13) shows that the internal energy of the surface has 
to be taken into account, even if the heat capacity of the 
surface is negligible. This, perhaps surprising, result can be 

understood by considering the energy balance. As u  and   

are of the same order of magnitude, cf. Eq.(3), the 
contribution of the surface-energy change to the energy 

balance, i.e. Au d , is of the same order of magnitude as the 

work performed by the surface tension, i.e. Ad  . 

 

Non-static film area change 

Consider a plane liquid film that is stretched in a 
rectangular frame with a frictionless movable bar of length L 
forming one side of the frame. As before, the mass and the 
mass density of the film are assumed constant. In addition, the 

isochoric specific heat capacity, vc , of the liquid is also 

assumed constant. In the initial state (surface area 1A , 

temperature 1T ) the film is in thermodynamic equilibrium. 

This implies that the force acting on the bar is LF 21  . 

(The coefficient 2 is due to the fact that the film has two 
surfaces.) At a certain moment, the force acting on the bar 

suddenly changes to the value 2F , which is then kept constant. 

Heat exchange with the surroundings may be neglected, i.e. 
the change of state is non-static, but adiabatic. The new state 

of thermodynamic equilibrium (surface area 2A , temperature 

2T ) is to be determined [1]. 

Since thermodynamic equilibrium implies mechanical 
equilibrium, the surface tension in the final state is 

LF 2/22  , and the temperature 2T  can be determined by 

inverting the thermal equation of state of the surface, i.e. 

)(T  . As the force acting on the system is constant, the 

work performed in the non-static process is 
 

)( 12212 AAW  ,     (14) 

 
and the energy balance, together with Eq.(6), gives 
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Estimates for common liquids show that, with the 

exception of extremely thin films, the term with the coefficient 

1A  in Eq.(15) is negligibly small, but the internal energy of 

the surface remains of importance via the term 2u . As in the 

case of the isentropic process considered above, the negligible 
term is associated with the (positive or negative) surface heat 
capacity, as can be seen by making use of Eq.(3) and rewriting 

the term )( 21  u  as 

 

222121 )d/d()( TTuuu    ,  (16) 

with )( 21121 TTcuu    for approximately constant 

surface heat capacity.  
   

One-dimensional thermo-capillary waves 
 

To justify the assumption of a quasistatic change of state, 
the rate of change of the surface area of the liquid film must 
be sufficiently small to allow the equalization of perturbations 
at any point in time. For the present treatment it suffices to 
consider a plane liquid film that is in thermodynamic 
equilibrium and at rest in the base state (subscript 0). Small 

perturbations of the film thickness,  , and temperature, T, 

according to 10   ,  10 TTT  , with 1 , are 

associated with small film velocities, 1v , in the direction of 

the longitudinal coordinate, x. Neclecting viscosity, the net 
force acting on a film element per length is 

xTTx  /)(/  , with dT/d  . With regard to the 

energy balance, we assume local thermodynamic equilibrium 
and neglect heat transfer to the surroundings as well as heat 
conduction in the film in longitudinal direction. This allows us 
to apply Eq.(11), which describes quasistatic adiabatic 
changes of state. For unsteady one-dimensional flow of an 
incompressible liquid in a thin film, the linearized equations 
of continuity, momentum and energy can then be written as 
follows: 

 

01
0

1 









x

v

t



 ;    (17) 

 

x

T
T

t

v








 1
0

1
0 )(   ;    (18) 

 

tcc

T

t

T

T v 










 1

00

01

0

1)(1 







  .   (19) 

 

Eliminating 1  and 1v  from Eqs.(17)-(19), one obtains the 

linear wave equation 
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Since 0)( 0  T  according to the second law, cf. above, the 

minus sign has been chosen for the square root in Eq. (22). 

0C  can be identified as the wave speed, i.e. the propagation 

speed of small perturbations.  
To justify the idealization of a quasistatic change of state of 

a film that is stretched in one direction, the wave speed must 
be much larger than the velocity of the film, i.e. 

10 vvC  . Note that the wave speed increases with 
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decreasing film thickness, 0 . The lumped heat capacity per 

surface area, )( 0  ccv  , appears in the denominator on the 

right-hand side of Eq.(21). If the lumped heat capacity were 

negative, 2
0C  would be negative according to Eq.(21), and 

Eq.(20) would loose the character of a wave equation and 
become of elliptic type. 

To give an idea about the orders of magnitude, a wave 
speed of about 1 m/s is obtained from Eq.(21) for a film of 
water at 300 K with a thickness of 50 nm.  

 

HEAT TRANSFER AT SURFACES 
 

Energy equation of a moving surface 

If the energy balance of the surface is disregarded, as it is 
often done - though not always with sufficient justification - in 
problems of fluid mechanics and heat transfer, the 
temperature-dependent surface tension appears only in the 
momentum equation. Marangoni convection is a well-known 
example. In an attempt to clarify the effect of the internal 
energy, or the heat capacity, of the surface on the heat transfer 
at the surface, the energy balance of the surface is investigated 
in what follows. Local thermodynamic equilibrium will be 
assumed. It allows applying the relations given in the 
Introduction, locally and at any moment of time, as if any 
surface element or any volume element were in 
thermodynamic equilibrium. In particular, there is no 
temperature jump at the surface. In the interest of simplifying 
the presentation, the discussion will be restricted to one-
dimensional motion of the surface, but the generalization to 
more dimensions will be obvious, cf. also the survey [7]. 

Consider a surface element of length dx, with x being the 
tangential coordinate at the surface, while the coordinate 
normal to the surface is denoted by z.  The surface element is 
assumed to be fixed in space. The liquid is assumed to be 
surrounded by an inert gas, i.e. condensation and evaporation 
are disregarded. For a liquid that moves with the tangential 

velocity component xv  in x-direction, the energy balance of 

the surface may be written as 
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where q  is the heat flux in z-direction,  is the shear stress at 

one side of the surface, and the symbol    stands for the 

difference across the surface (“jump” at the surface). The 
terms in Eq.(23) have the following physical meaning (in this 
order, from left to right): Rate of change of internal energy; 
net convective flux of internal energy; net work done by the 
surface tension due to moving the surface into, and out of, the 
surface element; net heat flux; net work done by the shear 
stresses at both sides of the surface. 

Equation (23) may be re-written in various ways. A rather 
nice formulation is obtained by introducing the surface heat 
capacity according to Eq.(5), and, furthermore, the surface 

enthalpy (per surface area), h , according to 
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Making then use of the force balance at the surface, i.e. 
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one finally obtains that at the surface the following boundary 
condition has to be satisfied: 
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where k is the thermal conductivity of the fluid on the 
respective side of the surface.  
 To check the analysis for self-consistency, Eq.(26) is 
applied to the quasistatic adiabatic, i.e. isentropic, change of 
the area of a plane surface in a rectangular frame with the bar 

on one side moving in x-direction. With )(tTT   and 

  0q , Eq.(26) shows that the velocity is a linear function 

of x, which gives tAAxvx d/d )/( . With TTh d/d    

according to Eq.(24), one obtains from Eq.(26) the isentropic 
relation, Eq.(10). 
 Equation (26) shows that a material (substantial) time 
derivative of the surface temperature is, in general, associated 
with a jump in the normal component of the heat flux at the 
surface. For steady flow, the effects of the surface energy on 
the heat flux jump are characterized by the following two non-
dimensional parameters: 
 

***
1 /|| kvcN x  ;    (27) 

 
****

2 / TkvhN x ,    (28) 

 

where *  denotes reference quantities. In the case of time-
dependent processes, there is the additional non-dimensional 
parameter 
 

****
3 /|| tkLcN   ,    (29) 

 

defined in terms of a characteristic length, *L , and a 

characteristic time, *t . If 1N  and 2N  are either irrelevant 

(liquid at rest) or much smaller than 1, and if, in addition, 3N  

is either irrelevant (stationary state, steady flow) or much 
smaller than 1, the heat flux jump at the surface is negligible 
as far as the bulk of the liquid is concerned. In a very thin 
boundary layer at the surface, however, the solution may be 
substantially affected by the small heat flux jump. To give an 
example, the following problem is considered. 

Heat pulse at surface 

Consider the horizontal surface of a semi-infinite body of 

liquid. The liquid is at rest. In the initial state ( 0t ) the 

temperature of the liquid is independent of the downward-

pointing vertical coordinate, z, i.e. const 0 TT . In the time 

interval e0 tt   a constant heat flux 0q  is supplied from the 

surroundings to the surface, e.g. by radiative heat transfer. 
Afterwards, the surface is adiabatic. Assuming constant 
thermal conductivity, k, it is convenient to formulate the 
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problem in terms of the heat flux, zTkq  /  , as the 

dependent variable. The heat diffusion equation gives 
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where   is the thermal diffusivity, which is assumed to be 

constant, like all other material properties of the liquid. 
Equation (30) is to be solved subject to the initial condition 
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and the boundary conditions 
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with the parameter l defined by 
 

pccl  /  ,     (35) 

 

where pc  is the isobaric specific heat capacity of the liquid. 

The parameter l has the physical dimension of a length, but, 

depending on the value of c , it may be positive, zero or 

negative. Based on available data [1]-[3], [5],[6], || l  is of the 

order of nanometers. Note that the second term on the left-
hand sides of Eqs.(33) and (34), which follow from Eq.(26) 

with 0xv  and the heat diffusion equation in terms of T, 

represents the heat-flux jump at the surface due to the surface 
heat capacity. 

As it happens, the solution of the heat diffusion equation 
with initial and boundary conditions of the form of Eqs.(31)-
(34) is given in [8], §2.8, case (i), though the problem is a 
different one. In the present notation the solution reads 
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Of particular interest is, of course, the surface temperature, 

T . With the solution according to Eqs.(36)-(38), one obtains 

from Eq.(26) the following differential equations for T : 
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A plot of the function 0G  can be found in [9], Fig. 7.1. 

 Equations (39)-(41) can easily be integrated numerically, 
but a qualitative discussion of the solution suffices for the 
present purpose. First of all, the influence of the surface heat 

transfer is remarkable. If 0c , the heat supply at the 

surface gives rise to a decrease of the surface temperature for 

times of the order of /* 2lt  . For 0c , */ tt , 

however, Eq.(39) gives 
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i.e. the surface temperature changes in the classical manner as 
if there were no surface heat capacity. Since l is very small, cf. 

above, the time scale *t  is also very small, but well within the 

range of presently available pulsed lasers. Thus one could 
envision the application of picosecond lasers to reduce the 
surface temperature step by step. The analysis may be based 
on Duhamel’s theorem, but cannot be given here. 

Associated with the decrease of the surface temperature is, 
of course, a decrease of the temperature in the liquid near the 
surface. It follows from the solution for the heat flux, i.e. 
Eq.(36) together with Eq.(38), that the decrease is restricted to 
a boundary layer whose thickness is as small as || l . For 

||/ lz  the classical result, represented by the first term 

on the right-hand side of Eq.(38), is obtained even for times as 

small as *t . 

Instability due to negative surface heat capacity 

When heat is supplied locally to a surface with negative 
heat capacity, the surface temperature will decrease, at least 
initially, in the region of heat supply. The temperature 
gradient in the liquid will then give rise to a heat flow from 
the bulk of the liquid to the surface, thereby enhancing the 
decrease of the surface temperature. Obviously, this effect 
may lead to an instability of the initial state. The following 
linear perturbation analysis is intended to provide a 
quantitative description of the instability. For non-linear 
phenomena far from thermodynamic equilibrium cf. [4]. 

As in preceding section, a semi-infinite body of liquid with 
horizontal surface is considered. However, it is now assumed 
that there is no heat transfer from the surroundings to the 
surface. Furthermore, it is assumed that the temperature in the 
liquid may depend not only on the vertical coordinate, z, but 
also on the horizontal coordinate, x. Thermo-convective 
motion of the liquid will be neglected in the energy balance, 
which, therefore, reduces to the heat diffusion equation 
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with the boundary conditions 
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const  TT   for  z  .   (45) 

 
Of interest is now the evolution of spatially periodic 

perturbations of the thermodynamic equilibrium state, which 

is characterized by the uniform temperature TT . Thus 

solutions of the form 
 

)i(exp )(/)( xtzfTTT       (46) 

 
are sought, with the amplification rate,  , and the wave 

number,  , being taken as real numbers. Of course, the wave 
number is always positive, whereas the amplification rate may 
be positive (amplified perturbations), zero (stationary 
perturbations), or negative (damped perturbations).  
 Eq.(46) satisfies the heat diffusion equation, Eq.(43), 
together with the boundary condition at infinity, Eq.(45), if 
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while the boundary condition at the surface, Eq.(44), gives 
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with the non-dimensional wave number 
 

pcclK  /       (49) 

 

and the parameter l according to Eq.(35). For 0K , i.e. the 

surface heat capacity not taken into account, the classical 

result ß  is obtained, of course. But note that Eq.(48) 

gives the classical result in the limit  0K , whereas the 

solution diverges as  0K  for a fixed value of l.  

 Equation (47) shows that the penetration depth of the 

perturbations is of the order of  , with 
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 Equations (48) and (51) allow the following conclusions 
with regard to the stability of the state of thermodynamic 
equilibrium of the system consisting of the liquid and the 
surface. If the surface heat capacity is negative, K is also 
negative, while   is positive, i.e. the perturbations increase 

with time, and the state of thermodynamic equilibrium is 
unstable. However, the perturbations are confined to a 

boundary layer, whose thickness is of the order of || l , i.e. 

nanometers for common liquids, cf. above. In the case of 

amplified perturbations, the maximum value || max l  of the 

penetration depth is obtained for  0K , i.e. in the limit of 

long waves in the scale of || l . For fixed values of c , with 

0c , the amplification rate attains the minimum value 

2
min / l   in this long-wave limit. In the limit of very short 

waves, on the other hand, 0)/(1~ ||/ Kl  and 

2/|| ~ lK  ||/ l  as K . 

 As the unstable perturbations are confined to a very thin 
layer near the surface, the physical relevance may be seen as 
rather limited. For numerical solutions of heat transfer 
problems, however, the instabilities may cause severe 
problems, in particular, when high resolution is desirable, or 
required, for small systems. It may be necessary to introduce a 
boundary layer at the surface in order to deal properly with the 
(numerical) stability problem. 

NANO-DROPLETS: AREA-DEPENDENT SURFACE 

TENSION
 

 

It has been observed that the surface tension of very small 
droplets depends not only on the temperature, but also on the 
radius of the droplet, cf. [10], pp. 112 and 126-130, and [11], 
[12]. For constant temperature, the surface tension decreases, 
in general, with decreasing droplet radius. In view of recent 
discussions on the applicability of macroscopic thermo-
dynamics to nano-droplets [13], it is investigated in what 
follows whether, and perhaps how, the dependence of the 
surface tension on the radius affects the classical 
thermodynamic relations given in the Introduction. As the 
surface tension is then no longer only a local quantity of the 
surface, but also depends on properties of the bulk of the 
liquid, this is another example of considering the surface as a 
non-autonomous system. 

For the present purpose it is convenient to introduce the 
surface area instead of the droplet radius as an independent 
variable. Thus the thermal equation of state of the surface is 
formally written as 

 

),( AT  .     (52) 

  
Gibbs’ fundamental equation, Eq.(2), remains valid, of 

course, but in Eq.(3) the ordinary derivative is to be replaced 
by the partial derivative to obtain 
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with ),( ATuu   . Similarly, Eq.(4) remains valid as the 

definition of the surface heat capacity, but Eq.(5) is to be 
replaced by 
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with ),( ATcc   . 

The entropy of the unit surface, s , is defined as  
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Based on this definition, the classical relation Eq.(8) is re-
obtained, apart from the partial derivative instead of the 
ordinary one, i.e. 
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In addition, the classical relation  
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is also re-obtained from Eq.(3).  

There are further thermodynamic relations that follow from 
Gibbs’ fundamental equation together with the integrability 
conditions for the differentials of quantities of state. In 
particular, one re-obtains the classical “potential” relations for 

the surface internal energy, U , and the surface free energy, 
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as well as Maxwell’s relations 
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 S  indicates a partial derivative with S  kept constant. 

Based on the thermodynamic relations given above, the 

problem of the vapour pressure, vp , at a small droplet in 

thermodynamic equilibrium can be re-considered, e.g. 
following [14], §22. To be consistent, the surface area of the 
droplet, A, is related to the mole number, n, of the droplet 

according to the relation dVnA l /
~

4d/d  , where lV
~

 is the 

molar volume of the liquid, and d is the droplet diameter. It 
turns out that the classical result, i.e. the famous Kelvin 
equation 

 

TR
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dp

p l
~

~
4

ln
s

v 
  ,    (62) 

 

is re-obtained, with R
~

 as the universal (molar) gas constant, 

and sp  as the saturation pressure at a plane surface. This is 

not in accord, however, with the results of molecular 

simulations for droplets with diameters of the order of a few 
nanometers, cf. [10], p. 127, although Laplace’s equation 
 

dppl /4v  ,    (63) 

 
which follows from mechanical equilibrium, has been found to 
be in good agreement ([10], pp. 112 and 126). Preliminary 
investigations by the present author seem to indicate that the 
assumption of constant density of the liquid, which is – often 
implicitly – made in deriving Kelvin’s equation, may be the 
reason for the discrepancies, but a further discussion of that 
question is beyond the scope of the present paper. 
  

CONCLUSIONS 

 
 Treating surfaces as non-autonomous thermodynamic 

systems leads to interesting and sometimes strange results. 
The change of state of a liquid film that is sufficiently thin to 
allow neglecting the – possibly negative – surface heat 
capacity is, nevertheless, affected by the internal energy of the 
surface. Short pulses of heat supplied to a surface with 
negative surface heat capacity give rise to a decrease of the 
surface temperature and of the temperature in a boundary 
layer of liquid near the surface. For the case of no heat supply 
from the surroundings, thermal instabilities in the boundary 
layer are predicted for negative surface heat capacities. It is 
true that the boundary layers are of the order of nanometers, 
i.e. of the molecular size,  for common liquids, but the macro-
scopic description of nano-systems has recently found much 
interest, cf. [15] for an example. Furthermore, numerical 
solutions of the macroscopic equations of fluid mechanics and 
heat transfer may face difficulties associated with those 
instabilities. 

As far as the dependence of surface tension on the radius of 
nano-droplets is concerned, treating the surface as a non-
autonomous system, but retaining the other assumptions, has 
not lead to a generalization of Kelvin’s equation for the 
vapour pressure. Thus other generalizations, in particular 
accounting for the compressibility of the liquid, are desirable.       
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NOMENCLATURE 

Symbol         Quantity    SI Unit 
 
 A         Surface area    m² 

pc          Isobaric specific heat capacity        J/kgK 

vc          Isochoric specific heat capacity      J/kgK 

c          Surface heat capacity                J/m²K 

 d         Droplet diameter   m 
 f         Auxiliary function   - 
 F         Force    N 

F          Free energy of surface  J 

 G         Auxiliary function   - 
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h          Enthalpy of unit surface area  J/m² 

 i                   Imaginary unit   - 
 k         Thermal conductivity               W/mK 
 L         Length    m 
 l         Parameter, see Eq.(35)  m 
 m         Mass    kg 
 n         Mole number             mole/m³ 
 p         Pressure    N/m² 

q          Heat flux    W/m² 

R
~

         Universal gas constant  J/mole K 

S          Surface entropy   J/K 

s          Entropy of unit surface area            J/Km² 

T         Absolute temperature  K 

cT         Critical temperature   K 

 t        Time    s 

U         Internal energy of surface  J 

u         Internal energy of unit surface area J/m² 

V
~

        Molar volume   m³/mole 

 v        Velocity of liquid or surface  m/s 
W        Work    J 
x,  z        Spatial coordinates   m 
 
Greek symbols 
         Thermal diffusivity   m²/s 

         Amplification rate   1/s 

         Thickness of liquid film,  

        or penetration depth    m 

         Wave number   1/m 
         Mass density                 kg/m³ 

         Surface tension   N/m 

         Shear stress    N/m² 

 
Subscripts 
e        End of time interval 
l        Liquid 
v        Vapour 
s        Saturation 
x        Component in x-direction 
0        Base state, or at surface 
1        Initial state, or perturbation 
2        Final state 
         Surface 

         At infinity 
 
 
 
 
 

Superscript 
*         Reference quantity 
 
Other symbol 

          Difference across surface 
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EXTENDED ABSTRACT 

 

In recent years, engineering nanostructures (nanowires, nanolayers and nanotubes) have attracted great attention in the development of new 
materials. Successful application of nanostructures requires better understanding of the emergence of normal as well as anomalous irreversible 
transport in such systems. Most of the times, some scales are not sufficiently well separated from the microscopic scales and, differently from the 
macroscopic scales, are reminiscent of the underlying reversible dynamics. Sorting out emergent continuum properties is extremely challenging. 
In this work, we will focus on carbon nano-binders into zeolite thermal storage as a remarkable example of such trend. 

Scientists from the Fraunhofer Institute for Interfacial Engineering and Biotechnology, together with ZeoSys GmbH, have developed very 
recently a new type of thermal storage system [1]. This new system can store three to four times the amount of heat that water can. Moreover, it is 
able to store the heat loss-free over lengthy periods of time, almost indefinitely.  The new system contains zeolite pellets and the key challenge is 
(a) to ensure optimal heat transfer (high conductivity) through the zeolite bunch during the thermal loading and (b) to ensure water percolation 
during the thermal release, in the same device. Recently, at Massachusetts Institute of Technology (USA), prof. Evelyn Wang is investigating 
carbon nano-binders (CNT, graphene and oxide graphene) surrounding the zeolite pellets, in order to meet such extreme requirements.  

In the present work, we develop a simulation plan based on molecular dynamics (MD) [2] to find out the optimal functionalization of the 
carbon binders and the optimal density of the covalent bonds in order to build the binder matrix. The key idea is to minimize the Kapitza contact 
resistance between binder elements. Moreover, hybrid solutions consisting of different nano-structures (e.g. CNT and graphene) will be 
discussed. The most promising solutions are investigated with the aim to guide the further steps in the experimental activity.  

 

 
 

Figure 1: (a-b) Double-Walled Carbon Nano Tube (DWCNT) with chirality (33,33) and (37,37) respectively. (c) Measuring thermal conductivity 
by MD. (d) Schematic of the thermal power splitting between the concentric nanotubes. 

. 
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EXTENDED ABSTRACT 

 
Standard thermodynamics was developed to describe homogeneous changes in large systems, but now it is known that the primary 

response of most materials comes from a heterogeneous distribution of independently-relaxing nanometer-sized regions. Nanothermodynamics 

provides a foundation for understanding finite-size thermal effects inside bulk materials [1,2]. A key feature is the subdivision potential, which is 
added to the fundamental equation of thermodynamics. The subdivision potential can be understood by comparison to the chemical potential. 
The chemical potential is the change in energy to take a single particle from a bath of particles into the system, whereas the subdivision potential 
is the change in energy to take a cluster of interacting particles from a bath of clusters into the system, and in general N interacting particles do 
not have the same energy as N isolated particles. Thus, the subdivision potential facilitates the treatment of non-extensive and nonlinear 
contributions to energy, thereby allowing a system to adjust its internal dynamics to find the true thermal equilibrium. We have applied the ideas 
of nanothermodynamics to standard theoretical models and found improved agreement with measured response, including: non-exponential 
relaxation, non-Arrhenius activation, and non-classical critical scaling in liquids, glasses, polymers and crystals [3-5]. 

Nanothermodynamics is based on the assumption that entropy is extensive and additive for independent subsystems of all sizes, 
whereas most computer simulations of small systems show non-extensive entropy. We study computer simulations of Ising-like models with 
binary spins that can be up, or down. (Similar statistics applies to binary alloys with sites that can be occupied by atom A, or B; a lattice gas of 
sites that can be occupied, or empty; or ideal-gas particles in a box that can be on the left side, or right.) Simulations of the standard Ising model 
using the usual Metropolis algorithm show that the change in entropy more than doubles when one identical subsystem is added to another, 
similar to the Nln(N) term that gives Gibbs’ paradox when combining identical systems of distinguishable particles. Thus, for the heterogeneous 
primary response of most materials, either the Boltzmann definition of statistical entropy must be modified, or the Metropolis algorithm is 
incomplete. The Metropolis algorithm is based on the Boltzmann factor, which requires the usual assumptions of the canonical ensemble [6,7]: 
the system must be able to borrow an unlimited amount of energy from an effectively infinite heat bath, the system and its bath must be in weak 
thermal contact without direct interaction, the heat bath must contain a smooth distribution of closely-spaced energies, and units of energy in the 
system and bath must be uncorrelated. In other words, adding one unit of energy to the system must not change the likelihood of adding a second 
unit. We investigate nonlinear corrections to the Boltzmann factor that come from the local entropy [8], similar to the Gaussian-fluctuation term 
first used by Einstein in 1910 to describe critical opalescence. 

 We have found a nonlinear correction to the Boltzmann factor that makes computer simulations of the Ising model consistent with the 
concepts of nanothermodynamics. This nonlinear correction comes from the configurational entropy of a local bath, which can be understood by 
comparison to temperature that comes from the thermal entropy of a heat bath. Specifically, at low temperatures where the heat bath has low 
entropy, the heat bath is unlikely to allow large increases in energy of the system. Similarly, if the local bath is highly aligned so that it has low 
entropy, the local bath is unlikely to allow large changes in configuration of the system. Thus, the local bath acts as a reservoir of configurational 
entropy (e.g angular momentum), similar to how the heat bath acts as a reservoir of thermal entropy. Perhaps the local bath is one way to add 
conservation of momentum to the laws of thermodynamics. In any case, the nonlinear correction to Boltzmann’s factor ensures conservation of 
energy and maximum entropy during normal thermal fluctuations. Furthermore, the nonlinear correction improves agreement between Monte-
Carlo simulations of the Ising model and the measured critical scaling in ferromagnetic materials and fluids, the measured specific heat in 
imperfect crystals, and the structural correlations found near the Jahn-Teller distortion in LaMnO3 [9

 ]. Moreover, the nonlinear correction yields 
particles that are statistically indistinguishable, thereby avoiding Gibbs’ paradox in computer simulations of classical particles. 
 
*This research supported by the Army Research Office (W911NF-11-1-0419) 
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EXTENDED ABSTRACT 
 

It is a common understanding that ICT is the key engine of growth in modern society. Most importantly ICT is becoming strategic to improve 

energy efficiency by managing energy demand and use. The energy consumption and carbon dioxide emission from the expanding ICT use, 

however, is unsustainable. New methods are required to make ICT technology more energy efficient but also the development of new self-

powered, energy-harvesting technologies that would enable micro- and nano-scale systems that consume ZEROPOWER through the harvesting 

of waste energy from the environment are required. Such technologies provide an opportunity for Europe to lead and generate significant 

economic benefit whilst simultaneously addressing climate change, healthcare and manufacturing efficiency benefits. Developing ZEROPOWER 

energy harvesting technology will be key for Europe to meet many of the Europe 2020 targets [1]. 

 

 
 

In this talk we will briefly address the two sides of the ICT-Energy problem: the decrease of energy dissipation in present ICT devices and the 

increase of energy efficiency in harvesting technologies [2]. We need to solve these two problems in order to bridge the gap between energy 

demand and energy request in mobile ICT devices. Both tasks require advances on the very same scientific topic: the management of energy 

transformation processes at nanoscale. 

Ambient energy harvesting has been in recent years the recurring object of a number of research efforts aimed at providing an autonomous 

solution to the powering of small-scale electronic devices. Among the different solutions, micro scale vibration energy harvesting has played a 

major role due to the almost universal presence of mechanical vibrations mainly in the form of random fluctuations, i.e. noise. In this talk we 

specifically focus our attention to the possibility to harvest them by employing nonlinear dynamical systems[3, 4]. We will show that nonlinear 

vibration harvesters can beat linear vibration harvesters. The reason is twofold: on one side nonlinear harvesters can collect energy that is widely 

spread over the frequency spectrum (a typical condition of random vibrations available at micro and nano scales) with more efficiency compared 

to linear harvesters that can collect only in a narrow band around their resonance frequency. On the other side nonlinear harvesters can harvest 

energy in the low frequency part of the spectrum where usually most of the energy is, while linear harvesters can hardly be built with resonance 

frequency in the low frequency part due to mechanical constraints. 
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ABSTRACT
Recently, remarkable results have been discovered for transport across small open systems in contact with reservoirs at different
temperatures and chemical potentials. These results are deduced from the fluctuation theorem for the currents flowing across the
system. A direct corollary of the fluctuation theorem is that the entropy production is non negative in agreement with the second
law of thermodynamics. The fluctuation theorem has further corollaries, in particular, the Onsager reciprocity relations and the
Green-Kubo formulas, as well as their extensions to the nonlinear response regime. These results find applications in physical,
chemical, and biological systems at the microscale and the nanoscale. Their implications have been studied in transmembrane
ion channels, molecular motors, effusion processes, chemical reactions, quantum electronic transport, among other systems.

1 INTRODUCTION

During the last decades, important advances have been car-
ried out in our understanding of the thermodynamic proper-
ties of small nonequilibrium systems. Remarkable relation-
ships, called fluctuation theorems [1; 2; 3; 4], have been estab-
lished for the fluctuating currents flowing across open systems.
These relationships find their origin in the microreversibility of
the underlying Hamiltonian classical or quantum dynamics of
the atoms and electrons composing matter. Yet, these relation-
ships are associated with nonequilibrium conditions that break
the time-reversal symmetry at the statistical level of description
and they are in agreement with the second law of thermody-
namics, according to which the entropy production is always
non negative. These advances allow us to understand with un-
precedented clarity the connections between the microscopic
mechanical motion of atoms and electrons and the macroscopic
thermodynamic properties of the global system. Moreover, the
new relationships remain valid far from equilibrium. In this re-
gard, the consequences of microreversibility can be investigated
not only close to equilibrium, but also farther away from equi-
librium in regimes where nonlinear response properties mani-
fest themselves. In this way, generalizations of the Green-Kubo
formulae and the Onsager reciprocity relations have been dis-
covered among the nonlinear response coefficients.

These results apply to small nonequilibrium systems studied
in nanosciences, such as transmembrane ion channels, molec-
ular motors, chemical reactions, or mesoscopic electronic de-
vices. The nanoscale starts just above the size of the atoms
and smallest molecules that compose matter. Typically, the
movement of atoms and molecules – although ruled by Hamil-
tonian dynamics – is at the origin of thermal and molecular
fluctuations, which are inherent to the discrete atomic struc-
ture of matter. Therefore, the currents of electrons, atoms, or
molecules flowing across nanosystems are fluctuating, which

requires a statistical description in terms of probability theory.
Since nanosystems acquire their function if they are driven out
of equilibrium, the new results play a central role to understand
and characterize quantitatively the properties of their function
and, in particular, the thermodynamic efficiency of energy trans-
duction that they can perform.

The purpose of the present paper is to give an overview of
these recent advances. Emphasis is given to the fluctuation the-
orem for currents, which is well founded because the currents
are defined at the microscopic mechanical level of description.
This fluctuation theorem is shown to imply the non-negativity of
the thermodynamic entropy production in accordance with the
second law. Further implications about nonlinear response are
also presented. Nowadays, the current fluctuation theorem has
been applied to several small systems and some of them have
been investigated experimentally. Moreover, relations charac-
terizing the nonequilibrium breaking of time-reversal symmetry
in path statistics are also reviewed in the perspective they give
to understand the thermodynamics of information processing at
the molecular scale.

The plan of this paper is the following. The fluctuation theo-
rem for currents and its consequences are presented in Section 2.
Its applications are described in Section 3. In Section 4, further
results are given about path statistics and the thermodynamics
of information in copolymerization processes. Conclusions are
drawn in Section 5.

2 THE FLUCTUATION THEOREM FOR CURRENTS
AND ITS CONSEQUENCES

2.1 The multivariate fluctuation relation

Currents of particles or energy may flow across an open sys-
tem in contact with several reservoirs at different temperatures
and chemical potentials (see Fig. 1). The system is at equi-
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Figure 1. Schematic representation of an open system S in contact

with the four reservoirs R1, R2, R3, and R4.

librium if the temperature and the chemical potentials are uni-
form in all the reservoirs. Otherwise, the global system is out
of equilibrium and a nonequilibrium steady state may estab-
lish itself after some transient behavior. At the macroscale, the
steady state is characterized by the average values of the cur-
rents across the open system. These currents depend on the
thermodynamic forces or affinitiesA including

the thermal affinities: Ai0 =
1

kBTr
−

1
kBTi

, (1)

the chemical affinities: Aip =
µip

kBTi
−

µrp

kBTr
, (2)

between the reservoirsi = 1,2, ..., r − 1 at the temperatures
{Ti} and the chemical potentials{µip} for the different parti-
cle speciesp= 1,2, ...,sand the reference reservoiri = r [5; 6;
7]. kB is Boltzmann’s constant. The nonequilibrium conditions
are thus fixed by(r − 1)(s+ 1) different affinities. All these
affinities are vanishing at equilibrium.

At the mesoscale, the currents are fluctuating and their statis-
tical properties are described by a stationary probability distri-
bution if the system is in a steady state. The random variables
of interest are the quantities of matter and energy∆Q = {∆Qα}
that are transferred between the reservoirs during a time interval
[0, t]. There are as many such quantities as there are affinities.
The fluctuating currents are thus defined asJ = ∆Q/t. If PA
denotes the probability distribution describing the steady state
corresponding to the affinitiesA, the fluctuation relation for the
currents reads

PA(J)
PA(−J)

≃t→∞ exp(A ·J t) . (3)

This theorem has been established for Markovian stochastic
processes using graph theory [8]. Equation (3) compares the
opposite fluctuations of the currents. At equilibrium where
A = 0, we recover the principle of detailed balancing, according
to which opposite fluctuations are equiprobable. Out of equi-
librium, the fluctuation relation (3) shows that opposite fluc-
tuations no longer have equal probabilities. Since the ratio of
probabilities is increasing or decreasing with time, one of both
fluctuations dominates over the opposite and a directionality ap-
pears in the open system. Accordingly, the principle of detailed
balance is no longer satisfied by the probability distributionPA ,
which breaks the time-reversal symmetry under nonequilibrium
conditionsA 6= 0. Nevertheless, the fluctuation relation remains

compatible with the time-reversal symmetry because the ratio
of the probabilities is inverted if the sign of the affinities or the
currents is changed, which expresses the fact that the direction-
ality is reversed together with the nonequilibrium conditions.

2.2 Consequences for the entropy production and the ther-
modynamic efficiencies

The fluctuation relation (3) implies that the entropy produc-
tion, which is given by the sum of the affinities multiplied by the
average values of the fluctuating currents, is always non nega-
tive:

1
kB

diS
dt

= A · 〈J〉A ≥ 0. (4)

This inequality can be proved by writing

A · 〈J〉A = lim
t→∞

1
t

∫
dJ PA(J) ln

PA(J)
PA(−J)

≥ 0 (5)

because the Kullback-Leibler divergence between the distribu-
tionsPA(J) andPA(−J) is always non negative. Another way to
obtain the non-negativity of the entropy production is by using
Jensen’s inequality〈eX

〉 ≥ e〈X〉 with X =−A ·J t and the statisti-
cal average〈·〉A and by noting that〈eX

〉 ≃ 1 as the consequence
of the fluctuation relation (3) in the long-time limit.

In order to drive a particular current〈Jγ〉A in the direction
opposite to its associated affinityAγ by using the other currents,
energy should be supplied and the second law determines a limit
to the efficiency of energy transduction. In this case,Aγ〈Jγ〉A <
0 and a thermodynamic efficiency can be defined according to

0≤ η ≡−

Aγ 〈Jγ〉A

∑α( 6=γ) Aα 〈Jα〉A
≤ 1 . (6)

Since the fluctuation relation (3) implies the non-negativity of
the entropy production (4), it also implies that this efficiency
cannot reach values larger than unity.

Since the currents are random, the question arises whether it
is possible to guess the direction of the affinitiesA imposed
by the reservoirs from the observation of some current fluc-
tuation J. Bayesian inference gives the likelihood of the hy-
potheses that the observed current fluctuationJ goes either for-
ward (+) or backward (−) with respect to the directionA as [9;
10]

P(+|J) =
1

1+ P(−)P(J|−)
P(+)P(J|+)

. (7)

Tossing a fair coin on either hypothesis amounts to takeP(+) =
P(−) = 1

2, while P(J|±) = PA(±J). According to the fluctua-
tion relation (3), the likelihood that the observed current fluctu-
ationJ indeed goes forward with respect to the direction of the
affinitiesA is thus given by

P(+|J)≃
1

1+exp(−A ·J t)
→t→+∞ θ(A ·J) (8)

where θ(x) is Heaviside’s function. In the limit of a long
positive time, the likelihood reaches the unit probability that
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A · J ≥ 0, if the system is out of equilibrium withA 6= 0. If
the affinities vanishA = 0, the likelihood remains at the value
P(+|J) ≃ 1

2, which confirms the absence of directionality at
equilibrium. The reasoning is compatible with the overall time-
reversal symmetry because a similar result holds in the limit
t → −∞ for A · J replaced by−A · J. A further remark is
that the characteristic time taken by the likelihood (8) to ap-
proach asymptotically the unit probability is estimated as the
inverse of the entropy production in units of Boltzmann’s con-

stant:∆t = (A · 〈J〉A)
−1 =

(

1
kB

diS
dt

)

−1
. This characteristic time

becomes tiny if the system is macroscopic and driven far from
equilibrium by increasing the affinitiesA. We also notice that
the observation of the current fluctuationJ in the frame defined
by the reservoirs together with the knowledge of their affini-
ties A provides the answer to the question without having to
guess it [11; 12].

2.3 Consequences for the response properties

An alternative expression of the fluctuation relation (3) can
be obtained in terms of the generating function of the statistical
cumulants defined as

QA(λλλ)≡ lim
t→∞

−

1
t

ln
∫

PA(J)e−λλλ·J t dJ (9)

whereλλλ are the so-called counting parameters. The average
values of the currents, their diffusivities, as well as their higher
cumulants are given by taking the successive derivatives of this
generating function with respect to the counting parameters:

〈Jα〉A =
∂QA

∂λα

∣

∣

∣

λλλ=0
, (10)

Dαβ(A) = −

1
2

∂2QA

∂λα∂λβ

∣

∣

∣

λλλ=0
, (11)

Cαβγ(A) =
∂3QA

∂λα∂λβ∂λγ

∣

∣

∣

λλλ=0
, (12)

Bαβγδ(A) = −

1
2

∂4Q
∂λα∂λβ∂λγ∂λδ

∣

∣

∣

λλλ=0
, (13)

...

On the other hand, the average value of a current can be ex-
panded in powers of the affinities as

〈Jα〉A =∑
β

Lα,β Aβ+
1
2 ∑

β,γ
Mα,βγ Aβ Aγ+

1
6 ∑

β,γ,δ
Nα,βγδAβAγAδ+ · · ·

(14)
which defines the linear and nonlinear response coefficients:

Lα,β =
∂2QA

∂λα∂Aβ

∣

∣

∣

λλλ=A=0
, (15)

Mα,βγ =
∂3QA

∂λα∂Aβ∂Aγ

∣

∣

∣

λλλ=A=0
, (16)

Nα,βγδ =
∂4QA

∂λα∂Aβ∂Aγ∂Aδ

∣

∣

∣

λλλ=A=0
, (17)

...

Remarkably, these properties are interrelated as the conse-
quences of the fluctuation theorem (3), as the following reason-
ing shows. Inserting the fluctuation relation (3) in the definition
(9) of the cumulant generating function yields the symmetry re-
lation

QA(λλλ) = QA(A −λλλ) . (18)

Taking successive derivatives of this relation with respect to the
counting parameters and the affinities, the cumulants (11), (12),
(13), ... and the response coefficients (15), (16), (17), ... are
found to be interrelated.

Using second derivatives, the symmetry relation (18) implies
the Green-Kubo formulas and the Onsager reciprocity relations
for the linear response coefficients:

Lα,β = Dαβ(0) , (19)

Lα,β = Lβ,α . (20)

With higher derivatives, generalizations of these relations to the
higher cumulants and the nonlinear response coefficients can
be deduced [13; 14; 15]. In particular, the nonlinear response
coefficients (16) are related to the diffusivities (11) according to

Mα,βγ =

(∂Dαβ

∂Aγ
+

∂Dαγ

∂Aβ

)

A=0

, (21)

Nα,βγδ =

(

∂2Dαβ

∂Aγ∂Aδ
+

∂2Dαγ

∂Aβ∂Aδ
+

∂2Dαδ
∂Aβ∂Aγ

−

1
2

Bαβγδ

)

A=0

, (22)

...

which are generalizations of the Green-Kubo formulas. A gen-
eralization of Onsager reciprocity relations is given by the total
symmetry of the following fourth-order tensor:

Nα,βγδ −

(

∂2Dαβ

∂Aγ∂Aδ
+

∂2Dαγ

∂Aβ∂Aδ
+

∂2Dαδ
∂Aβ∂Aγ

)

A=0

, (23)

which is the consequence of Eq. (22) and the total symmetry of
the fourth-cumulant tensor (13) [13; 14; 15]. The derivative of
the third-cumulant tensor (12) with respect to an affinity is also
totally symmetric

(∂Cαβγ

∂Aδ

)

A=0
= Bαβγδ(0) . (24)

Similar relations exist at higher orders as well [15]. They are
the consequences of the underlying microreversibility.

Similar results generalizing the Casimir-Onsager reciprocity
relations have been obtained for open quantum systems in an
external magnetic field [16].

2.4 From multivariate to univariate fluctuation relations

In general, the fluctuation relation (3) holds for all the cur-
rents flowing across an open system and it does not imply the
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validity of similar relations for a subset of currents. Let us con-
sider a system with two currents, in which case the fluctuation
relation (3) is bivariate and reads

PA1,A2(J1,J2)

PA1,A2(−J1,−J2)
≃t→∞ e(A1J1+A2J2) t . (25)

We may wonder [17] if there exist specific conditions under
which the univariate fluctuation relation

PA1,A2(J1)

PA1,A2(−J1)
≃t→∞ eÃ1J1 t (26)

is satisfied for the marginal distribution of the currentJ1 defined
as

PA1,A2(J1)≡

∫
dJ2 PA1,A2(J1,J2) . (27)

It turns out that the univariate fluctuation relation indeed holds
under the following specific conditions.

Tight coupling between the currents.This condition is de-
fined by requiring that both currents remain proportional to each
other during their random time evolution:

J2 = σJ1 , (28)

which is only possible under special circumstances encountered
for instance in molecular motors. Inserting the condition (28) in
the bivariate fluctuation relation (25), we get the univariate fluc-
tuation relation (26) with the affinitỹA1 ≡ A1+σA2 associated
with the coupled currents. In this case, the entropy production
(4) reduces to

1
kB

diS
dt

= Ã1〈J1〉 ≥ 0 (29)

so that the sole affinitỹA1 drives the system out of equilibrium.
Under the tight-coupling condition (28), the thermodynamic ef-
ficiency is directly determined by the affinities:

η ≡−

A1〈J1〉

A2〈J2〉
=−

A1

σA2
=

1

1− Ã1/A1
. (30)

Separation of time scales.In other circumstances, the transi-
tion rates for one current may be much higher than for the other
current, e.g.|〈J2〉| ≫ |〈J1〉|, and it is assumed that

∫
dJ2e−A2J2t PA1,A2(J1,J2)≃ PA1,A2(J1)e−∆A1J1t (31)

holds for some∆A1(A1,A2) in the long-time limit. Inserting
the bivariate fluctuation relation (25) in the assumption (31), we
get the univariate fluctuation relation (26) for the marginal (27)
and the effective affinityÃ1 = A1 + ∆A1 = Ã1(A1,A2), which
depends on both affinitiesA1 andA2.

Using Jensen’s inequality〈eX
〉 ≥ e〈X〉 here withX = Ã1J1t−

(A1J1+A2J2)t and noting that〈eX
〉 ≃ 1 as the consequence of

the assumption (31), we find that the entropy production has the
following lower bound:

1
kB

diS
dt

= A1 〈J1〉+A2〈J2〉 ≥ Ã1 〈J1〉 ≥ 0 (32)

in terms of the effective affinitỹA1 of the univariate fluctua-
tion relation (26). Accordingly, the thermodynamic efficiency
is here limited to a value lower than unity:

η ≡−

A1〈J1〉

A2〈J2〉
≤

1

1− Ã1/A1
< 1 if Ã1/A1 < 0. (33)

This situation is encountered in mesoscopic electronic devices
where the currentJ1 in quantum dots is driven by the Coulomb
drag of a large currentJ2 in a quantum point contact capaci-
tively coupled to the quantum dots [18; 19]. We notice that the
bound (33) is attained for the tight-coupling condition, which is
thus stronger.

3 APPLICATIONS

3.1 Transmembrane ion channels

Biological cell membranes separate electrolyte solutions at
different ionic concentrations maintained out of equilibrium by
the metabolism. Membranes are known to host different kinds
of proteins responsible for the active or passive transmembrane
transport of ions. While transmembrane active transport is pow-
ered for instance by ATP hydrolysis, the passive but highly se-
lective transport of small ions such as Na+, K+, or Cl− pro-
ceeds in proteins forming a narrow ion channel [20]. In ion
channels, the ionic current is driven by the combined effects of
the different ionic concentrations and electric voltage across the
membrane.

In the simplest models, the channel is supposed to contain a
single ion moving along successive sitesi = 1,2, ...,L−1 [21;
22]. Transport is described as a continuous-time Markovian
jump process withL states including the empty statei = L. The
master equation writes

d
dt

Pt(i) = ∑
j

[W( j|i)Pt ( j)−W(i| j)Pt (i)] (34)

wherePt(i) denotes the probability to find the channel in theith

state at the timet andW(i| j) is the rate of the transitioni → j.
They are given by

W(i|i +1) = ki eφ for i = 1,2,3, ...,L−1 , (35)

W(i +1|i) = ki e−φ for i = L,1,2, ...,L−2 , (36)

W(L|1) = ckL eφ , (37)

W(L|L−1) = c′ kL e−φ , (38)

wherec andc′ are the ionic concentrations on both sides of the
membrane andφ = zeF∆/(2LkBT) is a dimensionless param-
eter giving the strength of the applied electric fieldF in terms
of the membrane thickness∆, the ionic valencyz, and the elec-
tronic chargee. The graph associated with this Markovian pro-
cess is composed of a single cycle [21; 22]. The affinity is iden-
tified by considering the ratio of the products of transition rates
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forward and backward along the cycle:

A= ln
L

∏
i=1

W(i|i +1)
W(i +1|i)

= ln
c
c′
+

zeF∆
kBT

(39)

with L+1≡ 1. We notice that the affinity vanishes at equilib-
rium wherec′ = c exp(2Lφ). The remarkable result is that the
condition (39) implies the fluctuation theorem (3) for the ion
currentJ in the directioni = 1→ L−1 through the ion channel
for any values of the rate constants{ki}

L
i=1 [14].

The fluctuation theorem also holds for models based on the
Nernst-Planck-Poisson equations [23] and for semi-Markovian
models of ion channels [24].

3.2 Molecular motors

Energy transduction is possible in molecular motors where
mechanical motion is powered by chemical energy from ATP
hydrolysis [21]. In molecular motors, two currents – a mechan-
ical and a chemical one – are thus coupled and driven by the
chemical affinity

Ac =
∆µ
kBT

=
∆µ0

kBT
+ ln

[ATP]
[ADP][Pi ]

(40)

of ATP hydrolysis into ADP and inorganic phosphate Pi , and
the mechanical affinity

Am =
F

kBT
or

τ
kBT

(41)

due to an external forceF or torqueτ. The chemical currentJc

is the rate of ATP consumption, while the mechanical current
Jm is the velocity in linear motors moving along filaments such
as myosin-actin or kinesin-microtubule, or the angular velocity
in rotary motors such as F1-ATPase.

In such systems, the bivariate fluctuation theorem (25) holds,
which predicts constraints on the chemomechanical coupling
between both currents including the Onsager reciprocity rela-
tion and its generalization to the nonlinear response proper-
ties. Under physiological conditions, the nonlinear properties
turn out to be essential because the Michaelis-Menten kinetics
known for molecular motors has the consequence that the aver-
age currents have a highly nonlinear dependence on the affini-
ties, as recent studies have pointed out [25; 26; 27].

In the case of the rotary motor F1-ATPase, experimental ob-
servations have revealed that the dynamics proceeds by steps
and substeps [28]. A full revolution is performed with the hy-
drolysis of three ATP molecules. The random rotational mo-
tion of F1-ATPase can be described by different kinds of mod-
els [26; 27]. The simplest is by a Markovian master equation
such as Eq. (34) with six internal states corresponding to the six
observed steps and substeps. In such a model, the mechanical
current is tightly coupled to the chemical one and the condi-
tion (28) is thus satisfied. Accordingly, the bivariate function
relation (25) reduces to the univariate relation (26) [25] and the
average currents are both proportional to the mean angular ve-
locity

〈V〉=Vmax
[ATP]−Keq[ADP][Pi ]

[ATP]+KM +KP[ADP][Pi ]
(42)
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Figure 2. Mean angular velocity of the γ-shaft of F1-ATPase in revolu-

tions per second, versus the ATP concentration [ATP] in mole per liter

for [ADP][Pi ] = 0. The diameter of the bead attached to the axis of the

motor is d = 40 nm, the temperature is of 23degrees Celsius, and the

external torque is zero. The circles are the experimental data of Ref. [28].

The solid line is the result of numerical simulation of the discrete-state

model. Adapted from Ref. [27].

whereVmax is the maximum possible velocity of about 102 rev/s
determined by the rate constant of ATP binding to a catalytic
site,Keq is the equilibrium constant of ATP hydrolysis,KM is the
Michaelis-Menten constant characterizing the release of ATP or
hydrolytic products from a catalytic site, andKP is the constant
characterizing the reverse of the release of hydrolytic products
[27]. Figure 2 shows the Michaelis-Menten dependence of the
mean angular velocity as a function of ATP concentration with
the crossover between the regime where rotation is limited by
low concentration and the high-concentration regime with sat-
uration at the maximum velocityVmax. Now, Eq. (42) can be
expressed in terms of the chemomechanical affinity resulting
from the tight-coupling condition (28):

A=
∆µ
kBT
︸︷︷︸

chemistry

+
2π
3

τ
kBT

︸ ︷︷ ︸

mechanics

(43)

because one ATP molecule is consumed for a third of revolution.
For given concentrations of ADP and Pi , the chemomechanical
affinity determines the ATP concentration according to

[ATP] = Keq[ADP][Pi ]e
A . (44)

Therefore, the mean velocity (42) has the alternative expression:

〈V〉=Vmax
eA

−1

eA
−1+ 3Vmax

L

(45)

with some coefficientL depending on the given concentrations
[ADP] and[Pi ]. This coefficient controls the linear response of
the motor because〈V〉 ≃ LA/3 for A≪ 1. However, the mean
velocity depends on the affinityA in a highly nonlinear way, as
shown in Fig. 3. The linear regime extends around the thermo-
dynamic equilibrium point atA= 0 where the velocity is essen-
tially flat because the linear-response coefficient takes the very
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small valueL ≃ 10−5s−1. Under physiological conditions, the
affinity is aboutA ≃ 21.4 and the angular velocity would take
the extremely low valueLA/3 ≃ 6.5 rev/day if the motor was
functioning in the linear regime. Thanks to the highly nonlinear
dependence on the affinityA, the velocity can reach the maxi-
mum valueVmax≃ 102 rev/s under physiological conditions.
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Figure 3. Mean angular velocity versus the affinity (43) for the F1-

ATPase molecular motor. The results of the discrete-state model (solid

lines) of Ref. [27] are compared with the continuous-angle model (dots)

of Ref. [26] for three different values of [ADP][Pi ]. The diameter of

the bead is d = 40 nm, the temperature 23 degrees Celsius, and the

external torque zero. Adapted from Ref. [27].
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of the univariate fluctuation relation (26), given that the consumption

of one ATP molecule may drive two substeps. The concentrations are

[ATP] = 3× 10−6M, [ADP][Pi ] = 10−6M2, and the torque τ =
−25.5 pNnm. The diameter of the bead is d= 80 nmand the temper-
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of the torque. The counting statistics is obtained with 106 random tra-

jectories simulated for the discrete-state model. Under the present con-

ditions, the catalytic sites are more often empty than occupied, which

explains that the probability of an even number of substeps is higher

than for an odd number. Adapted from Ref. [27].

Because of thermal and molecular fluctuations, the rota-
tion of such nanometric motors is random with forward and
backward movements, which may become equiprobable if the
chemomechanical affinity (43) is vanishing. In order to reach
this condition, an external torque should be applied to stop the
mean forward motion. Close to such a condition, the statistics
of forward and backward random steps or substeps can be per-
formed in order to test experimentally the validity of the fluctua-
tion theorem. Figure 4 depicts an example of what would be the
result of such a statistics, showing that the univariate fluctuation
relation (26) is satisfied. Furthermore, the thermodynamic effi-
ciency (30) has also been studied and it reaches the unit value in
the tight-coupling regime if the chemomechanical affinity (43)
is vanishing, becauseA= A1+σA2 = 0 if A1 = −σA2, where-
uponη = 1 [26; 27].

3.3 Mass separation by effusion

In the effusion of a binary gas mixture through a small pore
across a thin wall, there are three possible currents: the two cur-
rents of particles of different species and the current of kinetic
energy. The three corresponding affinities are determined by
Eqs. (1)-(2) in terms of the temperatures and chemical poten-
tials of the two reservoirs on both sides of the thin wall. The
fluctuation relation (3) holds for the three currents [29; 30] and
the formulae (21)-(24) generalizing the Green-Kubo and On-
sager reciprocity relations beyond linear response have been
verified in detail for this process [30]. A thermodynamic ef-
ficiency (6) can be introduced for the separation process, which
may be larger in nonlinear regimes than expected with the linear
approximation [30].

The fluctuation theorem has also been established for flows
of dilute or rarefied gases ruled by the fluctuating Boltzmann
equation [31].

3.4 Chemical reactions

At the mesoscopic scale, fluctuations manifest themselves in
reacting systems of various kinds, which can be described in
terms of stochastic processes ruled by the chemical master equa-
tion [32]. Such reactions can be maintained out of equilibrium
by supplying the reactants at fixed concentrations and evacu-
ating the products. For such processes, the current fluctuation
theorem (3) has been proved as well [13; 33; 34].

3.5 Electron transport in mesoscopic semiconducting de-
vices

The current fluctuation theorem (3) has been extended to
electron transport and open quantum systems in the presence
of an external magnetic field [3; 14; 16].

Single-electron transfers can be studied at low temperature
in semiconducting devices with quantum dots capacitively cou-
pled to quantum point contacts. The large current in the quan-
tum point contact is modulated by the Coulomb repulsion of
electrons transiently occupying the quantum dots. Such devices
allow the experimental measurement of the full counting statis-
tics for single-electron transfers in the quantum dots. The cur-
rent fluctuations in the quantum point contact are not observ-
able, but the time scale separation between both currents is such
that the univariate fluctuation relation (26) indeed holds with an
effective affinity [18; 19], as several experiments have shown
[35; 36].
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Moreover, the symmetry relations predicted by the fluctu-
ation theorem for the nonlinear-response properties have also
been investigated experimentally [37; 38].

4 THERMODYNAMICS OF INFORMATION PRO-
CESSING AT THE MOLECULAR SCALE

4.1 Path statistics and entropy production

The random paths followed by a fluctuating system can be
characterized for the temporal disorder they generate. The tem-
poral disorder is defined as the exponential decay rate of the
probability to observe a specific path by stroboscopic observa-
tion at equal time intervals∆t. If pωωω denotes the probability to
observe the pathωωω = ω1ω2 · · ·ωn, during which the system has
been observed in the coarse-grained statesω j at the successive
instants of timet j = j∆t with j = 1,2, ...,n, the temporal disor-
der of the process is defined as

h(∆t) = lim
n→∞

−

1
n∆t ∑

ωωω
pωωω ln pωωω . (46)

To every pathωωω corresponds its time reversalωωωR = ωn · · ·ω2ω1

and we may wonder at which rate its probability decays. In this
way, we introduce the average decay rate of the time reversals:

hR(∆t) = lim
n→∞

−

1
n∆t ∑

ωωω
pωωω ln pωωωR . (47)

It turns out that the difference between the quantities (47) and
(46) is equal to the thermodynamic entropy production in the
limit ∆t → 0:

1
kB

diS
dt

= lim
∆t→0

[

hR(∆t)−h(∆t)
]

≥ 0 (48)

for the steady states of Markovian processes [39]. In agree-
ment with the second law, this difference is always non neg-
ative because it forms a Kullback-Leibler divergence. In this
regard, Eq. (48) shows that the thermodynamic entropy produc-
tion characterizes the time asymmetry of the stochastic process
and the breaking of the time-reversal symmetry by nonequilib-
rium steady states described by the path probability distribu-
tion pωωω.

To the extend that the decay rates of the path probabilities
are the signatures of temporal disorder, the relation (48) shows
that the temporal disorder among the typical paths is lower than
among their time reversals, i.e., the time reversals are more rare
among the typical paths than the typical paths among them-
selves. In this sense, the relation (48) brings a mathematical
expression to the fact that dynamical order manifests itself in
nonequilibrium systems [40]. The relation (48) has been tested
experimentally in nonequilibrium Brownian motion and electric
RCcircuits [41; 42].

4.2 Entropy production in copolymerization

The previous result (48) suggests that, if the fluctuations –
which evolves in time – can be recorded on a spatial support,
they would generate a sequence carrying information on the his-
tory followed by the system. Copolymers are natural supports

of information coded in the sequence of covalent bonds in the
different monomers composing the copolymer. The growth of
a single copolymer is a stochastic process taking place at the
molecular scale in a solution containing monomers. Their con-
centrations can be supposed to remain constant if the solution
surrounding the copolymer is large enough. Accordingly, the
monomer concentrations control the copolymerization and, in
particular, its distance from equilibrium where the growth ve-
locity should vanish.

The thermodynamic entropy production of a growing copoly-
mer is given by

1
kB

diS
dt

= v

(

−

g
kBT

+D

)

≥ 0 (49)

where v is its growth speed, i.e., the average number of
monomers attached to the copolymer per unit time,g is the aver-
age free enthalpy per attached monomer, andD is the Shannon
disorder per monomer in the copolymer sequence [43; 44]. This
result shows that the growth of the copolymer may be powered
either by the free enthalpy of attachment ifg< 0, or by the dis-
order of the growing sequence ifD > g/(kBT)> 0.

The entropy production can also be obtained for copolymer-
izations on a template as in DNA replication [43; 44]. For such
molecular processes, the entropy production depends on the mu-
tual information between the template and the copy, which is a
quantity characterizing the fidelity of information transmission
from the template to the copy. It turns out that the mutual infor-
mation takes a positive value under nonequilibrium conditions,
but vanishes at equilibrium where information cannot be trans-
mitted.

5 CONCLUSIONS

The present paper gives an overview of recent advances
about the fluctuation theorem for currents and other time-
reversal symmetry relations in the context of the nonequilib-
rium thermodynamics of small systems. The fluctuation the-
orem for currents is a large-deviation property of the currents
flowing across a small system in contact with reservoirs at dif-
ferent temperatures and chemical potentials. It finds its origin
in the microreversibility of the underlying classical or quantum
Hamiltonian dynamics and it is valid far from equilibrium, as
well as close to equilibrium. Consequently, the fluctuation the-
orem for currents leads to results generalizing the Green-Kubo
formulae and the Onsager reciprocity relations from the linear
to the nonlinear response properties.

Under nonequilibrium conditions, the fluctuation theorem
characterizes the breaking of time-reversal symmetry at the sta-
tistical level of description and the directionality induced in the
system by the affinities of the external reservoirs. At equilib-
rium, the principle of detailed balancing is recovered.

Interestingly, further symmetry breaking phenomena can
also be characterized by relations analogous to the fluctuation
relation but in equilibrium systems, such as a magnet in an ex-
ternal magnetic field. The analogy can be developed in detail
between time-reversal symmetry breaking out of equilibrium
and spin-reversal symmetry breaking at equilibrium [45; 46].

To conclude, the new relationships prove to be fundamental
to understand the emergence of macroscopic thermodynamics
from the underlying microscopic dynamics ruling the chaotic
motion of atoms and the thermal or molecular fluctuations.
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EXTENDED ABSTRACT 

 
The concept of stability is essential when describing the behaviour and properties of matter [1]. At the microscopic level, the stability of 

atoms becomes manifest through the existence of chemical elements. Macroscopic thermodynamic systems show stability through the existence of 
distinct phases which can coexist under the same physical conditions. 

Unlike macroscopic systems, the existence of boundaries in small systems confers them peculiar characteristics. Finite size induces non-
homogeneities of the interaction energy which may give rise to free-energy barriers separating two different configuration or aggregation 
(metastable) states. Passing from one of these configurations to the other is a matter of thermodynamic transformation theory, a well-understood 
problem in classical thermodynamics [2, 3]. 

When a macroscopic system is subjected to destabilizing conditions, it separates into two or more phases that may coexist in equilibrium [2, 
3].  This partitioning involves the formation of new free-energy barriers associated to interfaces and finally, from the thermodynamic point of 
view, to the emergence of new systems with their own free energy which determines their physical properties: compressibilities, specific heats, 
etc. [3] 

However, when the system is finite and small enough, the formation of an interface could become energetically unfavourable. This energetic 
restriction has been observed, for instance, in the formation of magnetic domains in ferromagnetic materials [4] or in atomic nanoclusters with 
magical numbers, and may be responsible for peculiar effects on the behaviour and properties of the system [5, 6]. 

A deeper analysis related to this last question must account for the implications of the finite size of the system on its thermodynamic 
behaviour. This analysis has shown that inflexions and barriers in the thermodynamic free energy are related to irreversible processes. This is 
revealed through the calculus of the entropy produced in a transformation implying the transition over a free energy barrier. This process is 
possible due to the existence of a thermodynamic affinity whose origin resides in the external constrains. Since these irreversible processes may 
be cyclical, they can be used to generate or convert energy at the nanoscale if the external constraints force the state of the system to reside in an 
region of the order parameter in correspondence with the unstable region of the free energy. Under these circumstances, we show that an 
oscillation between the two metastable states separated by the free energy barrier may be triggered. This cyclical motion persists while these 
external constraints maintain the system out of equilibrium. The results obtained are of great interest since they underlay the physics of energy 
generation and conversion nanodevices [7]. Potential applications have been recently reported for energy nanogenerators [8], systems based on 
the pyroelectric effect [9] and also for some storage systems [10].  Coupling of several small systems may lead to interesting effects that are in the 
thermodynamic origin of the electric hysteresis [11, 12]. Oscillating behaviours are also useful in energy-converting nanodevices whose operation 
depends on the pressure conditions imposed by the heat bath [13]. 
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ABSTRACT
The study of immiscible liquid-liquid interfaces (LLIs) is of importance in many phenomena in engineering, chemical, and
biological systems. At an immiscible LLI, a slip occurs as a result of poor mixing, and relatively weaker atomic interactions
between the two liquids. One of the main difficulties in modeling immiscible (and partially miscible) LLIs is the assignment
of boundary conditions at the interface. In continuum-based modeling of macroscale systems, a no-slip boundary condition is
generally assumed at the LLI. The issue of interfacial slip, however, becomes especially relevant for micro-, and nanofluidics
where interface dynamics play a key role, and the slip magnitude can strongly affect the flow behavior. In that respect, molecular
dynamics (MD) is a vital tool for modeling LLIs at the atomic scale. In this paper, we present a hybrid atomistic-continuum
(HAC) approach that utilizes MD at the LLI to directly extract boundary conditions needed by a continuum solver. Our focus is
on the treatment of the atomistic subdomain (ΩA), specifically when it comes to the proper termination of ΩA, and the coupling
to an external continuum field. The model is tested using a Couette flow under varying flow speeds. Finally, we demonstrate the
ability of the model to accurately predict the slip coefficient at the LLI.

INTRODUCTION

Liquid-Liquid Interfaces (LLIs), formed by two immiscible
liquids, occur in a wide range of systems. For instance, in biol-
ogy, interfaces between two immiscible liquid electrolyte solu-
tions are of great importance as they occur in tissues and cells
of all living organisms. In oil and gas industry, the balance be-
tween break-up and coalescence (both interfacial phenomena)
determine the occurrence of phase inversion, a process that can
lead to the blockage of the entire pipeline with a huge econom-
ical impact. Furthermore, in recent lab-on-a-chip technology,
liquid droplets, moving through an immiscible liquid, are used
as chemical (and biological) reactors, where reactions are car-
ried out while the droplet is transported along micro-channels.
Hence, the proper understanding, and modeling of LLI dynam-
ics is of great significance to many industries.

The slip behavior at immiscible LLIs is a nanoscale phe-
nomenon, and requires atomic resolution to accurately capture
the relevant physics. Continuum methods generally assume a
no-slip boundary condition at the LLI, which could provide rea-
sonable accuracy on a macroscale level. This approximation
loses validity at the micro- and nanoscale, due to the relatively
higher surface-to-volume ratio. Additionally, the amount of slip
at such scales can be comparable to the characteristic length of
the system and therefore should be carefully accounted for.

Continuum theory, in the form of the Navier-Stokes (NS)
equations, can accurately predict flow dynamics in the regions
far removed from LLI effects. On the other hand, molecular
dynamics (MD) is capable of capturing important nanoscale
physics at the LLI [1, 2, 3, 4]. The method is, however, compu-
tationally demanding and modeling is presently limited to sys-
tems within the nanoscale. Hybrid atomistic-continuum (HAC)
modeling can alleviate these shortcomings by decomposing the
domain into a continuum description (ΩC) and an atomistic one

(ΩA). By limiting ΩA to the LLI, boundary conditions for the
NS solution at the interface are naturally recovered through MD.
With this domain-decomposition approach, the two descriptions
partially overlap in a region (ΩC→A+ ΩA→C) where informa-
tion is exchanged [5]. The accuracy of the method relies on
the proper application of continuum state variables onto ΩA,
and the consistency of transport coefficients between the two
descriptions.

In this paper, we present a one-way coupling algorithm for
the HAC modeling of one-dimensional LLIs. The focus is on
the proper termination of ΩA and on the imposition of boundary
conditions of the form ΩC→A. The boundaries of ΩA are mod-
eled as reflective walls supplemented with an adaptive boundary
force, to prevent artificial density layering. The method is tested
using a Couette flow with different velocities. The velocity pro-
files at the LLI are compared with the continuum NS solution.
The predicted viscosity, and slip coefficients are shown to agree
well with the literature.

METHODOLOGY

Particles in the atomistic subdomain (ΩA) interact via the
Lennard-Jones (LJ) potential:

ULJ(ri j) = 4ε

[(
σ

ri j

)12

−β

(
σ

ri j

)6
]

(1)

where ri j is the separation distance between particles i, and j.
The energy, and length scales are taken to be those of argon: ε=
0.996 kJmol−1, and σ = 3.4 Å (1 Å = 10−10m). The potential
is force-shifted [6] and a cutoff radius of rc = 3σ = 10.2Å is
employed. The parameter β is used to tune the attractive part of
the potential between the two liquids (L1, and L2). To induce
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complete immiscibility, we assign β11 = β22 = 1.0 and β12 =
0.0. The position (ri) and velocity (vi) vectors of each particle i
are governed by Newton’s equation of motion:

dri

dt
= vi (2)

dvi

dt
=

Fi

mi
(3)

where Fi =−∑ j 6=i ∇ri jULJ is the total force acting on particle i,
with mass mi = 40 gmol−1. Eqs. (2)-(3) are solved using the
leap-frog algorithm:

vn+1/2
i = vn−1/2

i +δt Fn
i /mi (4)

rn+1
i = rn

i +δt vn+1/2
i (5)

where δt is the time step. Superscripts in Eqs. (4)-(5) denote
the relative time level of each variable.

The atomistic subdomain ΩA describing the LLI is shown in
Fig. 1. The system dimensions are: Lx× Ly× Lz = 14.2σ×
13.6σ×6.8σ. The size is chosen to give a bulk liquid density of
ρ = 1369kgm−3 (ρ∗ = ρσ3Navm−1 = 0.81), with a total of N =
1024 particles. Periodic boundary conditions are used along the
y- and z-axes. In the x-direction, the system is terminated using
a reflective wall and an adaptive boundary force (details below).
Velocity and temperature measurements are recorded in bins of
size δx = 0.79σ along the x-axis. To capture the LLI, a higher
bin resolution of δxρ = 0.1δx is used for the density profiles.
The system is equilibrated at T = 132K (T ∗ = kbT/ε = 1.1),
using a Berendsen thermostat [7] with a time constant of 0.5
ps (1 ps = 10−12s). A time step of δt = 5fs (1 fs = 10−15s,
δt∗ = 0.0023t̃, t̃ = σ m0.5ε−0.5) is used with total runs of 15 ns
duration.

Particles that attempt to leave ΩA along the non-periodic x-
axis are specularly reflected back into ΩA by reversing the ve-
locity component normal to that plane (vx). This guarantees
a constant number of particles (N) in ΩA, however, it does
not account for the lack of periodicity along that direction.
Thus, causing artificial density layering normal to the reflective
boundary. One way to alleviate this issue is to supplement the
reflections with a boundary force that ’mimics’ on average the
forces felt by a particle in a periodic system [8]. The boundary
force in [8] was derived by measurement in a periodic system
and applied as a function of distance to the reflective boundary.
For supercritical conditions, this was found to significantly re-
duce the artificial layering. However, the performance of this
technique was shown to deteriorate at higher densities, and/or
lower temperatures, conditions which are relevant for LLI anal-
ysis. This drawback was overcome by extracting the boundary
force using a control algorithm [9, 10], which we employ in our
model. First, the density in each bin is averaged in time intervals
of 5 ps. The noise in the density profile is then reduced by pass-
ing it twice through a Gaussian filter as follows (see appendix
A for details):

ρ1(x) = φ
−1

∫
ρ(x)exp

[
−(x− x1)

2 /φ
2
]

dx1 (6)

ρ2(x) = φ
−1

∫
ρ1(x)exp

[
−(x− x2)

2 /φ
2
]

dx2 (7)

Figure 1. Atomistic liquid (L1 + L2) subdomain (ΩA) at the LLI. Ex-
ternal field quantities are applied within the shaded regions denoted by
Ω

j
C→A ( j = 1,2).

where: ρ1 and ρ2 are the density profiles subsequent to the first
and second Gaussian smoothing, respectively. The integrals are
evaluated discretely with a cutoff of 3δxρ, and φ = 2δxρ. The
gradient of the density profile ∇ρ2(x) is then used as a correc-
tion mechanism to adapt the boundary force Fb which is initially
at zero:

Fb(x, t + tad) = Fb(x, t)−∇ρ2
√

λ (8)

where tad is the 5 ps averaging period. The parameter λ is used
to enact corrections faster away from the boundary which helps
prevent the forces close to the boundary from over-shooting. In
this study, we select λ = 1.1×10−4q, where q is the bin number
counted from the boundary for each liquid, respectively.

The system is first thermostatted for 50 ps, with reflective
boundaries only. The adaptation of Fb commences following
the equilibration period. Additionally, the application of bound-
ary conditions to the particles in Ω

j
C→A ( j = 1,2) is carried out

simultaneously. For the purpose of studying LLI dynamics in
the presence of a Couette flow, we apply opposing velocities of
u∗C =± 0.2, 0.4, 0.6, and 0.8, along the y-axis. The velocity u∗C
is ramped up to its target value over a period of 50 ps. For each
liquid, u∗C is enforced by applying an additional body force FuC

in the y-direction to each atom within Ω
j
C→A ( j = 1,2), as given

by (see Appendix B):

FuC =
m
δt

(
uC− vcomy

)
−

Fcomy

N
Ω

j
C→A

(9)

vcomy =
1

N
Ω

j
C→A

N
Ω

j
C→A

∑
i=1

vy,i (10)

where vcomy is the center-of-mass y-velocity of particles in
Ω

j
C→A ( j = 1,2), and Fcomy is the corresponding net force. Fur-

thermore, the temperature is maintained at T ∗C = 1.1 via direct
velocity scaling about the center-of-mass velocity:

vi =
(

vi−u
Ω

j
C→A

)√ TC

T
Ω

j
C→A

+u
Ω

j
C→A

(11)
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Figure 2. Adaptive boundary force (Fb) for L1 with u∗C = 0.2. Distance
measured from the reflective boundary of Ω1

C→A.

Figure 3. Density profiles for u∗C = 0.2, with (+) and without (-) the
action of Fb. The shaded region marks the depleted zone at the LLI.

where
〈

u
Ω

j
C→A

〉
= [0,uC,0] for j = 1, and [0,−uC,0] for j = 2.

The variable T
Ω

j
C→A

is the instantaneous temperature of

particles in Ω
j
C→A ( j = 1,2).

RESULTS & DISCUSSION

Data sampling was started after 5 ns, for which the boundary
force, and velocity profiles exhibited steady-state behavior. The
collection of data was carried out for an additional 10 ns. The
adaptive boundary force (Fb) for u∗C = 0.2 is shown in Fig. 2.
Close to the boundary, Fb is repulsive in nature, with an attrac-
tive component further away. The effectiveness of Fb in elim-
inating the density layering at the boundary is shown in Fig 3.
A uniform density of ρ∗ = 0.81 can be seen away from the de-
pleted region at the LLI between the two immiscible liquids.

The steady-state velocity profile for u∗C = ±0.4 is shown in
Fig. 4, along with the analytical solution for a Couette flow
(d2u/dx2 = 0). Using the imposed velocities in Ω

j
C→A ( j = 1,2)

as boundary conditions, the resulting analytical velocity profile
is given by:

u(x) =−2uC

Lx
x+uC (12)

When normalized by uC, all other cases exhibited a similar
trend. The deviation from the analytical solution increases
closer to the LLI, as a result of the interfacial slip. To validate

Figure 4. Velocity profile across the LLI for u∗C =±0.4, and the analyt-
ical solution given by Eq. (12). Shaded data points are used to measure
apparent slip (δu).

Table 1. All values are in reduced units. Where appropriate, results are
listed in the form L1(L2).

u∗C
du
dx (×102) τ∗ (×102) η∗ δu∗ α

0.2 2.10 (2.11) 4.47 (4.46) 2.13 (2.12) 0.115 2.56

0.4 4.23 (4.20) 9.20 (9.20) 2.17 (2.19) 0.220 2.39

0.6 6.33 (6.38) 13.9 (13.9) 2.20 (2.18) 0.326 2.36

0.8 8.69 (8.66) 18.2 (18.3) 2.13 (2.14) 0.522 2.83

the velocity profiles, we first compare the viscosity of the liquids
to that measured using equilibrium MD [11], at a representative
state point of ρ∗ = 0.81, and T ∗ = 1.1. This is carried out by
calculating the average amount of momentum (∆p) added every
time step in Ω

j
C→A ( j = 1,2) to maintain the flow. Using ∆p,

the shear stress (τ), or momentum flux, is estimated using:

τ =
∆p
δtA

(13)

where A = Ly × Lz is the cross-sectional area parallel to the
flow. The viscosity is then computed from: η = τ(du/dx)−1.
The calculation of the velocity gradient (du/dx) from the ve-
locity profiles (similar to Fig. 4) is limited to the linear region
(x/Lx ≈ 0.3) away from the depleted zone. The viscosity values
are given in Table 1, and are in good agreement with the value
of η∗ref = 2.18 obtained from [11]. Furthermore, we compare
the slip coefficient (α) predicted using our model with that re-
ported for immiscible LJ liquids αrefaverage = 2.53 [1]. Using the
velocity jump at the LLI, and the measured shear stress τ, the
slip coefficient is estimated by:

α =
δu
τ

(14)

where δu is the apparent slip, and is measured using the data
points indicated in Fig. 4. As can be seen in Table 1, the slip
coefficient is accurately predicted within ΩA.
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CONCLUSION

We have presented an HAC algorithm for imposing contin-
uum field variables onto an atomistic subdomain (ΩA) for the
purpose of studying slip at immiscible LLIs. Density layering
at the interface between the two descriptions was eliminated by
the use of an adaptive boundary force. The momentum flux ap-
plied and the resulting velocity gradient in the linear zone pro-
duce a viscosity that is in close agreement with that reported
in the literature. The method is also shown to accurately cap-
ture the slip coefficient (α) at the LLI. Our plans include the
implementation of this algorithm with two-way coupling to the
continuum description (ΩC).

NOMENCLATURE

Nav Avogadro’s number
kb Boltzmann constant [m2kgs−2K−1]
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Appendix A: Discrete Gaussian filter equations

For clarity, the density bin spacing is labeled δx instead of
δxρ. In discrete form, the Gaussian filer of Eq. (6) with a cutoff

of 3δx is given by:

ρ1(x) = φ
−1

x+3δx

∑
x1=x−3δx

ρ(x1)e
− (x−x1)

2

φ2
δx (15)

which expands to:

ρ1(x) = φ
−1

[
ρ(x−3δx) e−

(
3δx
φ

)2

+ρ(x−2δx) e−
(

2δx
φ

)2

+

ρ(x−δx) e−
(

δx
φ

)2

+ρ(x)+ρ(x+δx) e−
(

δx
φ

)2

+

ρ(x+2δx) e−
(

2δx
φ

)2

+ρ(x+3δx) e−
(

3δx
φ

)2
]

δx

using φ = 2 δx:

ρ1(x) =
1
2

[
ρ(x−3δx) e−(

3
2 )

2
+ρ(x−2δx) e−(1)

2
+

ρ(x−δx) e−(
1
2 )

2
+ρ(x)+ρ(x+δx) e−(

1
2 )

2
+

ρ(x+2δx) e−(1)
2
+ρ(x+3δx) e−(

3
2 )

2
]

Normalizing by half the sum of the density coefficients:
1
2

[
2e−(

3
2 )

2
+2e−(1)

2
+2e−(

1
2 )

2
+1
]
= 1.75208, produces the

final discrete equation:

ρ
i
1 = 0.0301ρ

i±3 +0.1050ρ
i±2 +0.2223ρ

i±1 +0.2854ρ
i (16)

where i refers to the bin number. Equation (16) is suitable for
bins with at least three neighbors on either side. That is, for
i = 4 to Nbin−3. For the rest of the bins, the contribution to the
smoothed value depends on the maximum number of neighbor-
ing bins on either side. The derivation is similar to the above,
and can be shown to produce the following complete set:

ρ
i
1 = ρ

i i = 1,or Nbin

ρ
i
1 = 0.3045ρ

i±1 +0.3910ρ
i i = 2,or Nbin−1

ρ
i
1 = 0.1117ρ

i±2 +0.2365ρ
i±1 +0.3036ρ

i i = 3,or Nbin−2

ρ
i
1 = 0.0301ρ

i±3 +0.1050ρ
i±2 +0.2223ρ

i±1+

0.2854ρ
i i = 4 to Nbin−3

where i denotes the bin number.

Appendix B: Derivation of flow driving body force (FuC )

The following derivation is based on the leap-frog algorithm
Eqs. (4)-(5). For a system of N particles, the center of mass
velocity along any one dimension is given by:

v
n− 1

2
com =

1
N

N

∑
i=1

v
n− 1

2
i (17)

If the total force at step n is: Fn
com = ∑

N
i=1 Fn

i , then we seek
an additional body force Fn

uC
to be applied uniformly to each
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particle in order to drive the flow with a velocity uC. By setting

v
n+ 1

2
com = uC:

uC = v
n− 1

2
com +

δt
Nm

Fn
com +

δt
Nm

N

∑
i=1

Fn
uC

(18)

where Nm is the total mass of the system. Solving for the total
body force gives:

N

∑
i=1

Fn
uC

=
Nm
δt

(
uC− v

n− 1
2

com

)
−Fn

com (19)

when applied uniformly to each particle, that translates to:

Fn
uC

=
m
δt

(
uC− v

n− 1
2

com

)
− Fn

com

N
(20)
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EXTENDED ABSTRACT 
 
The fluctuation theorems characterize the probability distribution of values of the dissipation in nonequilibrium systems and prove that the 
average dissipation will be positive. Transient Fluctuation relations are the best understood. They are known to be exact for systems of arbitrary 
size, arbitrarily near or far from equilibrium.[1] Previously very few exact results were known in nonequilibrium statistical mechanics. Their 
application to small systems coincided with an upsurge of interest in nanotechnology and nanobiology and the study of small bio-engines. The 
applicability of the transient fluctuation relations far from equilibrium also mean that they are an important for large deviation theory. 
Here we will discuss variants of the fluctuation theorem that can be derived from the transient fluctuation theorem, and which are valid in various 
limits, or subject to particular conditions.  We will focus on fluctuation theorems for steady states [2], in local regions within a larger system [3] 
and in systems subject to external noise [4].  
The subject of the transient fluctuation theorems is the dissipation function, which is related to the entropy production from linear irreversible 
thermodynamics.  We will show that in order for steady state fluctuation relations for the dissipation function to hold, time reversibility, ergodic 
consistency and a recently introduced form of correlation decay, called T-mixing, are sufficient conditions. Our results are not restricted to a 
particular model and show that the steady state fluctuation relation for the dissipation function holds near or far from equilibrium subject to these 
conditions. [2]  
We will also consider how a fluctuation theorem can be obtained for a small open subsystem within the large system. If a fluctuation theorem for 
the dissipation in a subsystem is considered, we find that a correction term has to be added to the large system fluctuation theorem due to 
correlation of the subsystem with the surroundings. Its analytic expression can be derived provided some general assumptions are fulfilled, and its 
relevance has been checked using numerical simulations. [3] 
Another system of interest is the systems that are subject to external noise.  We provide a derivation of this fluctuation theorem for systems driven 
by both deterministic and stochastic forces. It turns out that it is still valid, provided the dissipation is carefully defined.  The total dissipation is 
explicitly the sum of two dimensionless works for which fluctuation relations may fail.  We numerically study their range of validity of 
fluctuation relations for the total dissipation, the contribution from the deterministic driving force and the stochastic force, and point out in which 
limit a noise can be neglected. [4] 
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EXTENDED ABSTRACT

In continuum physics the entropy constitutive principle offers a valuable help in modeling material properties. It has been proposed by Coleman
and Noll [1] within the frame of Rational Thermodynamics (RT) [2], and asserts that:

The constitutive equations, which characterize the material properties of continuous media, must be assigned in such a way that second law of
thermodynamics is satisfied along arbitrary thermodynamic processes.

These authors also provided a rigorous mathematical procedure (the Coleman-Noll procedure) to exploit the principle. Afterwards, Liu [3],
developed an alternative and elegant method of exploitation, based on the Lagrange multipliers, known as Liu procedure. Hauser and Kirchner [4],
recognized that the Liu procedure constitutes a special case of a more general result on linear programming [5]. In Thermodynamics of Irreversible
Processes (TIP) [2], de Groot and Mazur [6] and Gyarmati [7] exploited it by a phenomenological method, which regards the entropy production as
a bilinear function of thermodynamical forces and fluxes. A more rigorous formulation of this procedure has been achieved by Ván et al. [8; 9].

A new perspective has been open by Müller and Ruggeri [10], who applied the principle to determine the main field which renders the system
of field equations of Rational Extended Thermodynamics (RET) [2], symmetric hyperbolic, and showed how the Lagrange multipliers provide
this field [11; 12]. In Extended Irreversible Thermodynamics (EIT) [2], Jou, Lebon and Casas-Vazques applied the principle to obtain nonlocal
extensions of classical transport equations [13; 14; 15].

In order to derive the entropy principle by general physical laws, Muschik and Ehrentraut [16] proposed the following amendment to the classical
second law:

The curves representing quasi-static processes in the state space are all contained in the equilibrium subspace.
As a consequence of this statement, they proved that second law of thermodynamics necessarily restricts the constitutive equations and not the

thermodynamic processes. In this way, the classical Coleman-Noll approach follows by a more general assumption through a rigorous proof.
On the other hand, Ruggeri [12; 17], on the example of the Lax conditions for shock wave propagation in perfect fluids, observed that for weak

solutions the entropy principle selects the thermodynamical processes instead of restricting the constitutive equations. Notwithstanding, in some
recent articles [18; 19] it is proved that the result by Muschik and Ehrentraut may be extended to non-regular processes and generalized exploitation
procedures [20], so that this problem deserves a more deep analysis.
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EXTENDED ABSTRACT

An essential part in modeling out-of-equilibrium dynamics is the formulation of the irreversible dynamics. In the latter, the main modeling task
consists in specifying the relations between thermodynamic forces on the one hand and fluxes on the other hand. As a guardrail to ensure that these
relations comply with macroscopic observations one uses, among other principles, the second law of thermodynamics. The latter is considered
in this contribution as that the local production of entropy is non-negative. Mainly two major directions have been followed in the literature for
the specification of force-flux relations. On the one hand, quasi-linear relations are employed, in which so-called transport coefficients occur, that
may depend on the forces themselves in which case we call the relation quasi-linear rather than linear. If the (matrix of) transport coefficients is
non-negative, the second law is respected. Such relations have a deeper foundation in the physics of fluctuation-dissipation theorems [1; 2]. On the
other hand, force-flux relations are also often represented in potential form. In this case, the flux is given by the derivative of a so-called dissipation
potential with respect to the force [3]. The second law of thermodynamics is respected by requiring certain properties of the potential, primarily its
convexity. In this contribution, we address the question of how these two approaches, quasi-linear and potential-based, are related.

The main outcome of this presentation is that every potential-based force-flux relation can be cast into quasi-linear form, while the reverse
statement does not hold true [4]. In other words, the potential-based relations are a subset of those that can be formulated in the quasi-linear setting.
While this main result is derived in general terms, it is demonstrated also with the help of three examples: (i) heat conduction in rigid bodies, (ii)
homogeneous chemical reactions, and (iii) slippage in complex fluids. In particular, whereas the irreversible processes (i) and (ii) are dissipative,
(iii) is not dissipative although it is irreversible. For the models (i) and (ii), conditions for the existence of a dissipation potential are formulated.
Conversely, the dissipation potential for model (iii) vanishes since this model is an example of a dissipation-free irreversible process.

It is also shown that the above conclusions about force-flux relations have ramifications for the General Equation for Non-Equilibrium Reversible-
Irreversible Coupling (GENERIC: e.g., [5; 6; 7]), which has been formulated in a quasi-linear [6; 7] and a dissipation-potential based [8] form,
respectively. Also for the GENERIC it is found that potential-based form is a special case of the quasi-linear approach, as is the case for force-flux
relations [4]. It can even be shown that the potential-form of GENERIC exists if and only if one does for the underlying force-flux relations.

While the potential-based forms are subcases of the quasi-linear counterparts, one may still opt for the potential-based form. For example, the
potential-based form is necessary to formulate initial-boundary-value problems in variational form. In addition, the differential-geometry perspective
on irreversible processes suggests a potential-based formulation [8]. As well, it has recently been suggested [9] that the potential form of GENERIC
emerges from an optimization principle. Despite all these arguments, there are convincing arguments in favor of the quasi-linear relations. Firstly,
they are more general than the potential-based forms, as shown above. Secondly, the quasi-linear form is the result of systematic coarse-graining
using projection-operator techniques [7; 10; 11]. And thirdly, the quasi-linear form is more amenable to experimental determination where one
often determines the transport coefficients as the ratio of the flux to the force.
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ABSTRACT 
The formulation of the second law out of equilibrium implies several basic thermodynamic questions: a) the form of the 
entropy; b) the form of the entropy flux; c) the absolute temperature, and d) the concrete statement of the second law. Here, we 
illustrate these questions in the framework of extended irreversible thermodynamics, where fluxes are used as independent 
thermodynamic variables besides the classical variables. In this theory, the entropy and entropy flux depend on the several 
fluxes and are more general than their respective classical versions. This wider generality allows to explore for generalized 
transport equations including memory terms and non-local terms, which are not compatible with the local-equilibrium version 
of the second law, but whose consequences are experimentally observed. 

 
 
 
 
 
 
 

INTRODUCTION 
 
    The second law was initially formulated by Clausius 

(1850) and Thomson (1851), in terms of impossibility of 
existence of some kind of engines or processes. Such reference 
to impossibility has been useful to extend the domain of 
applicability of thermodynamics to such surprising topics as 
black hole thermodynamics or quantum thermodynamics. The 
latter theories have been formulated by stating the impossibility 
of processes reducing the total area of black holes, in the first 
case, or increasing global quantum entanglement by means of 
local operations in the second one.  

    This way of formulating the second law is global in space 
and time: it refers to the globality of the system and to a whole 
process. Thus, it does not yield strong restrictions on specific 
parts of a process. For instance, it states that it is impossible to 
build a cyclic heat engine fully converting heat into work, but 
one may have full conversion of heat into work along an 
isothermal expansion of an ideal gas. Of course, in the total 
cyclic process this partial process is compensated by other 
parts, in such a way that, as a whole, only a part of heat may be 
converted into work. 

    In 1865, Clausius devised another way to formulate the 
second law, based on the definition of a new state quantity, 
called the entropy, defined in terms of the integral of heat 
reversibly exchanged over the absolute temperature. According 
to his formulation, in isolated systems processes increasing the 
total entropy are impossible (in other words, only those 
processes reducing or keeping constant the entropy are 
possible). Clausius entropy is defined only for equilibrium 
states, and his statement establishes whether it is possible in 
principle a process leading from an equilibrium state A to an 
equilibrium state B.  

   In 1872, Boltzmann related the entropy, a macroscopic 
quantity, to molecular disorder, a microscopic concept. In 
some occasions, attention to only a part of the system may be 
misleading. For instance, in a well-stirred solution of oil into 
water there are initially many oil droplets into water, but all 
these droplets agregate in a single oil phase separated from 
the water phase. Apparently, this process goes from a more 
disordered state to a more ordered state. However, in fact this 
is not so, because the water molecules, not directly visible, 
have increased their global disorder, in such a way that the 
total disorder has indeed increased in the agregation and 
separation process.  
    Thus, we see that the formulation of the second law in 
equilibrium has a global meaning, refers to equilibrium 
states, and must include all the relevant variables of the 
system. Going to non-equilibrium states leads to new 
challenges. One of the main aims of non-equilibrium 
thermodynamics is to analize which  transport equations are 
admissible according to the second law. This leads to 
restrictions on the sign of the transport coefficients, to 
relations between the several transport coefficients in coupled 
transport equations, and so on. Besides these restrictions 
coming from the second principle, one must add other 
restrictions arising from microscopic time reversibility, 
leading to the Onsager-Casimir reciprocity relations between 
linear coupled transport equations, established in 1931. 
    In general terms, going from equilibrium to non-
equilibrium implies new problems: a) one is not dealing with 
equilibrium states, but with non-equilibrium states, which are 
not homogeneous and are, in general, time-dependent. This 
makes that a global description is not very illuminating, as we 
are precisely interested in the transfer of heat, mass, 
momentum and so on between different regions of the 
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system, in such a way that local features are needed, b) in 
non-equilibrium, many additional variables which do not play 
any role at equilibrium arise, and the choice of the variables 
necessary to describe the system is not clear a priori. 

    Thus, the formulation of the second principle in 
continuum non-equilibrium thermodynamics implies, at least, 
five basic questions [1-3]: a) the choice of variables; b) the 
form of the entropy; c) the form of the entropy flux; d) the 
meaning and form of absolute temperature [4,5]; and e) the 
concrete statement of the second law. Here we will discuss 
these topics. 

 
LOCAL VERSUS GLOBAL, INSTANTANEOUS 
VERSUS HISTORICAL FORMULATIONS 
 
    In classical non-equilibrium thermodynamics, the first four 
questions are answered by taking for the mentioned quantities 
their corresponding usual form in equilibrium 
thermodynamics, but with a local –instead of a global– 
meaning, and the fifth question is stated as the positive 
definite character of the entropy production. Note, however, 
that this formulation of the second law is more restrictive than 
the classical formulation, which only refers to entropy in 
equilibrium states, and imposes that the entropy of the final 
equilibrium state is higher or equal than the entropy of the 
initial equilibrium state which, after a number of constraints 
acting on it have been removed, evolves to the final 
equilibrium state. In contrast, the idea that the local entropy 
production per unit time must be always positive or zero 
implies that between the initial and the final equilibrium states 
the entropy must increase at any time and in any region. This 
is a sufficient but not a necessary condition for the classical 
statement of the second law to be fulfilled. Some authors, as 
Meixner, tried thus to avoid the use of an entropy in the 
intermediate non-equilibrium states and tried to have less 
restrictive conditions for the second law. 
    In fact, there are several physical phenomena, as for 
instance thermal oscillations (in discrete systems) or thermal 
waves (in continuous systems) which are compatible with the 
classical form of the second law (as the total entropy of the 
final equilibrium state in a relaxation process towards 
equilibrium is higher than that of the initial state), but they are 
not compatible with the local-equilibrium version of the 
second law (as the total local-equilibrium entropy integrated 
over the whole system does not increase in a monotonic way, 
but it exhibits an ondulatory approach, with alternating 
increasing and decreasing behaviours of the entropy). 
    Thus, several basic questions arise: 1) must these 
phenomena be forbidden, although they are allowed by the 
classical version of the second law? This is not so, of course, 
because they are observed. 2) If they are actually observed, 
must one abandon the idea of a local instantaneous statement 
of the second law? 3) Must one drop the idea of generalizing 
the concept of entropy to non-equilibrium states? 4) Does this 
imply that a thermodynamic theory of non-equilibrium steady 
states (where the concept of non-equilibrium state cannot be 
avoided) should be abandoned? Or, in contrast, should one 
abandon the local-equilibrium hypothesis, although it has been 
so useful and successful in so many physical situations? 
Probably, there is not a single set of reasonable answers to 
these several questions. Here, in particular, we propose to go 
beyond the local-equilibrium hypothesis by looking for more  
general versions of entropy for non-equilibrium states. 
 

The local-equilibrium hypothesis is valid as far as the rate of 
change of the local variables is slow enough to reach local 
equilibrium. If the fluxes are too high, for instance, the 
energy arriving to the system will leave from it without 
having had time enough to distribute amongst the several 
degrees of freedom and the several particles according to the 
equilibrium distribution. Analogously, if the rate of change 
of variables of the system (for instance, the cooling rate, the 
reaction rate of the speed of a solidification front) is too high, 
the system has no time enough to reach internal thermal 
equilibrium. In this case, the local-equilibrium distribution 
will no longer be valid and some generalizations of it must 
be explored.  
 
CHOICE OF STATE VARIABLES IN NON-
EQUILIBRIUM STATES 
 
    Of course, many possibilities of additional variables arise 
when the system is in non-equilibrium. For instance, one can 
consider the rates of change of the classical variables, or the 
fluxes of the classical variables, or higher-order variables as 
for instance higher-order time derivatives or higher-order 
fluxes, or some internal variables related to the 
microstructure of the system, as for instance the configuration 
tensor or the polarization of polymeric molecules in polymer 
solutions. These variables vanish at equilibrium and therefore 
an entropy incorporating them should in principle reduce to 
the usual equilibrium entropy in equilibrium states. One of 
the possibilities of describing the system is to take into 
account the fluxes as additional variables, in such a way that 
higher values for the fluxes will imply a higher departure 
from local equilibrium.  
    The choice of variables is a relevant matter in non-
equilibrium systems, and it depends on the relative values of 
the rates or frequencies of external perturbations and the 
reciprocal of the relaxation times of the several internal 
degrees of freedom of the system. The variables much faster 
than the external perturbation may be considered at 
equilibrium; the variables much slower will be frozen in 
values dependent on the initial conditions; and the interest of 
the researcher will be focused on the dynamics of those 
variables whose typical relaxation times are of the order of 
the rate of the external perturbations [6-8]. 
    Another aspect of the choice of variables is between rates, 
fluxes, gradients, or internal variables. If one is interested in 
thermodynamics of non-equilibrium steady states, fluxes will 
be more useful than rates of change. Indeed, the latter vanish 
at steady states, whereas the fluxes indicate the rate of 
energy, matter, momentum and so on with the external world. 
Therefore, the fluxes provide essential information for non-
equilibrium steady states. On the other side, if one is 
interested in a macroscopic description, where the fluxes are 
controlled parameters, the use of the fluxes will be more 
suitable than the use of internal variables which, instead, may 
be more useful if microscopic descriptions are sought for. 
The choice of variables will depend thus both on the time 
scales as on the particular interests and abilities of the 
observer. 
    In particular, the non-equilibrium thermodynamic theories 
taking the fluxes as independent variables are known as 
“extended thermodynamics” [9-14]. In extended 
thermodynamics, the questions mentioned in the introduction 
are given the following answers. 
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ENTROPY 
 

     The extended entropy is the local-equilibrium entropy plus a 
negative contribution proportional to the square of the fluxes; 
the corresponding coefficient is proportional to the relation 
time of the corresponding flux and inversely proportional to the 
respective transport coefficient; thus, the non-equilibrium 
contributions to the entropy are related to relaxational 
contributions to generalized transport equations. Two typical 
examples are: heat transport with non-vanishing relaxation 
time, in which the transport equation takes the form of the so-
called Maxwell-Cattaneo equation 
 

                                            (1) 

  
where λ is the thermal conductivity and τ the relaxation time of 

the heat flux. When the relaxation time is negligible, this 
equation reduces to the classical Fourier's equation. The 
corresponding extended entropy is 

 

   s(u,q) = seq (u) − τ
2λT 2

q ⋅ q                                        (2) 

with seq the local-equilibrium entropy.  

    Another typical situation is viscoelasticity, where a 
relaxational equation for the viscous pressure tensor is used, 
in the form 

 

     τ dPv

dt
+ Pv = −2ηV                                         (3) 

 
or more general forms, taking more sophisticated kinds of time 
derivatives, as the corotational or the upper Maxwell convected 
ones. Here, η is the shear viscosity and V is the symmetric part 
of the velocity gradient. When the perturbation of the flow is 
slow with respect to the time scale set by the relaxation time, 
the material behaves as a viscous fluid, and when they are fast 
it behaves as an elastic solid. The corresponding extended 
entropy has the form 
 

 s(u,c,PV ) = seq (u,c) − τ
4ηT

Pv : Pv                             (4) 

 
Note, in particular, that in both cases the transport equations as 
well as the entropy reduce to their classical forms when the 
relaxation times go to zero. Furthermore, as it will be 
commented below in more detail, the local production of the 
generalized entropy is always positive, whereas the production 
of the local-equilibrium entropy may be negative in some 
cases.  
    Eventually, note that when these expressions for the 
entropy are introduced into the Einstein equation for the 
probability of fluctuations, this extended entropy describes 
not only the second moments of the fluctuations of the 
classical variables but also the fluctuations of the 
corresponding fluxes [9-10]. This is a check of the physical 
interpretation of the non-equilibrium terms, and it shows that 
incorporating the fluxes in the description gives additional 
information on the system even in equilibrium situations, 
where the average value of the fluxes is zero but their 
fluctuations may be different from zero. In fact, the most 

general versions of the fluctuation-dissipation theorem 
express the memory kernel of generalized transport equations 
in terms of the time-correlation fnction of the fluctuations of 
the corresponding dissipative fluxes (i.e the thermal 
conductivity in terms of the heat flux fluctuations; the shear 
viscosity in therms of the viscous pressure fluctuations, and 
so on). Thus, the interest on the dynamics of the fluxes is not 
something special of extended thermodynamics, but it is a 
general feature in modern non-equilibrium statistical physcis. 
 
ENTROPY FLUX 
 

     The entropy flux is the classical entropy flux plus a non-
equilibrium contribution proportional to the product of the 
fluxes times their corresponding higher-order fluxes; thus, the 
non-equilibrium contribution is related to the non-local 
contributions appearing in generalized transport equations.  A 
typical example is, for instance, the heat transport equation 
with relaxation terms and non-local terms, also known as 
Guyer-Krumhansl equation, 
 

                                                 (5) 

 
with   l the mean free path. The entropy is still (2) but the 
entropy flux has the form 
 

                                         (6) 

 
Another typical example is the equation for dilute gases as 
obtained from Grad’s approach in the second-order 
approximation  
 

                                       (7) 

 

                                        (8) 

 
In general, the relaxation times will be different for the 
different variables. The corresponding entropy is a 
combination of (2) and (4), namely, 
 

 s(u,c,PV ) = seq (u,c) − τ1

2λT 2
q ⋅ q− τ 2

4ηT
Pv : Pv         (9) 

   
and the entropy flux is 
 

 Js = q
T

+ β Pv ⋅ q                                      (10) 

 
It is seen in Eqs. (6) and (10) that non-local terms, related to 
the gradients or divergences of other fluxes, are related to 
extra contributions of the generalized entropy flux. 
 
TEMPERATURE 
 
    Absolute temperature, was defined by the first time by 
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Thomson in 1848, and set the basis for a universal material-
independent foundations for thermodynamics. Absolute 
temperature is  given by the reciprocal of the derivative of the 
entropy with respect to the internal energy (at constant values 
of the other extensive variables). When the extended entropy 
(2) is used instead of the local-equilibrium entropy, the 
resulting absolute temperature θ 
 
1

θ
= ∂s

∂u

 
 
 

 
 
 
v,q

= 1

T
− 1

2

∂α
∂u

 
 
 

 
 
 q ⋅ q                         (11) 

 
with α = τ/λT2. It differs from the local-equilibrium 
temperature T and depends on the fluxes;. Several comments 
about (11) are in order. A) Relation (11) is purely formal unless 
a process of measuring it is specified. In equilibrium, all the 
many possible operational definitions of temperature lead to 
the same value, and all the thermometers will indicate it. 
However, this is not so out of equilibrium, where different 
kinds of thermometers yield different values for the 
temperature. In particular, the temperature defined in (1) may 
be related to the average kinetic energy of the particles in the 
plane perpendicular to the fluxes, and it is in general different 
from the “temperatures” of the other degrees of freedom, which 
may have different values [4, 9]. B) The fact that θ depends on 
T and q may be checked by considering a heat conducting bar 
introduced between two systems at the same T, but one of them 
at equilibrium and the other one submitted to a steady heat 
flux.  According to the classical irreversible thermodynamics, 
where 

 
   ,                          (12a) 
 
heat should not flow; however, in extended irreversible 
thermodynamics, where 
 
   ,                                           (12b) 
 
heat should flow between them. For ideal gases it may be shown 
that θ < T and heat would flow from the system at equilibrium to 
the system in non-equilibrium steady state. C) In the kinetic 
theory of ideal gases, the absolute temperature is defined through 
the caloric equation of state relating the average kinetic energy to 
the absolute temperature 
 

   
3

2
kBT =  <

1

2
mC2 >                                        (13) 

 
where m is the mass of the particles and C their peculiar velocity 
with respect to the barycentric mass. However, in the presence of 
a heat flow along the z direction, and up to the second order in 
the heat flux, it may be seen, from maximum-entropy arguments, 
that 
 

  <
1

2
mCx

2 >=<
1

2
mCy

2 >= 1

2
kBθ < 1

2
kBT                      (14a) 

and 

   <
1

2
mCz

2 > = 1

2
kB (3θ − 2T ) > 1

2
kBT                        (14b) 

 
in such a way that the usual definition of T is satisfied, but 
there is also a place for a non-equilibrium temperature. 
    This simple example shows that beyond local equilibrium, 
energy equipartition should not be expected in general, so 

that different degrees of freedom may have different values 
of the temperature. One of the aims of a non-equilibrium 
thermodynamics of steady states should be to relate the 
temperatures for the different degrees of freedom when the 
total energy and energy flux are specified. It is not sufficient 
to formally define a non-equilibrium temperature through a 
relation like (11), but one must also identify under which 
physical conditions this temperature may be measured, and 
which is its relation with other temperatures of other degrees 
of freedom. Furthermore, since different kinds of 
thermometers have different sensitivities to different degrees 
of freedom, it is also important to be able to relate the 
temperatures measured by different kinds of thermometers. 
Thus, thermodynamics beyond local equilibrium is indeed a 
demanding task. 
 
STATEMENT OF THE SECOND LAW 
 
The second law is usually stated as the positive definite 
character of the entropy production. Depending on the kind 
of entropy being considered, the entropy production will have 
different forms and will yield different restrictions on the 
transport equations. In particular, this statement expressed in 
terms of the extended entropy allows several surprising 
features which are forbidden by the classical form of the 
second law: at short time scales and short spatial scales, for 
instance, heat may flow from lower to higher temperature [5]. 
Some of these features have been checked through thermal 
waves, or could be checked in systems with relatively long 
mean-free paths. For instance, in a heat transport equation 
with a relaxation term, the heat exchange between two small 
subsystems in thermal contact take the form of a damped 
oscillation. During some time intervals, heat is flowing from 
lower to higher temperature. This is against the local-
equilibrium version of the second law but not against the 
classical version of the second law, because during the total 
equilibration process the net heat exchange from higher to 
lower temperature is higher than in the opposite direction [9-
14]. 
    An analogous situation of heat flowing in the opposite 
direction as allowed by the second law is found in phonon 
backscattering in rough-walled silicon nanowires, in a thin 
layer (the so-called Knudsen layer) close to the walls. From a 
microscopic perspective this may be understood, as phonons 
collide against the roughness peaks and they recede 
backwards. This reduces very much the effective thermal 
conductivity of the nanowire. This feature violates the local-
equilibrium version of the second law, but not the classical 
version, because the net heat flux is against the temperature 
gradient, as it should be. A similar situation may be found in 
radial heat transport at short scales [15]. 
   In both cases, the local-entropy production of the EIT 
entropy is positive everywhere, in contrast with the 
production of the local-equilibrium entropy. Thus, at small 
lengths and short times the formulation of a local and 
instantaneous version of the second law need a generalization 
of the entropy. Note that these situations seem, in principle, 
out of the reach of thermodynamic descriptions, because the 
number of collisions is very small. However, in steady states 
one may make many different measurements and a statistical 
description is possible. Particular situations could violate the 
positive definite character of the extended entropy production 
but, on the average, they are expected not to violate it. 
However, the average value could violate the positive 
character of the local-equilibrium entropy production.  
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     Furthermore, one may use information theoretical 
arguments to obtain the expression for the entropy, subject to 
constraints on the average values of the classical variables 
and the fluxes [6, 9]. Such arguments also imply a statistical 
meaning. However, one could explore the ideas of 
algorithmic information theory, where information does not 
require a statistical description, but the minimum amount of 
information to describe a given physical situation.  In this 
case, one could use thermodynamic concepts in situations 
beyond the usual ones. 
 
CONCLUDING REMARKS 
 
    In this final section we briefly comment on some questions 
arising in non-linear and in non-Markovian situations and 
concerning the relation between the entropy and the Boltzmann 
H-function in non-equilirbium situations. 
 
Non-linear transport equations 
 
 A problem of the application of the second law is its use for 
non-linear transport laws. In principle, the admissible laws are 
those yielding a pisitive entropy production. However, when 
this restriction is applied   not to the full laws but to second or 
fourth-order approximation in the forces, the restrictions may 
be unsuitable, in the sense that they may require some 
coefficient sto be zero although they are not ttruly zero. Indeed, 
the negative contribution of some second or fourth-order terms 
may be compensated by the positive contributions of higher-
order terms. In this case of approximations to fully nonlinear 
laws, the second law may indicate, rather than a strict 
restriction on the coefficients, a bound on the domain of 
applicacility of such approximations; thus, instead of setting 
restrictions on material properties (as it is usual in the linear 
domain) they may set limits on the processes to which such 
equations may be applicable. 
 
Non-Markovian systems 
 
  Another topic of interest is the formulation of the second law 
for non-Markovian systems. In this case, the value of the 
variables of the system at time t + τ are a function not only of 
the values at time t, but also at time t – τ (and maybe other 
precedent times). Then, a description of the evolution of the 
system requires knowing not only the values at t but also at t – 
τ, namely 
 
    Xi(t + τ) = F[Xj (t), Xk(t – τ)]                                       (15) 
 
where Xi are the variables of the system, and F[…], a suitable 
functional or differential equation. Therefore, the entropy 
should be expressed in terms not only of the variables at t but 
also at t – τ, namely 
 
    S = S(Xj (t), Xk(t – τ))                                                     (16) 
 
When the difference between the values at time t and time t – 
τ, is expanded up to the first order in τ, the fluxes or the rates 
of change arise in a natural way in the entropy. Higher-order 
fluxes or time derivatives appear if the expansion goes to 
second or higher orders in τ. The formalism of EIT has been 
also applied to some situations of this kind at a microscopic 
level, when the usual H function is not sufficient to account 
for the second law restrictions [9]. Non-Markovian transport 

equations may also be expressed in terms of memory 
functions; the second-law restrictions on memory functions 
are an interesting topic in the so-called rational 
thermodynamics. 
 
H-function and non-equilibrium entropy 
   Another topic of interest for our discussion is the relation 
between the micoscopic H-function and the extended 
entropy. In equilibrium states, the H-function reduces to the 
thermodynamic entropy. Then, it is logical to ask what is the 
relation between both functions out of equilibrium. The H-
function, described in terms of the microscopic distribution 
function, may be a functional of many variables, as for 
instance, of many moments of the distribution function, may 
higher-order fluxes, or many higher-order gradients of the 
hydrodynamic variables. But a thermodynamic description is 
deemed to use only a relatively small number of independent 
variables, having a macroscopic (or mesoscopic) limit. Thus, 
the H-function does not directly provide a truly 
thermodynamic entropy. 
   To have a thermodynamic entropy, one should project the 
entropy onto a space of a relatively small but sufficiently 
efficient and realistic set of variables. This may be done, but 
it is not sure that such a projected (or reduced) version of the 
entropy must have a positive entropy production. As a 
consequence, the H-theorem does not yield a deep basis to 
the formulations of the second law based on reduced 
entropies. 
   To be more explicit, consider that the non-equilibrium 
distribution function may be written as 
 
f (r ,C,t) = feq (r ,C,t) 1+ Φ[ ]                                             (17) 

 
with feq the equilibrium distribution function characterized by 
the local values of the thermodynamic parameters, and Φ a 
non-equilibrium contribution. Up to the second order in Φ, 
the “entropy” s obtained from the H-function has the form 
 

s= seq − 1

2
kB feqΦ2dC∫                                                  (18) 

 
It is seen that, in principle, s will different from the local-
equilbrium entropy seq. However, in view of (17) and (18), 
the practical success of the local-equilibrium version of the 
local-equilibrium version of the second law may be easily 
understood. Indeed, from a microscopic basis, the local-
equilibrium hypothesis does not imply a local-equilibrium 
form for the microscopic distribution function, but a suitable 
non-equilibrium contribution Φ is needed; otherwise, because 
of symmetry reasons,  the values of the fluxes (which are 
usually odd functions of the molecular velocity) would be 
zero. But, up to the first order in Φ, the entropy reduces to the 
local-equilibrium entropy, because the first-order 
contribution in Φ may be shown to vanish. Then, the use of a 
non-vanishing Φ in the calculation of the fluxes is compatible 
with the use of the local-equilibrium entropy. This 
consistency is lost when the equations for the fluxes, i.e. the 
transport equations, incorporate second-order terms, because 
in this case second-order terms should also be considered in 
the entropy. 
   When Grad’s approach to the solution of the Boltzmann 
equation is used, i.e. when Φ is expressed in terms of the 
second or the third moments of the velocity distribution 
function for ideal gases, which are directly related to the 

215



 
viscous pressure tensor or the heat flux, respectively, the 
expressions (4) and (2) for the entropy are obtained, and 
expression (10) for the entropy flux is also obtained, 
consistent with linear transport equations (7) and (8). 
However, the microscopic transport equations are in fact 
more general than (7) and (8), as they contain non-linear 
contributions.  
     The extended entropy production is positive for equations 
(7) and (8), but it may become negative when non-linear terms 
are taken into consideration. However, these negative 
contributions could be balanced by positive contributions 
arising from higher-order non-linear terms, but this would 
require a knowledge of all such terms. Eu [12] made an 
interesting proposal to deal with non-linear terms, which leads 
to a positive entropy production for relatively complex and 
useful generalizations of the transport equations (7) and (8). 
Otherwise, in Grad’s approach –and also in Chapman-Cowling 
approach-, the positive character of the truncated entropy 
cannot be shown, in contrast to the positive character of the 
production of the H function. 
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NOMENCLATURE 
 
kB Boltzmann constant 
s entropy per unit mass 
Js entropy flux 
q heat flux 
u internal energy per unit mass 
ρ mass density 
  l mean free path 
τ relaxation time 
η shear viscosity 
λ thermal conductivity 
X variables of a system 
C velocity of molecules 
V velocity gradient 
Pv viscous presssure tensor 
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**Dipartimento di Matematica, Università della Calabria and INFN-Gruppo c. Cosenza, 87036 Cosenza, Italy,
E-mail: g.mascali@.unical.it

EXTENDED ABSTRACT

In the formulation of hydrodynamic subband models for charge carriers in semiconductors in presence of confinement effects in one or two
directions, a crucial problem, in order to apply the maximum entropy principle (MEP), is an appropriate assumption on the entropy for a 2D or 1D
electron gas which combines a semiclassical description in the transport direction and quantum effects in the transversal direction. The attempts
already known in the literature are based on the quantum formulation of the maximum entropy principle, as proposed in the pioneering work of
Jaynes [1] and its more recent revisitation in [2; 3; 4]. However the technical difficulties in solving the constraints in the quantum case are a very
complex and daunting task because the algebraic relations are now operatorial ones. Even the expansion in powers of h̄ does not circumvent the
problem since only low order terms can be retained otherwise the presence of too high order derivatives makes the resulting equations practically
impossible to solve numerically.
When confined structures, like those arising in double-gate MOSFET’s or standard MOSFET’s are considered, one can take advantage from the
symmetry of the problem which allows one to make a geometrical splitting in quantized direction and longitudinal direction. In [5; 6] we have
proposed a hybrid expression for the entropy of the system under consideration where in each subband the semiclassical entropy, arising as the
limit of the Fermi-Dicac one, is weighted by the square modulus of the envelope functions obtained by solving the Schroedinger-Poisson equations.
Summing up the contribution of each subband, the resulting form of the entropy contains both semiclassical information, intended in the usual sense
of statistical mechanics or information theory, and a quantum aspect which weights the importance of the single subband, giving more relevance to
those associated with a lower energy.
Examples of applications of such an approach have been presented in [7; 8] where the simulations of nanoscale double gate MOSFET’s show a
good accuracy of the models.

REFERENCES

[1] Jaynes, E. T.: Information Theory and Statistical Mechanics. Phys. Rev. B vol. 106, pp. 620–630, 1957.
[2] Degond, P., Ringhofer, C., Quantum moment hydrodynamics and the entropy principle, J. Stat. Phys. vol.112, pp. 587-628, 2003.
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EXTENDED ABSTRACT 

 
After a brief survey on the principles of Rational Extended Thermodynamics of monatomic gas (entropy principle, constitutive equations of local 
type, symmetric hyperbolic systems, main field, principal sub-system) we present in this talk a  recent new approach to deduce hyperbolic system 
for dense gases not necessarily monatomic.  
In the first part of the talk we study extended thermodynamics of dense gases by adopting the system of field equations with a different hierarchy 
structure to that adopted in the previous works. It is the theory of 14 fields of mass density, velocity, temperature, viscous stress, dynamic 
pressure and heat flux. As a result, all the constitutive equations can be determined explicitly by the caloric and thermal equations of state as in 
the case of monatomic gases. It is shown that the rarefied-gas limit of the theory is consistent with the kinetic theory of gases. 
In the second part, we limit the result to the physically interesting case of rarefied polyatomic gases and we show a perfect coincidence between 
ET and the procedure of Maximum Entropy Principle. The main difference with respect to usual procedure is the existence of two hierarchies of 
macroscopic equations for moments of suitable distribution function, in which the internal energy of a molecule is taken into account. 
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ABSTRACT
By considering the Wigner formalism the quantum maximum entropy principle (QMEP) is here asserted as the fundamental
principle of quantum statistical mechanics when it becomes necessary to treat systems in partially specified quantum mechanical
states. From one hand, the main difficulty in QMEP is to define an appropriate quantum entropy that explicitly incorporates
quantum statistics. From another hand, the availability of rigorous quantum hydrodynamic (QHD) models is a demanding issue
for a variety of quantum systems like, interacting fermionic and bosonic gases, confined carrier transport in semiconductor
heterostrucures, anyonic systems, etc. We present a rigorous nonlocal formulation of QMEP by defining a quantum entropy
that includes Fermi, Bose and, more generally, fractional exclusion statistics. In particular, by considering anyonic systems
satisfying fractional exclusion statistic, all the results available in the literature are generalized in terms of both the kind of
statistics and a nonlocal description for excluson gases. Finally, gradient quantum corrections are explicitly given at different
levels of degeneracy and classical results are recovered when h̄ tends to 0.

INTRODUCTION

In thermodynamics and statistical mechanics entropy is the
fundamental physical quantity to describe the evolution of a
statistical ensemble. Its microscopic definition was provided by
Boltzmann through the celebrated expression S = kB lnΓ, where
kB is the Boltzmann constant and Γ is the number of microstates
exploiting the given macroscopic properties. In this context, it is
well known that in classical mechanics the entropy: i) allows the
violation of the uncertainty principle [1]; ii) can be considered
as a special case of the so-called Boltzmann-Gibbs-Shannon en-
tropy that enables one to apply results of information theory to
physics [1; 2]. In particular, maximum entropy principle (MEP)
allows one to derive [2; 3; 4; 5] the nonequilibrium distribu-
tion function associated with particles, and to determine the mi-
crostate corresponding to the given macroscopic quantity.

We remak, that the MEP can be exploited in the completely
nonlinear case, without any assumption on the nonequilibrium
processes. Alternatively, an approximate distribution function is
usually derived through a formal expansion around a local equi-
librium configuration and so Extended Thermodynamics (ET)
theories [3; 6] of N moments and degree α (ET α

N models) were
obtained. In this way, it was found possible to derive rigorous
hydrodynamic (HD) models based on the moments of the dis-
tribution function to different orders of a power expansion and
including appropriate closure conditions [3; 6; 7; 8]. Accord-
ingly, making use of the Lagrange multipliers technique, it was
found possible to construct the set of evolution equations for the
macro-variables of interest.

Apart from some partial attempts [2; 9; 10], this is no longer
the case in quantum mechanics. Here, the main difficulties
concern with: i) the definition of a proper quantum entropy
that includes particle indistinguishability; ii) the formulation

of a global quantum MEP (QMEP) that allows one to obtain
a quantum distribution function both for thermodynamic equi-
librium and nonequilibrium configurations. From one hand, in
the framework of a nonlocal quantum theory, the generalization
of the corresponding Lagrange multipliers is also an open prob-
lem. From another hand, a rigorous formulation of quantum HD
(QHD) closed models is a demanding issue for many kinds of
problems in quantum systems like, interacting fermionic and
bosonic gases, anyonic systems, quantum turbulence, quan-
tum fluids, quantized vortices, nuclear physics, confined carrier
transport in semiconductor heterostrucures, phonon and elec-
tron transport in nanostructures, nanowires and thin layers.

Recently, a comprehensive review on QMEP which sum-
marizes the state-of-the-art on this subject was presented in
Ref. [8]. Accordingly, all the results available from the liter-
ature for a three-dimensional (3D) Fermi and/or Bose gas, have
been generalized in the framework of a nonlocal Wigner theory
both in equilibrium and nonequilibrium conditions [11].

The aim of this work is to consider an extension of QMEP
in the framework of fractional exclusion statistics (FES). In par-
ticular we consider anyonic systems satisfying FES [12], and
to determine the thermodynamic evolution of an excluson gas
compatibly with the uncertainty principle. In this way, within
the framework of a QMEP-Wigner formulation, we generalize
all the results available from the literature in terms of both: the
kind of statistics and a nonlocal description for the quantum gas.

FRACTIONAL STATISTICS

Whereas fermions and bosons can exist in all dimen-
sions, certain low dimensional systems have elementary exci-
tations that may obey quantum statistics interpolating between
fermionic and bosonic behaviors. In particular, particles car-
rying these generalized statistics, are called generically anyons
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[13]. For anyons, fractional statistics are related to the trajectory
dependence in the particle exchange procedure in configuration
space and are connected to the braid group structure of particle
trajectories [13; 14; 15] in two spatial dimensions (2D). Mathe-
matically, fractional statistics are parameterized by a phase fac-
tor that describes how the field operators of an anyonic system
changes because of exchange procedure in 2D configuration
space [13; 14; 15]. Thus, the concept of anyons is specific to
two dimensions, and because of the trajectory dependence, the
single particle state is inextricably connected with the complete
state of the many-body configuration of the system. In 2D sys-
tems, the fractional statistics have been successfully applied to
describe the charged excitations (Laughlin quasi-particles [16])
of a fractional quantum Hall (FQH) [17] where the electron gas
shows a fractional electric charge [18] and, more recently, a di-
rect evidence of fractional exchange phase factor was observed
in experiments [19]. We remark, that fractional anyon statistics
has been formalized, to some extent [20; 21], also in the one-
dimensional (1D) case. In particular, for 1D systems the inter-
actions and statistics are inextricably related, because the colli-
sion phenomena are the only way to interchange two particles.
Accordingly, also in this case, anyons acquire a step-function-
like phase when two identical particles exchange their positions
in the scattering process. Anyons in 1D models are still unex-
plored to a wide extent, although many one-dimensional any-
onic models have been introduced and investigated in litera-
ture [22; 23; 24; 25; 26; 27] Thus, by defining the q-deformed
bracket [A,B]q = AB− qBA, we can introduce (for D = 1,2) the
anyon field operators Ψ(r) and Ψ†(r) with the general deformed
relations [14; 28; 29]

[
Ψ(r),Ψ(r′)

]
q =

[
Ψ†(r),Ψ†(r′)

]
q
= 0 , (1)

[
Ψ(r),Ψ†(r′)

]
q−1

= δD(r− r′) , (2)

where q(r,r′) is a discontinuous function of its arguments [14;
29] corresponding to a phase factor that denotes the system
statistics [30] and, for the sake of consistency

q(r,r′) = q−1(r′,r) , with q(r,r) =±1 , (3)

A different notion of fractional statistics, in arbitrary dimension
D, has been introduced by Haldane [31]. This approach is based
on a generalized Pauli exclusion principle where it is necessary
to count as changes the dimension of the single particle Hilbert
space when extra particles are added, keeping constant both the
boundary conditions and the size of the condensed-matter re-
gion. Particles that obey Haldane exclusion-statistics (HES) are
called exclusons with (in the case of single specie) a statistics
parameter κ =−δG/δN, where δG describes the change in size
of the subset of available single-particle states corresponding to
a variation of δN particles. It is known that HES is, in general,
different from anyon statistics. Indeed, the excluson statistics
is assigned to elementary excitations of condensed matter sys-
tems, which are not necessarily connected with braiding con-
siderations [21; 31]. However, there are some systems where
a thermodynamics coincidence of the two statistics was shown
[22; 25; 31; 32]. In this case, it is possible to think that the
anyon model is a microscopic quantum realization of Haldane
statistics.

In the next sections we consider anyonic systems satisfying
the FES, to describe the thermodynamic evolution of an exclu-
son gas by using QMEP-Wigner formalism. In this way, com-
patibly with the uncertainty principle, we include both the sta-
tistical effects and a nonlocal description for the system.

THE WIGNER DYNAMICS

Following Ref. [8; 12] we consider a fixed number N of iden-
tical particles and introduce in Fock space the statistical density
matrix ρ for the whole system, with Tr(ρ) = 1, (we suppress
the symbol ̂ to refer to operators acting in Fock space) and the
general Hamiltonian [33]

H =
∫

d3r Ψ†(r)
[
− h̄2

2m
∇2 +U(r)

]
Ψ(r)+ (4)

1
2

∫ ∫
dDr dDr′Ψ†(r)Ψ†(r′)V (r,r′)Ψ(r′)Ψ(r)

where m is the particle effective mass, U(r) is the one-body po-
tential, V (r,r′) is a two-body symmetric interaction potential, Ψ
and Ψ† are wave field operators satisfying the anyon relations
(1)-(3) with their properties [30; 33]. Analogously, in coordi-
nate space representation, we define the reduced density matrix
[8; 11] of single particle (here and henceforth we use the sym-
bol ̂ for single particle operators) 〈r|ρ̂|r′〉 = 〈Ψ†(r′)Ψ(r)〉 =
Tr(ρΨ†(r′)Ψ(r)) that in an arbitrary representation takes the
form 〈ν|ρ̂|ν′〉= 〈a†

ν′aν〉= Tr(ρa†
ν′aν) being ν, ν′ single particle

states, aν, a†
ν′ annihilation and creation operators for these states

and 〈· · ·〉 the statistical mean value. Thus, if we consider a one-
particle observable M̂ then an ensemble average will lead to the
expected value Tr(ρ̂M̂ ) =

∫
dDrdDr′〈Ψ†(r′)Ψ(r)〉〈r′|M̂ |r〉.

By using this formalism, we can define the reduced Wigner
function

FW =
1

(2πh̄)D

∫
dDτe−

i
h̄ τ·p〈Ψ†(r− τ/2)Ψ(r+ τ/2)〉 (5)

with
∫

dD pFW = 〈r|ρ̂|r〉= 〈Ψ†(r)Ψ(r)〉= n(r), being n(r) the
quasi-particle numerical density, with Tr(ρ̂) = N.
Accordingly, by considering an operator of single parti-
cle M̂ (r̂, p̂), we look for a function M̃ (r,p) in phase
space that corresponds unambiguously to operator M̂ , in-
troducing the Weyl-Wigner transform W (M̂ ) = M̃ (r,p) =∫

dDτ〈r + τ/2 |M̂ |r − τ/2〉e− i
h̄ τ·p and, analogously, we de-

fine the inverse Wigner transform W −1(M̃ ) = 〈r|M̂ |r′〉 =

(2πh̄)−D ∫
dD pM̃ ((r+ r′)/2,p)e

i
h̄ p·(r−r′) which maps the

function M̃ on phase space into the operator M̂ .
Thus, by using the equation of motion in the Heisenberg

picture ih̄∂tΨ(r) = [Ψ(r),H], the relations (1)-(3) with their
properties[30], and the symmetry of terms V (r,r′), we ob-
tain the equations ih̄∂tΨ(r) = H (r)Ψ(r) and −ih̄∂tΨ†(r) =
Ψ†(r)H (r) with

H (r) =− h̄2

2m
∇2 +U(r)+

∫
dDr′Ψ†(r′)V (r,r′)Ψ(r′). (6)

Starting from these relations, we determine the equation of mo-
tion for the quantity Ψ†(r′)Ψ(r) and by performing its statisti-
cal average we obtain, in the generalized Hartree approximation
[34], the usual evolution-equation for the reduced density ma-
trix of single particle

ih̄
∂
∂t
〈r|ρ̂|r′〉=

∫
dDr′′[〈r|Ĥ |r′′〉〈r′′|ρ̂|r′〉−〈r|ρ̂|r′′〉〈r′′|Ĥ |r′〉] (7)
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being Ĥ = 〈H 〉 the single particle Hamilton operator. Accord-
ingly, following a usual script [8; 11; 34], we can use all pre-
vious relations to obtain the formal full expansion, to all orders
in h̄, of the Wigner equation in the generalized Hartree approx-
imation

∂FW
∂t

+
pk

m
∂FW
∂xk

= (8)

∞

∑
l=0

(i h̄/2)2l

(2l +1)!

[
∂2l+1Ve f f

∂xk1 · · ·∂xk2l+1

][
∂2l+1FW

∂pk1 · · ·∂pk2l+1

]

where all effects of the interactions are entirely contained in
the definition of the effective potential [35], Ve f f (r) = U(r)+∫

dDr′ n(r′)V (r,r′).

QUANTUM ENTROPY AND QMEP FORMALISM

The most used definition of quantum entropy is due to Von
Neumann [36], and is expressed in the form

S =−kB Tr(ρ lnρ) (9)

where ρ is the statistical density matrix operator appropriate to
the physical system under study.

Although the relation (9) does not refer to any special struc-
ture of the system, there are some particular features that must
be satisfied for a system of identical particles. Indeed, a main
drawback of the above definition stems in the fact that it does
not include the statistical effects for a system of identical par-
ticles. To account for the effects of statistics in Eq. (9), it
is mandatory to consider an additional information specifying
whether the density operator ρ, defined in Fock space, is asso-
ciated with an excluson system, fermion or boson like. In order
to take into account ab initio the statistics for a system of identi-
cal particles, we can follow the usual strategy of evaluating the
quantum entropy as the logarithm of the statistical weight for
the whole system.

Thus, to take into account ab initio the FES, we evaluate
the entropy S for a noninteracting system under nonequilibrium
conditions in terms of the occupation numbers [37]

S =−kB ∑
ν

y
{〈Nν〉 ln〈Nν〉+(1−κ〈Nν〉) ln(1−κ〈Nν〉)

−[1+(1−κ)〈Nν〉] ln [1+(1−κ)〈Nν〉]
}

(10)

with 〈Nν〉 = 〈a†
νaν〉/y, y the spin degeneration, and κ the sta-

tistical parameter of fractional statistics. If we consider the
Schrödinger equation of single particle [Ĥ (r)−Eν]ϕν(r) = 0
then, the occupation numbers 〈Nν〉, associated with the ener-
gies Eν, will completely specify the macroscopic state of the
gas. In particular, by using the relation (7) in stationary condi-
tions, both the reduced density matrix and any operator Φ̂(ρ̂) are
diagonal in the base ϕν. Therefore, by introducing as function
of ρ̂ the quantity

Φ̂(ρ̂) = y

{
ρ̂
y

ln
(

ρ̂
y

)
+

(
Î −κ

ρ̂
y

)
ln
(

Î −κ
ρ̂
y

)

−
[

Î +(1−κ)
ρ̂
y

]
ln
[

Î +(1−κ)
ρ̂
y

]}
(11)

with Î the identity, we obtain 〈ν|ρ̂|ν′〉= 〈a†
νaν〉δνν′ and

〈ν|Φ̂(ρ̂)|ν′〉= y
{〈Nν〉 ln〈Nν〉+(1−κ〈Nν〉) ln(1−κ〈Nν〉)−

[1+(1−κ)〈Nν〉] ln [1+(1−κ)〈Nν〉]
}

δνν′ (12)

We remark, that for κ = 1 or κ = 0 the entropy (10) recovers the
usual expressions for fermions or bosons [38], and Eqs. (11)-
(12) become

Φ̂(ρ̂) = ρ̂
{

ln
(

ρ̂
y

)
± y ρ̂−1

(
Î ∓ ρ̂

y

)
ln
(

Î ∓ ρ̂
y

)}
(13)

〈ν|Φ̂(ρ̂)|ν′〉= y
[〈Nν〉 ln〈Nν〉±

(
1∓〈Nν〉

)× (14)
ln
(
1∓〈Nν〉

)]
δνν′

Analogously, under nondegenerate conditions Bose and Fermi
statistics tend to Boltzmann statistics as limit case, and the gen-
eral expressions (11)-(12) reduce to

Φ̂(ρ̂) = ρ̂
{

ln
(

ρ̂
y

)
− Î

}
, (15)

〈ν|Φ̂(ρ̂)|ν′〉= y〈Nν〉
(
ln〈Nν〉−1

)
δνν′ . (16)

Consequently, by generalizing existing definitions [1; 2; 9; 10;
36], the statistics can be implicitly taken into account by defin-
ing, for the whole system, the quantum entropy in terms of the
functional of the reduced density matrix

S(ρ̂) =−kBTr[Φ̂(ρ̂)] (17)

where Φ̂(ρ̂) is given by Eq. (11) for the FES [12], by Eq. (13)
for the Fermi or Bose gases [8; 11], and by Eq. (15) for the
Boltzmann gas.

General formulation of QMEP in phase space

By considering an arbitrary set of single-particle observable
{M̂A} and the corresponding space-phase functions {M̃A}, we
define the macroscopic local moments

MA(r, t) =
∫

dD p M̃A(r,p) FW (r,p, t) (18)

and we use the functional (17) as an informational entropy for
the system. To formulate the QMEP in phase space, we intro-
duce the phase function Φ̃(r,p) = W (Φ̂(ρ̂)), we rewrite Eq.
(17) in the form

S(ρ̂) =− kB

(2πh̄)D

∫ ∫
dD pdDr W (Φ̂(ρ̂)) , (19)

and we search the extremal value of the global entropy subject to
the constraint that the information on the physical system is de-
scribed by a set of local moments {MA(r, t)} with A = 1, · · ·N .
To this purpose, we define the new global functional [8; 10; 11]

S̃ = S−
∫

dDr

{
N

∑
A=1

λ̃A

[∫
dD pM̃A FW −MA

]}
(20)
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being λ̃A(r, t) the nonlocal Lagrange multipliers to be deter-
mined.

By using the general relation (11) introduced for the FES,
one can show that the solution of the constraint δS̃ = 0 implies

ρ̂ = y
{

ŵ(ξ̂)+κ Î
}−1

(21)

where the operator ŵ satisfies the functional relation

[ŵ(ξ̂)]κ[Î + ŵ(ξ̂)]1−κ = ξ̂ (22)

with the operator

ξ̂ = exp

[
W −1

(
N

∑
A=1

λA M̃A

)]
and λA =

λ̃A

kB
(23)

The set of Eqs. (21)-(23) is a first major result. It generalizes
existing results [37], in an operatorial sense, under both thermo-
dynamic equilibrium and nonequilibrium conditions. Besides,
the relations (21)-(23), together with Eqs. (11) and (17), pro-
vide a generalized definition of quantum entropy that includes
nonlocal effects in FES. As a consequence, a nonlocal Wigner-
theory for the system can be formulated by explicitly evaluating
the corresponding reduced Wigner-function

FW = (2πh̄)−D W (ρ̂[λA(r, t),M̃A]). (24)

We note, that by solving the general relation (22) for κ = 1,0
we reobtain the Fermi and Bose statistics, being in this case [8;
11]

ρ̂ = y

{
exp

[
W −1

(
N

∑
A=1

λA(r, t)M̃A

)]
± Î

}−1

(25)

while for the Boltzmann statistics, we obtain the simplified ex-
pression

ρ̂ = y exp

{
W −1

(
−

N

∑
A=1

λA(r, t)M̃A

)}
(26)

We conclude by remarking that, by itself, the QMEP does not
provide any information about the dynamical evolution of the
system, but it offers only a definite procedure to construct a se-
quence of approximations for the nonequilibrium Wigner func-
tion. To obtain a dynamical description, it is necessary: (i) to
know a set of evolution equations for the constraints that in-
clude the microscopic kinetic details, (ii) to determine the La-
grange multipliers in terms of these constraints. In this way, the
QMEP approach implicitly includes all the kinetic details of the
microscopic interactions among particles. Then, by knowing
the functional form (21)-(24) of the reduced Wigner function,
we use Eq. (8) to obtain a set of evolution equations for the
constraints. This set completely represents the QHD model in
which all the constitutive functions are determined starting from
their kinetic expressions. Thus, for a given number of moments
MA, we consider a consistent expansion around h̄ of the Wigner
function. In this way, we separate classical from quantum dy-
namics, and obtain order by order corrections terms.

Moyal expansion of the Wigner function

By using the Moyal formalism [39], one can prove that the
phase function w̃=W (ŵ), the Wigner function FW and, hence,
the moments MA can be expanded in even power of h̄ as

w̃ =
∞

∑
k=0

h̄2kw(2k), FW =
∞

∑
k=0

h̄2kF (2k)
W , MA =

∞

∑
k=0

h̄2kM(2k)
A

To this end, the Lagrange multipliers λA must be determined by
inverting, order by order, the constrains

MA =
1

(2πh̄)D

∫
dD p M̃A W

(
ρ̂[λB(r, t),M̃B]

)
. (27)

where the inversion problem can be solved [8; 11] only by as-
suming that also the Lagrange multipliers admit for an expan-
sion in even powers of h̄

λA = λ(0)
A +

∞

∑
k=1

h̄2k λ(2k)
A , (28)

In this way, by using Eqs. (21)-(24) and (27)-(28), with the
strategy reported in Ref. [8; 11], we succeed in determining the
following expression for the reduced Wigner-function

FW =
ỹ

w(0)(ξ)+κ

{
1+

∞

∑
r=1

h̄2rP2r

}
, (29)

where ỹ= y/(2πh̄)D, ξ= exp(Π) with Π=∑λA M̃A, the nonlo-
cal terms P2r expressed by recursive formulas and the function
w(0) satisfying the usual functional equation

[w(0)(ξ)]κ[1+w(0)(ξ)]1−κ = ξ. (30)

Equation (29) is a second major result. Indeed, making use of
ξ0 = eΠ0 with Π0 = ∑λ(0)

A M̃A, from (29) we obtain, explicitly,
the following first order (r = 1) quantum correction

P2 =

{
2

[w(0)(ξ0)+κ]2

(
ξ0

dw(0)

dξ0

)2

− 1
w(0)(ξ0)+κ

×
[

ξ2
0

d2w(0)

dξ2
0

+ξ0
dw(0)

dξ0

]}
H (2)

2 −
{

6
[w(0)(ξ0)+κ]2

×
[

1
w(0)(ξ0)+κ

(
ξ0

dw(0)

dξ0

)3

−
(

ξ0
dw(0)

dξ0

)2

−

ξ3
0

d2w(0)

dξ2
0

dw(0)

dξ0

]
+

1
w(0)(ξ0)+κ

[
ξ3

0
d3w(0)

dξ3
0

+

3ξ2
0

d2w(0)

dξ2
0

+ξ0
dw(0)

dξ0

]}
H (2)

3 (31)

being the nonlocal functions H (2)
2 and H (2)

3 expressed by

H (2)
3 =− 1

24

[
∂2Π0

∂xi∂x j

∂Π0

∂pi

∂Π0

∂p j
+

∂2Π0

∂pi∂p j

∂Π0

∂xi

∂Π0

∂x j
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− 2
∂2Π0

∂xi∂p j

∂Π0

∂x j

∂Π0

∂pi

]
, (32)

H (2)
2 =−1

8

[
∂2Π0

∂xi∂x j

∂2Π0

∂pi∂p j
− ∂2Π0

∂xi∂p j

∂2Π0

∂x j∂pi

]
. (33)

We remark the following main points:
(i) For κ = 1 and κ = 0 we recover the gradient nonlocal

results obtained for Fermi and Bose gases [8; 11], being in this
case

FW =
ỹ

eΠ ±1

{
1+

∞

∑
r=1

h̄2rP±
2r

}
, (34)

with the first quantum correction (31) that becomes

P±
2 =

{
6
[

eΠ0

eΠ0 ±1

]2

−6
[

eΠ0

eΠ0 ±1

]3

− eΠ0

eΠ0 ±1

}
H (2)

3 +

{
2
[

eΠ0

eΠ0 ±1

]2

− eΠ0

eΠ0 ±1

}
H (2)

2 (35)

Analogously, by considering a quantum Boltzmann gas [8; 11],
we obtain the simplified relations

FW = ỹ e−Π

{
1+

∞

∑
r=1

h̄2rP2r

}
with P2 = H (2)

2 −H (2)
3

(36)
(ii) The functions {H (2)

2 ,H (2)
3 } are in general, expressed in

terms of the quantities {MA,
∂MA
∂xk

, ∂2MA
∂xi∂xk

,p}; in any case, these
functions can be evaluated using different levels of approxima-
tion [40].

(iii) In thermodynamics equilibrium conditions we can write
Π|E = α+βε̃ where ε̃ = mũ2/2, being ũi = ui −λi the peculiar
velocity, ui = pi/m the group velocity, and {α,β,λi} the equi-
librium nonlocal Lagrange multipliers.

EXAMPLES AND APPLICATIONS

As relevant application of the above results, we consider an
excluson gas in isothermal equilibrium conditions. Accord-
ingly, β= (kBT )−1, with T the constant temperature, and within
a general approach all nonlocal effects can be described in terms
of spatial derivatives of concentration n(r, t) and mean velocity
vi(r, t) = n−1 ∫ dD p uiFW . In this case it is necessary to deter-
mine a closed set of balance equations for the variables {n,vi}
used as constraints in the QMEP procedure. Thus, by consider-
ing the kinetic fields M̃A = {1,ui} and using Eq. (8) we obtain
the quantum drift-diffusion model [8; 11]

ṅ+n
∂vk

∂xk
= 0, v̇i +

1
n

∂Mik

∂xk
+

1
m

∂Ve f f

∂xi
= 0, (37)

where the unknown function Mik can be decomposed as

Mik = M〈ik〉+
P
m

δik +O(h̄4) (38)

being the traceless part of tensor

M〈ik〉+O(h̄4) =
∫

dD p ũ〈i ũk〉 FW

and the generalized quantum pressure

P+O(h̄4) =
2
D

∫
dD p ε̃ FW |E

independent constitutive quantities. Then, by making use of
Eqs. (29)-(33), we calculate the variables of local equilibrium
{n,P} and the traceless tensor M〈ik〉, determining the general
relations

ID−1(α,κ) = γ
n

T D/2

{
1− h̄2

12m
1

kB T

[
2

∑
p=1

η(0)
1p Q (1,p)

+η(0)
21 Q (2,1)

]}
+O(h̄4) (39)

P =
2
D

nkB T
ID+1

ID−1

{
1+

h̄2

12m
1

kB T

[
2

∑
p=1

(
η(1)

1p −η(0)
1p

)

×Q (1,p)+
(

η(1)
21 −η(0)

21

)
Q (2,1)

]}
+O(h̄4) (40)

M〈ik〉 =− h̄2

12
n

m2 (D−2)
ID−3

ID−1
Q〈ik〉+O(h̄4) (41)

where γ = [Γ(D/2)/2y] (2πh̄2/mkB)
D/2, the integral func-

tions In(α,κ), the quantities η(s)
i j and the nonlocal functions

{Q (q,p),Q〈ik〉} are explicitly given in Eqs. (55) and (57)-(61)
of Appendix.

By providing generalized differential constraints for the
quantum system under interest, the relations (39)-(41) consti-
tute a third major result. In particular, by solving Eq. (39) with
respect to α, we determine the generalized quantum chemical
potential µ = −αkB T and, by using Eq. (40), we obtain the
generalized quantum equation of state. Thus, by introducing
the usual Bohm quantum potential QB = −(h̄2/2m

√
n)4√

n,
and the vorticity tensor Ti j = (∂vi/∂x j −∂v j/∂xi) the following
simplified analytical cases are analyzed under isothermal equi-
librium condition.

I) High-temperature and/or low-density limits.
First approximation: By using the first term of a suitable series
expansion [41] for the functions In(α,κ), we obtain the com-
pletely nondegenerate case which is independent from κ (Boltz-
mann limit), being I±n (α)≈ (1/2)Γ [(n+1)/2]exp(−α). Thus,
by defining the quantity χ(0) = y−1[(2πh̄2)/(mkB)]

D/2(n/T D/2)
and using Eqs. (39)-(41) we obtain the generalized quantum
expressions

µ = kBT ln
[
χ(0)

]
+

QI
B

3
+O(h̄4), (42)

P = nkBT +nQI
C +O(h̄4), (43)

with the first quantum nonlocal gradient corrections

QI
B = QB − h̄2

16
T 2

ll
kBT

,
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QI
C =− h̄2

12D
1
m

[
∂2 lnn
∂xr∂xr

+
m

kBT
T 2

ll

]

and the first approximation MI
〈ik〉 for the tensor M〈ik〉

MI
〈ik〉 =− h̄2

12
n

m2

[
∂2lnn

∂x〈i∂xk〉
+

m
kBT

T 2
〈ik〉

]
+O(h̄4). (44)

By neglecting vorticity effects (Tik = 0) we recover relations
well-known in literature [8; 11; 42], while, by including
vorticity terms, we re-obtain some recent results for a quantum
Boltzmann gas [43; 44].
Second approximation: By using the first two terms
of the series expansion [41] we obtain I±n (α,κ) ≈
(1/2)Γ [(n+1)/2]exp(−α){1 − (2κ − 1)/2(n+1)/2 exp(−α)},
and by considering Eqs. (39)-(41) and (57)-(61) with a
standard iterative procedure [8; 11], we determine the correct
quantum-statistical second approximation in terms of the
quantity χ(0) ¿ 1, being

µ = kBT ln
[(

1+
2κ−1
2D/2 χ(0)

)
χ(0)

]

+
1
3

(
QI

B +
2κ−1
2D/2 χ(0) QII

B

)
+O(h̄4) (45)

P = nkB T
(

1+
2κ−1
2D/2+1 χ(0)

)

+n
(

QI
C +

2κ−1
2D/2+1 χ(0) QII

C

)
+O(h̄4) (46)

M〈ik〉 = MI
〈ik〉+

2κ−1
2D/2 χ(0) MII

〈ik〉+O(h̄4) (47)

with the quantum nonlocal-gradient second corrections QII
B , QII

C
and MII

〈ik〉 explicitly given in Eqs. (62)-(64) of Appendix.
II) low-temperature limits.

Under strong degeneracy, we make use of an asymptotic expan-
sion [41] for the functions In(α,κ) (with κ ∈ (0,1]).
First approximation: When T → 0 the degeneracy becomes
complete and In(α,κ) ≈ (−α)(n+1)/2/[κ(n + 1)]. Thus, by
defining νE = [4π/(D + 2)](h̄2/m)[(κ/y)Γ(D/2 + 1)]2/D and
µ(0) = [(D+2)/2]νE n2/D, for µ and P we obtain

µ = µ(0)+
D−2

3D
QI

D +O(h̄4), (48)

P = νE n(D+2)/D +nQI
E +O(h̄4), (49)

with the quantum nonlocal-gradient first corrections

QI
D = QB − h̄2

32
D

µ(0)
T 2

ll

QI
E =

h̄2

12D
1
m

[
∂2 lnn
∂xr∂xr

+
2(D−1)

D

(
∂lnn
∂xr

)2

− m
4

D
µ(0)

T 2
ll

]

and the first approximation M I
〈ik〉 for the tensor M〈ik〉

M I
〈ik〉 =− h̄2

12
n

m2

[
∂2lnn

∂x〈i∂xk〉
+

2
D

∂lnn
∂x〈i

∂lnn
∂xk〉

+
m
2

D
µ(0)

T 2
〈ik〉

]
+O(h̄4). (50)

In particular, for κ = 1 (completely degenerate Fermi gas)
and neglecting vorticity effects (Tik = 0), we recover the gra-
dient corrections obtained in the contest of Thomas-Fermi-
Weizsacker theory [8; 11; 46]. For κ 6= 1 and, by including
also the vorticity terms, we generalize these results to excluson
gases, in the low-temperature limit [12].
Second approximation: We consider the first two terms
of the asymptotic expansion in series [41], In(α,κ) ≈
(−α)(n+1)/2/[κ(n+ 1)]{1+(π2/24)κ(n2 − 1)(−α)−2}. Thus,
by using Eqs. (39)-(41) and (57)-(61) with a suitable iterative
procedure [8; 11], we obtain the second quantum-statistical cor-
rect approximation in terms of the quantities (kBT/µ(0))2 ¿ 1,
for µ, P and M〈ik〉

µ = µ(0)
[

1− π2

12
κ(D−2)

(
kBT
µ(0)

)2
]

(51)

+
D−2

3D

[
QI

D +
π2

12
κ
(

kBT
µ(0)

)2

QII
D

]
+O(h̄4) ,

P = νE n(D+2)/D

[
1+

π2

12
κ(D+2)

(
kBT
µ(0)

)2
]

(52)

+n

[
QI

E +
π2

18
κ(D−2)

(
kBT
µ(0)

)2

QII
E

]
+O(h̄4) ,

M〈ik〉 = M I
〈ik〉−

π2

12
κ(D−2)

(
kBT
µ(0)

)2

M II
〈ik〉 , (53)

with the quantum nonlocal-gradient second corrections QII
D , QII

E
and M II

〈ik〉 explicitly given in Eqs. (65)-(67) of Appendix.
In conclusion, by knowing M〈ik〉 and P and using Eq. (38),

the system (37) is explicitly closed. However, by indicating with
{µ(c),P(c)} and {µ(q),P(q)} the classic and the quantum part of
the chemical potential and pressure, as reported respectively in
Eqs. (42)-(43), (45)-(46), (48)-(49) and (51)-(52), the spatial
derivative of Mik can be expressed in the following general form

∂Mik

∂xk
=

1
m

{
− h̄2

12
Tip

∂
∂xk

[(
∂µ(c)

∂n

)−1

Tpk

]

+
∂P(c)

∂xi
+n

∂µ(q)

∂xi

}
+O(h̄4). (54)

The relation above is a fourth major result. Indeed, in all cases
(high and/or low temperature) and for any statistical approxi-
mation (i.e. different order of expansion), Eq. (54) represents
a general closure property [45] for the quantum drift-diffusion
system in Eq. (37).

We remark, that since many years the nonlocal gradient cor-
rections have been extensively tested in real applications such
as: atomic, surface, nuclear physics and electronic properties
of clusters [46]. Analogously, density gradient expansions have
been used to describe capture confinement and tunnelling pro-
cesses for devices in the deca-nanometer regime, by showing
a very good agreement both with available experiments and
other microscopic methods [47]. The novelty of the present
approach allows one to describe the Wigner gradient expan-
sions in the framework of FES, by including also the vorticity.
Consequently, the major results outlined above can have rele-
vant applications in quantum turbulence, quantum fluids, quan-
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tized vortices, nanostructures, nanowires, thin layers and, by in-
cluding also gradient thermal corrections, in graphene quantum
transport [48]. Finally, we stress that Monte Carlo (MC) sim-
ulations and measurements of the thermodynamic properties of
quantum gases, including energy, chemical potential, sound ve-
locity and entropy, have been explored and compared recently
[49]. In some cases these results have been interpreted in the
framework of FES behaviour [50]. Similar measurements and
MC simulations may be thought also in the presence of strong
spatial inhomogeneous conditions and tested within the present
nonlocal FES strategy. Accordingly, the QMEP including frac-
tional exclusion statistics is here asserted as the fundamental
principle of quantum statistical mechanics.
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Appendix

Being w(0)(ξ) solution of (30) (with ξ = eα+x2
) we define the

integrals
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where, for n < 0, all the integral functions In(α,κ) can be ob-
tained by means of the following general differentiation prop-
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The quantum gradient corrections terms in (45)-(47) are
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2Dept. of Energy Engineering, Budapest Univ. of Technology and Economics,
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ABSTRACT
The explanation of the apparent universality of thermodynamics points toward the extension of the usual conceptual background
of the second law. Arguments are collected that a basic guiding idea of stability of thermodynamic equilibrium combined with a
proper interpretation of the entropy principle may provide the necessary solid foundation with verifiable consequences.

INTRODUCTION

When treating the conceptual background of the second law,
it is reasonable to start from the foundations, analysing the prin-
ciples behind the concepts.

The basic mystery in thermodynamics is the universality.
The validity of thermodynamic equations and theories regularly
exceed the expectations. There are three independent aspects
here:

1. Uniformity. We expect uniform principles and clear transi-
tion methods between the modeling levels. The validity of
the second law is accepted in

a) Thermostatics, treating the relation of state vari-
ables,
b) Ordinary thermodynamics, when processes of ho-
mogeneous bodies are modeled by time dependent
state variables,
c) Continuum thermodynamics, where the thermody-
namic quantities are fields,

2. Overdisciplinarity. The concept of entropy and tempera-
ture appears from black holes to quark-gluon plasma, from
general relativity to quantum chromodynamics.

3. Mechanism independence. The validity of the second law
is independent of the particular mechanisms behind. Sta-
tistical mechanics, kinetic theory can provide particular
demonstrations, but no proofs for a general principle.

One may wonder and discuss how extensive the validity of
these aspects is. The question is whether and how one can un-
derstand the origin of the observed overdisciplinarity consider-
ing the expected uniformity. We consider as a key aspect the
mentioned attitude to the mechanism independence – the gener-
ality.

In the following, we outline more exactly the challenge and a
possible program of validation. Our working hypothesis is that
the second law is a general principle and this is the reason of the
universality of thermodynamics. Therefore, we need a guiding

general idea, a conceptual understanding and, at the same time,
we need a working strategy to translate this understanding to
proper mathematical formulation of physical theories.

THE SECOND LAW IS MATERIAL STABILITY

A guiding general idea cannot and must not postulate the ex-
istence of entropy, neither the increase of entropy: the aim is
to introduce the physical origin of the entropy concept. The
general idea cannot introduce statistical concepts because that
violates the assumption of mechanism independence. Fluctua-
tions or periodic machines are too specific. A general idea must
be transparent. The general idea should produce a benchmark, a
method of verification. A good idea should have a way of exact
formulation in addition to flexibility. My suggestion is that

Thermodynamic equilibrium of simple materials
is stable under neutral conditions.

The idea that stability is connected to the second law, is an-
cient, it appears in the thermodynamic literature from different
points of view and in different contexts (see, e.g. [1; 2; 3; 4; 5;
6]). Sometimes there are wrong connected claims. We do not
state here the stability of steady-states (see, e.g. [7; 8] etc.). The
validity of an idea can be discussed [9] and exact formulations
of the statement are necessary. However, it is reasonable to be-
lieve that dissipation leads to stability of isolated simple mate-
rials. Without stability there is no observation, no reproduction
of experiments. The above statement should be considered as a
guiding idea, a challenge, a starting point of a program for the
search of exact conditions [10]. This is not an exact statement
yet, this is a principle.

On the other hand, the stability concept of the second law is
fully compatible to the other formulations. The complete ther-
mostatics can be understood from this point of view. That en-
tropy function is a potential in the thermodynamic phase space
of classical homogeneous gases and fluids, that it is concave,
and the requirement that entropy increases along several reason-
able sets of differential equations, form the three conditions of a
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Figure 1. Irreversible processes in a homogeneous van der Waals gas
in a cylinder closed by a piston are shown on the pressure-volume plane.
The initial conditions form a rectangular area around the critical point.
The three equilibrium points are denoted by crossed circles, the one
under the spinodal is instable. The tendency toward the equilibrium indi-
cates a slow manifold.

Lyapunov theorem. The thermodynamic equilibrium of simple
ordinary thermodynamic systems is asymptotically stable. This
is a simple but rigorous result, developed thoroughly in the book
of Matolcsi [11]. There are clear conditions when it is valid and
this is the necessary step between thermostatics and continuum
thermodynamics claimed e.g. in [12]. Instead of further details,
I show here some integral curves of a van der Waals body in
a constant environment at the pressure-volume plane with crit-
ical state normalization. These are processes, initial conditions
are around the critical point indicated by crosses. The van der
Waals gas body has a fold bifurcation at the critical point, and
we can observe a slow manifold in Fig. 1 with the particular
interaction parameters.

In case of continua, our basic expectation is similar. Dissi-
pation has to ensure that a homogeneous equilibrium is asymp-
totically stable in the absence of excitations and in case of neu-
tral boundary conditions. Otherwise the dissipative theory is
not properly constructed, it is a wrong model for real materi-
als. Construction and validation are not really separable when
speaking about principles. One can build a theory by any meth-
ods, introducing the empirical experience and also exploiting
the entropy inequality and then check the stability of the ho-
mogeneous equilibrium. Does the entropy principle ensures the
stability? The Fourier-Navier-Stokes system is linearly stable
[13], but generalized continua is not necessarily. Why? Is that a
problem of the principle or of the formulation?

Now we have arrived at the subject of the next section. To
formulate a reasonable attitude, we should clarify the relation
between the expected universality and the entropy principle in
continuum physics.

ENTROPY AND UNIVERSALITY

A possible and rather usual understanding of the relation of
thermodynamics and statistical theories assumes parallel mod-
eling levels according to the uniformity aspect of universality:

Thermodynamics Statistical mechanics

Thermostatics Equilibrium statistical mechanics

Ordinary thermodynamics Stochastic theory

Continuum thermodynamics Kinetic theory

Table 1. Conceptual relation of thermodynamics and statistical
physics

There is also a relativistic version of these theories. There
is a well-developed relativistic kinetic theory and also there are
relativistic theories of fluids (some of them are unstable). A rel-
ativistic stochastic theory is a relatively new development [14].
However, our particular interest now is, that there is a relativis-
tic thermostatics, too [15; 16]. It is the statics of fast motion. It
is an interesting subject in itself, but for us only one aspect is re-
markable. One of the basic relations, the most widely accepted
one, that leads to relativistic equilibrium statistical mechanics,
e.g. to Jüttner distribution, is the following:

dE = T dS− pdV + vdG.

This is a relation of energy E, temperature T , entropy S, pres-
sure p and volume V of a thermodynamic body and its velocity v
and momentum G. This relativistic generalization of the Gibbs
relation expresses the fact that energy and momentum cannot
be separated. The content of the above formula is that entropy
is a function of the volume and also of the energy-momentum
four-vector S = S(Ea,V ). Only for an observer can entropy be a
function of energy and momentum separately. Relativistic ther-
mostatics requires that entropy depends on momentum [17; 18].

Quantum versions of statistical theories at the second col-
umn of Table 1 are well known. We have been struggling with
quantum thermostatics for a long time, mostly via statistical ap-
proaches, too. However, what is quantum continuum thermody-
namics? It is originally not an outcome of a statistical theory.
It is well-known for a long time that a special Korteweg fluid,
where the pressure tensor is a function of the density gradient,
the so-called Schrödinger-Madelung fluid, is equivalent to the
one component Schrödinger equation [19]. The fluid equations
are the following:

ρ̇+ρ∂ivi = 0

ρv̇i−∂ j

[
h̄2

8m2

(
∂

k
kρδ

i j +∂
i j

ρ− 2∂iρ∂ jρ

ρ

)]
= 0, (1)

where ρ is the probability density, m is the mass of the particle,
h̄ is the Planck constant and vi is the velocity field. The connec-
tion with the wave function is given by the Madelung transfor-
mation ψ =

√
ρeiI , where I is related to the velocity potential in

the simplest case vi =
h̄
m ∂iI. There are no complex fields, nor

operators. Many researches extend the original analogy and put
the Madelung idea into a wider context, and, at the same time,
are speculating on the interpretational consequences. Some of
the most interesting ones are [20; 21; 22; 23; 24; 25; 26; 27].

This is not just an inconvenient side effect that can be forgot-
ten and put aside. Quantum field theories, let they be Abelian
or not, can be reformulated as fluid theories in general [28; 29].
There are vortices there, too. There is a corresponding thermo-
dynamic background that requires a density gradient dependent
entropy density [30]. For quantum continuum thermodynamics,
the entropy density depends on the gradient of velocity.
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Finally, one of the most striking relativistic —not yet
observed— phenomena is the Unruh effect. An accelerating
observer may observe a thermal electromagnetic radiation of an
oscillating charge. In a covariant framework a thermodynamic
theory of Unruh effect may require an acceleration dependent
entropy function. As acceleration is related to gravitation one
may wonder the role of the second law here... [31].

Therefore, the manifest overdisciplinary aspects of thermo-
dynamic concepts indicate a need of a profound generalization
of our classical approaches. Velocity and acceleration depen-
dent entropies are well justified by relativistic theories. The
traditional nonrelativistic concept of objectivity, which forbids
this dependence, is wrong [32]. Moreover, gradient dependent
constitutive state spaces and entropies are required for the ex-
planation of quantum-hydrodynamic relations...

There is a simple idea that unfolds the mystery of universal
aspects of thermodynamics. A theory is as universal as general
the built-in assumptions and the conditions are. In continuum
physics, the entropy principle is interpreted as an inequality,
constrained by all other relevant conditions of the corresponding
theory. Objectivity, material symmetries, kinematic restrictions,
and fundamental balances are among the constraints that should
be considered by the exploitation. This is a general approach to
the second law if we analyse and properly apply the constraints
and the other fundamental aspects [33; 34; 35].

What are these fundamental aspects that should be scruti-
nized? It is already mentioned that the choice of the state space,
both the basic and the constitutive one, is definitely one of them,
where the known classical restrictions can be questioned. More-
over, entropy is a four-vector, entropy density and entropy cur-
rent are frame dependent separations both in relativistic and in
nonrelativistic spacetimes. Therefore, entropy current is a con-
stitutive quantity, too.

These questions are connected. Assuming a classical en-
tropy current, as the quotient of the heat flux and the tempera-
ture, ji

s = qi/T , one can prove that gradients are excluded from
the state space [36; 37; 38]. One may wonder that the multi-
ple methods and ideas in weakly nonlocal continuum theories
appear to circumvent these restrictions. These are for exam-
ple the square-gradient ideas [39; 40; 41], GENERIC [42; 43;
44], phase fields theories [45; 46; 47], different modifications
of power [48; 49; 50; 51], and others [52; 53]. Which is the
best idea? Some researches say that the triumph of Copenhagen
interpretation is due to pure manpower and the beautiful math-
ematical framework of von Neumann [54] . What will happen
in thermodynamics? Shall we able to discuss and reconcile the
problematic aspects? Or, at least, shall we able to understand
each other?

My opinion is that universality is the key for ordering the dif-
ferent approaches and understanding their relations. Our best
tool toward universal thermodynamic theories is the formula-
tion of the entropy inequality as generally as it is possible and
applying proper formulation of the additional principles, first of
all objectivity, that determine the choice of the basic and consti-
tutive state spaces. Therefore, if our methods of the second law
are general and correct then we will obtain a universal theory.

What is the role of stability then?

ENTROPY AND STABILITY

Thermodynamic equilibrium and thermodynamic state are
delicate concepts. State variables should distinguish between
the thermodynamic bodies, characterize the state and not the in-

teraction [55]. The stability concept of the second law alone
does not clarify the state variables and it is not constructive
without the entropy principle. On the other hand, the entropy
principle without stability is a complicated formulation of the
second law with an obscure physical content. Stability some-
times follows from the thermodynamic framework, but not al-
ways. Thermodynamic frameworks, the different entropy prin-
ciples are not equivalent.

The relation between stability and entropy is not simple. This
is a long-discussed, deeply investigated and frequently rejected
relation in classical continuum mechanics. A non-negative en-
tropy production with concave entropy density alone does not
ensure the asymptotic stability of equilibrium. Higher grade
fluids are unstable [56; 57]. At the local equilibrium level,a fa-
mous counterexample is the Eckart theory of relativistic fluids
[58]. It is the simplest relativistic generalization of the Fourier-
Navier-Stokes equations, constructed by thermodynamic princi-
ples. However, the homogeneous equilibrium of an Eckart fluid
is violently unstable, in spite of the thermodynamic framework
and nonnegative entropy production [59].

Technically, the Lyapunov method for partial differential
equations is not easy. It is simpler and more straightforward
to check the linear stability of the equilibrium. Linear stability
should be the consequence of the expected more general stabil-
ity requirement and therefore serves as a convenient necessary
condition, a suitable benchmark in the theory development.

The universal extension of the entropy principle is a promis-
ing program. Recent examples of dissipative relativistic fluids
indicate that an extension of the entropy principle may restore
the expected stability [60; 61; 13; 62]. In this particular case,
momentum also has to be among the state variables and, most
importantly, the momentum balance is a constraint of the en-
tropy inequality [61; 18].

The thermodynamic framework and the stability of homoge-
neous equilibrium in case of neutral conditions are two sides of
the same coin. Stability is not only a general idea behind the
second law, but also a verification tool of thermodynamic theo-
ries.

HOW UNIVERSAL?

The first book of the Landau-Lifshitz series of theoretical
physics is about analytical mechanics [63]. It starts with a mind
provoking derivation of the Lagrangian of a free point mass by
spacetime symmetries and Hamiltonian variational principles.
This is an attempt to understand the origin of evolution equa-
tions in physics. However, the variational principles as tools are
not universal. Dissipation cannot be incorporated easily. Heat
conduction and also dissipative mechanical systems in general
cannot be understood with the help of variational principles,
even the best attempts are artificial and their validity is restricted
[64; 65; 66; 67; 68].

On the other hand, the previously outlined entropy principle
provides a possibility to construct and derive evolution equa-
tions both for the nondissipative and the dissipative cases [69].
The clear examples in this respect are the evolution equations
for internal variables, where restrictions from the second law
provide the best way of construction, recovering and including
results from dissipation potentials or variational assumptions,
without these additional hypotheses [70]. Moreover, in some
investigated cases, the nondissipative part of the resulted evolu-
tion equation has an Euler-Lagrange form, the thermodynamic
potential is connected to a Lagrangian. This generality requires

230



the extension of the second law incorporating gradients of dual
internal variables in the constitutive state space. This exten-
sion, the method of dual internal variables introduces a general
framework of dissipative mechanical phenomena [71; 72; 73;
74].

Generalized mechanics provides an example where several
independent methods were applied for generating evolution
equations of internal variables of mechanical origin [75; 76;
77]. Here the thermodynamic method of dual internal variables
—the previous extension of the entropy principle— can gener-
ate the evolution equations [78; 79]. The dissipative part of the
evolution equations promisingly stabilizes the thermodynamic
equilibrium according to linear stability analysis [80].

Then one may ask: how universal are the thermodynamic
principles? As general laws of nature, their validity incorporates
mechanics, electrodynamics and every discipline of physics [81;
82]. With a proper formulation and understanding, we can grasp
the very origin and connection between these seemingly sepa-
rated fields. This is the final dream of universality.

UNIVERSAL SUMMARY

There are some principles in physics that provide a driving
force for the development. Those are sometimes subjective feel-
ings, like the requirement of simplicity and harmony. Others
express deeper and almost inevitable requirements of physical
theories, like objectivity. In a sense it is convenient to say that
some expected general principles are invalid [83; 84; 85; 86].
That way we may separate ourselves for some inconveniences
and close a direction of investigations. This reductionism is fre-
quently fruitful in focusing and deepening our understanding.
On the other hand, general principles are pharoses in the scien-
tific landscape, shining lights that keep ourselves on the right
way. Focusing on the nearby stormy waves cannot prevent us
from the greater dangers of reefs, which can be detected only
from a right perspective. From this point of view an ostensi-
ble violation of a general principle is not only an indication that
its validity is limited, but also a challenge that something is not
properly formulated.

The experienced universality indicates the need for the fol-
lowing generalizations of the entropy principle in continuum
theories:

– The entropy four-vector is a constitutive quantity, both
in classical and relativistic theories. Therefore, the entropy
current density is constitutive.
– Momentum should be incorporated in the basic state
space when dealing with mechanics and thermodynamics.
– Space and time derivatives of the basic variables cannot
be excluded from the constitutive state space.
– The momentum balance must be considered directly as
a constraint in the entropy inequality, beyond the internal
energy concept.

These generalizations, in particular the clarification of the role
of energy and momentum, require the proper formulation and
use of objectivity.

The tool of the validation of the mentioned generalizations
—a benchmark— is provided by the stability concept of the
second law. In particular, the linear stability of the evolution
equations is a necessary condition.

Understanding the extent and the origin of the manifest uni-
versality of thermodynamic principles is one of the greatest
challenges of thermodynamics.
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[43] H. C. Öttinger and M. Grmela. Dynamics and thermo-

dynamics of complex fluids. II. Illustrations of a general
formalism. Physical Review E, 56(6):6633–6655, 1997.
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[62] P. Ván and T.S. Biró. First order and generic stable rel-
ativistic dissipative hydrodynamics. Physics Letters B,
709(1-2):106–110, 2012.

[63] L. D. Landau and E. M. Lifshitz. Mechanics (Course of
Theoretical Physics, vol. 1). Pergamon Press, Oxford, 3th

232



edition, 1976.
[64] I. Gyarmati. Non-equilibrium Thermodynamics /Field

Theory and Variational Principles/. Springer Verlag,
Berlin, 1970.

[65] B. Nyı́ri. On the construction of potentials and varia-
tional principles in thermodynamics and physics. Journal
of Non-Equilibrium Thermodynamics, 16:39–55, 1991.

[66] F. Márkus and K. Gambár. A variational principle in ther-
modynamics. Journal of Non-Equilibrium Thermodynam-
ics, 16(1):27–31, 1991.

[67] P. Ván and W. Muschik. Structure of variational principles
in nonequilibrium thermodynamics. Physical Review E,
52(4):3584–3590, 1995.

[68] P. Ván and B. Nyı́ri. Hamilton formalism and variational
principle construction. Annalen der Physik (Leipzig),
8:331–354, 1999.

[69] P. Ván, A. Berezovski, and J. Engelbrecht. Internal vari-
ables and dynamic degrees of freedom. Journal of Non-
Equilibrium Thermodynamics, 33(3):235–254, 2008.

[70] Ván P. Weakly nonlocal non-equilibrium thermodynam-
ics - variational principles and Second Law. In Ewald
Quak and Tarmo Soomere, editors, Applied Wave Math-
ematics (Selected Topics in Solids, Fluids, and Mathe-
matical Methods), chapter III, pages 153–186. Springer-
Verlag, Berlin-Heidelberg, 2009.

[71] A. Berezovski, J. Engelbrecht, and T. Peets. Multiscale
modeling of microstructured solids. Mechanics Research
Communications, 37(6):531–534, 2010.

[72] A. Berezovski, J. Engelbrecht, and G. A. Maugin. Ther-
moelasticity with dual internal variables. Journal of Ther-
mal Stresses, 34(5-6, SI):413–430, 2011.

[73] J. Engelbrecht and A. Berezovski. Internal structures and
internal variables in solids. Journal of Mechanics of Ma-
terials and Structures, 7(10):983–996, 2012.

[74] A. Berezovski and M. Berezovski. Influence of mi-
crostructure on thermoelastic wave propagation. Acta Me-
chanica, 2013. accepted.

[75] E. Cosserat and Cosserat F. Théorie des Corps
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ECONOMICS, ECOLOGY, FLUID MECHANICS,  
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INTRODUCTION 

 

This paper has two principal parts: Fundamentals, and 

Practical Applications. 
 

Fundamentals. Following Gibbs [1,2] the ‘available energy 

of a body’ is defined for any ‘body’ – i.e., for any overall 

system, no matter how complex the system’s structure. The 

structure generally includes several subsystems or processes 

and how they interact. While a subsystem may be an 

‘environment’, an environment is not necessary.  Given the 

structure, the ‘dead state’ of the system follows directly from 

this general definition of available energy. Moreover, the dead 

state of the overall system dictates the dead state of each 

subsystem. The overall dead state and hence the dead states of 

the subsystems can change with time. 

In practice, the overall dead state and hence the subsystem 

dead states depend upon underlying choices. Above all, the 

practitioner must delineate the makeup of the overall system. 

That is, given the purpose of the analysis, choose the parts of 

the ‘universe’ to be included in the overall system (as 

subsystems). Moreover, it is essential to choose ‘constraints’ 

placed upon (i) spontaneous processes allowed within each 

subsystem, (ii) modes of interaction
1
 between subsystems, 

                                                           
1 Interaction is synonymous with ‘exchange of additive property.’ 

(iii) modes whereby products are delivered from the overall 

system (to its ‘market’). 

It is apparent that the available energy of a body – of an 

overall system – is a consequence of disequilibrium within the 

body.  Conversely, were a body subjected to specified 

‘constraints’ it would be at equilibrium if the available energy 

were zero.  So, when a body is subjected to particular 

constraints, available energy can be used to define 

equilibrium, relative to those constraints. 
 

Applications. Exergy is an additive property. The exergy of a 

subsystem represents its contribution to the available energy 

of the overall system. Exergy is definable whether or not any 

subsystem is an ‘environment.’ 

 Yet, in many if not most engineering applications of 

‘exergy analysis’ to a conversion plant – for efficiency 

analysis and/or costing – an important subsystem is a local 

environment with which it interacts.
i
 The dead state of each 

plant subsystem and its contents depends upon the assumed 

constraints applied to it and to the environment. The 

delineation (‘choice’) of constraints can have a significant 

effect upon the conclusions drawn from the analysis.  

Among the factors that are relevant to the delineation of 

constraints (and hence to the outcome of an analysis) are: 

 The projected time-period for which the analysis will be 

relevant 
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ABSTRACT 
Traditionally, an exergy analysis has from the outset inherently assumed a ‘reference state’ and exergies of subsystems have 

been evaluated relative thereto.  Moreover, the evaluations assume a limited class of processes (for example, thermal, 

mechanical and chemical) for bringing the subsystems to equilibrium with the ‘reference’.  These habitual practices have 

limitations, especially important in applications to ecology and thermoeconomics.  The limitations, which may be misleading, 

can by and large be avoided by referring back to the more fundamental concept underlying exergy, namely Gibbs’ available 

energy of a body, and the consequent dead state of the body. At any instant, given any body – any overall system – the overall 

dead state and the dead states of all subsystems and their materials is unique.  The dead state may change with time, while the 

overall available energy decreases.  At every instant the exergy of each subsystem can be defined and represents its 

contribution to the overall available energy. The preceding paragraph began with “. . . given any overall system . . . the overall 

dead state . . . is unique.” That statement is subject to several, related stipulations: 

 The classs of processes within each subsystem must be specified (i.e. assumed). 

 The modes of interaction between subsystems must be specified. 

 The constraints upon subsystems must be specified. 

That is, defining the dead state of an overall system (making it ‘given’) requires not only identification of its parts, but also 

how they will be allowed to interact and what constraints are imposed upon the parts and the interactions. 

The purpose of this presentation is  

 to provide guidance for the selection of the dead state for exergy analysis, and to elucidate 

 the relevance of assumptions made at the outset of the analysis, and  

 their implications upon conclusions drawn from the analysis. 

Every exergy and thermoeconomic analysis that has been (or will be) done makes assumptions, implicitly if not explicitly, that 

can make the conclusions misleading. It is of critical importance for the reader of any exergy analysis to realize the 

significance of the inherent assumptions upon the conclusions, especially when the analysis has implications upon ecology and 

sustainability. 
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 The scope of the environment 

o Its breadth 

o The accessibility of materials therein 

o The stability of the materials 

o Relevance of variations with time 

 The scope of technology – i.e., its ‘state of the art’ for the 

projected time period 

 The scope of science – i.e., its ‘state of development’ for 

the period 

These delineations (relevant to engineering applications) are 

all the more important when exergy and ‘dead state’ 

considerations are applied to ecology and sustainability. 
 

Closure. The fundamentals will be presented and illustrated 

in the context of simple examples. Nevertheless, these 

examples will be used to draw broad, general principles 

relevant to complex practical applications. 

 
 

GIBBS AVAILABLE ENERGY 

 

In [1] Gibbs defines the available energy, for two cases.  

(a) Case 1, the more general case, is for that of a ‘body’ – any 

closed system which, overall, may have parts (subsystems).  

Shown in Figure 1 is a very simple example of an overall 

system. In this special case the overall system, the subject, 

consists of two subsystems, 1 and 2. The subsystems are 

separated by an impermeable movable piston. At any instant t 

the system has values of energy, entropy and of volume. 

Using different symbols than Gibbs, here they are denoted by 

E(t), S(t), V(t).
2
   

 Subject to the ‘constraints’ that (a) energy transfers from 

the overall system are restricted to transfers via volume or 

entropy exchange, but (b) that there be no net transfers of 

volume or entropy, then 

 The available energy A(t) of the overall system at t, a 

characteristic of this system only, is the maximum amount 

of energy attainable from this system.  That is, 

o attainable from the subject, and deliverable to any other 

system – to any object, 

o with no net transfer of either entropy or volume to 

external systems.  

o During the hypothetical delivery, entropy and volume 

can be exchanged between the subject’s parts. 

o Furthermore, except for the object, external devices 

may be employed to deliver the energy from the 

subject to the object, while transferring entropy and/or 

volume between subsystems of the subject.  

o Moreover, in order to assure that no external devices 

makes a net contribution to the energy delivered from 

subject to object, their net change of energy must be 

zero.  
 

Reference [3] presents some elaboration on processes for 

delivering the available energy, A(t).  It is shown that  

 The energy delivered is a maximum, A(t), when there is 

no entropy generation within the subject.   

 A(t) = E(t) – Emin(S,V) when S = S(t) and V = V(t) 

o The function Emin(S,V) represents the energy at 

‘thermostatic equilibrium’, when {S,V} are the 

constrained variables. 

                                                           
2 The existence of entropy is taken for granted here.  See Appendix I of 

Reference [3] for an elaboration, as well as [4].  

 It represents what Gibbs called ‘the surface of 

dissipated energy’. 

 The ‘thermostatic property relations’ follow 

from it. 

 

 
 

Figure 1. Example of an overall system or ‘subject’ 
 

On Figure 2, from Gibbs [1], the curve through MBCN 

represents a hypothetical Emin(S, V), at a fixed V. The location 

A represents an arbitrary nonequilibrium state of the system, 

and the distance AB is the available energy A of that state. 

Figure 3 (from Gaggioli et al, [5]) shows a complete Emin(S, 

V) surface and the points A and B. It is notable that Point A 

with its unique vales of E, S and V – does not represent a 

unique state of the overall system. For example, consider 

Figure 1 again; at any fixed (S, V) there are many conceivable 

states of the ‘subject’ with the same energy E.
3
 

 

The Dead State. When the overall system is at Point B, it is 

at a ‘dead state’ – a state of zero available energy. Whenever 

the overall system is at a condition vertically above B, Point B 

is the corresponding dead state.  

 

 
 

Figure 2. Depiction of Emin vs. S at fixed V, of available energy 

(AB), and capacity for entropy (AC).  

 

 
Figure 3. Depiction of Emin(S,V), of available energy (AB), of 

‘available vacuum’ (AF), and ‘capacity for entropy’ (AC).  

 

                                                           
3 States with the same E could differ as a result, for example, from disparities 

in the pressure and temperature differences between the subsystems. 

(Notably, Gibbs also defined ‘capacity for entropy’ and ‘available vacuum’ as 

alternative measures of disequilibrium.) 
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Gibbs called Emin(S, V) “the surface of dissipated energy”. 

If an overall system like that in Fig. 1 were allowed to reach 

equilibrium without delivering energy (say by letting entropy 

flow through the piston and letting it oscillate, uncontrolled), 

entropy would be produced. The system would end up at 

Point C, another dead state.  
Additional Measures of Potential Influence. The available energy repre-

sents the system’s intrinsic potential to influence any other system. Gibbs 
defined other equivalent measures of disequilibrium and potential to 

influence. The distance AC on either figure represents the system’s ‘capacity 

for entropy’ – at least that amount of entropy could be extracted from any 
system (at T > 0), no matter how cold. The distance AF on Figure 3 is Gibbs 

‘available vacuum’ which is the volume increase imposable upon any system 
no matter how low its pressure.  

These three characteristics (represented by AB, AC and AF) are measures 

of a system’s disequilibrium and potential to influence any object; they are 
attributes of the system alone. Gibbs also described the potential influence 

upon specific objects. For example consider a large object, at any temperature 

T represented by the slope of the straight line MAN on Figure 2. The distance 
QA on the figure is the amount of entropy that could be extracted from the 

object; starting at A the system would end up at N. The distance AR is the 

amount of entropy that could be imposed upon the object. 

 
Figure 4. Depiction of the available energy of a 

body-and-medium (exergy of a body). 

 

(b) Case 2.  This is the special case presented by Gibbs, for a 

circumstance where one part of the overall system is a 

‘medium’ – a large subsystem which has a constant temper-

ature and a constant pressure and, by itself, is at equilibrium. 

In Gibbs’ terminology the overall system consists of a ‘body’ 

(any body) and the ‘medium’ (made up of the same compon-

ents as the body).  In both cases, 1 and 2, his development is 

for circumstances where the overall system – the subject – 

reaches equilibrium without net transports of entropy or 

volume between the overall system and its surroundings. In 

Case 2, net transports between the body and the medium 

(subsystems) are allowed; the body and medium together 

represent the subject. Its available energy – energy trans-

mittable to any object – is what we call, today, the exergy of 

the ‘body’. Figure 4 (from Gaggioli et al, [5]) shows two 

surfaces, the curved surface of Figure 2 for the ‘body’ alone, 

and a planar surface. The plane is tangent to the curved 

surface at the location where the body and the medium have 

the same temperature and pressure – namely the constant T 

and p of the medium. If the body is at internal equilibrium at 

B (of Figures 3 and 4), the vertical distance from B to the 

planar surface represents the available energy of the 

composite subject of body and medium together. If the body 

is at A, the available energy from the composite subject 

equals that vertical distance plus AB.  

At the dead state of the overall, subject system (body and 

medium) the body will be at the location where its T and p are 

equal to that of the medium – where the body’s surface is 

tangent to that of the medium. 
Gibbs Available Energy with Variable Composition. Subsequently, in 

“On the Equilibrium of Heterogeneous Substances,” [2], Gibbs presented – 

implicitly – the available energy of a body and medium for the case of open 
systems, where exchanges with a ‘medium’ include not only entropy and 

volume but also chemical components.4  

 
 

GENERALIZED AVAILABLE ENERGY 
 

In the foregoing review of Gibbs 1873 development of 

available energy, leading to A = E - Emin(S, V), the entropy and 

volume were ‘constrained’. That is, the hypothetical process 

that delivers available energy is carried out with limitations: 

no net transport of volume or entropy to or from the 

surroundings of the overall system. Such limitations will, 

herein, be called constraints. This word will be used not only 

for limitations upon transports but also for restrictions on 

spontaneous changes (such as changes of composition by 

chemical reactions). 
 

Constraints. To illustrate the concept of constraints, consider 

Figure 1 again. Suppose the piston to be fixed in place (or 

replaced by an immovable wall). This additional constraint 

upon the overall system could be represented by the symbol 

V1 (for the volume of 1). When V1 is constrained, interchanges 

of volume between the two subsystems would be precluded, 

and full advantage of pressure difference between the two 

could not be taken. In general the available energy from the 

composite of 1 and 2 would be less.  Because, the minimum 

energy reachable would in general be greater than that 

reachable if the constraint on V1 were removed: Emin(S, V, V1) 

> Emin(S, V), and so A(E, S, V, V1) = E - Emin(S, V, V1) < A(E, 

S, V) = E - Emin(S, V).
5
 

This example illustrates that the imposition of additional 

constraints changes the amount of available energy, and it 

changes the dead state. While adding constraints may seem to 

be ‘strictly theoretical’ and even questionable, later in this 

paper it will be illustrated that it has important consequences 

in practice. There are relevant effects on delivery of available 

energy, on subsystem dead states, on calculated exergy 

values, and on costing. 

Moreover, it is important to recognize that available 

energy is defined: 

 For an overall system, consisting of specific relevant 

subsystems (and one may be a large ‘medium’), 

 Subject to constraints, which may restrict 

o how subsystems can interact, and 

o spontaneous changes within a subsystem, and 

o modes of interaction between the subject system and 

external devices. 

                                                           
4 The word ‘component’ is to be understood as distinct from ‘constituent’.  Constituents 

are species actually present; components are species from which the constituents could 

be composed (e.g., see Hatsopoulos and Keenan [11]).  In the case at hand, components 

are constituents of the ‘medium’ from which the constituents of the ‘body’ could be 

composed. 
5
In theory, the > and the < shown should be  and  because there are special, 

though rare circumstances when, upon taking advantage of temperature 

difference between 1 and 2, upon reducing that difference to zero, the 
pressure difference would also happen to become zero. The Emin(S, V, V1) 

surface would be tangent to Emin(S, V). Otherwise Emin(S, V, V1) will be above 

Emin(S, V). 
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See Gaggioli and Paulus [5] for further elaboration on 

generalization of Gibbs available energy, including the 

relevance of constraints to equilibrium. 
 

Exergy. Available energy is not an additive property, which 

is readily illustrated by considering Figure 1. Suppose that 

Subsystem 1, alone is at equilibrium; likewise for Subsystem 

2. Then each, alone, has zero available energy. Whereas, 

when the two are not in equilibrium with each other, the 

composite of the two (the overall system) has available 

energy.
6
 

For any overall system the author [7] has derived 

‘subsystem exergy’ such that (i) exergy is additive, (ii) the 

sum of the subsystem exergies is equal to the available energy 

of the overall system, (iii) hence each subsystem’s exergy can 

be viewed as its contribution to the overall available energy, 

and (iv) because it is additive, an ‘exergy balance’ can be 

written for any subsystem, so that ‘exergy analysis’ can be 

carried out. 

Unlike the usual, ‘textbook’ derivations for exergy 

equations, which depend upon having a ‘reference 

environment’, the derivation in [7] is for any overall system. 

No reference environment is required. In the derivation, the 

dead state of the overall system becomes relevant, in lieu of a 

reference environment. The dead state of each subsystem is 

dictated by the dead state of the overall system. Incidentally, 

these dead states can change with time, when Emin increases 

because of dissipations. 
For the case when subsystems are free to exchange entropy S, volume V, 

and chemical components Ni, the expression for exergy content of a 
subsystem is: 

 

X = E + pf V – Tf S - if Ni  (1) 
 

The subscript f denotes the pressure, temperature and component chemical 

potential at the dead state. The expressions for exergy transports  and 
destruction follow directly from this expression for content. 

When one of the subsystems is a ‘medium’, large and at 

equilibrium (or constrained equilibrium), it has zero exergy. 

And the medium dictates the dead state of all the subsystems.  
In the foregoing expression for exergy, the f’s become the usual 0’s. 

However, as argued later, there are many practical instances where it is 

erroneous (if not presumptuous) to assume an equilibrium environment (or a 

finite, non-equilibrium environment with a quasi-stable equilibrium ‘dead 
state’). 

Understanding (a) the meaning of ‘dead state’ in general 

(including in the absence of an ‘environment’), and (b) the 

relevance of constraints upon the dead state is important. 

Otherwise, in practice, the choices made to determine the 

overall dead state can be questionable if not erroneous (even 

when one subsystem is an ‘environment’). 
(The author’s 1999 derivation of exergy [7] is a simplification of one 

made by Wepfer [6], where there is an error in line 2 of Eq. (14); the 

subscripts shown as B should be A.) 

 

PRACTICAL EXAMPLES 
 

Subsystem Dead States for Engineering Exergy Analysis 

of Conversion Systems and Plants. 

What is meant here by Engineering Exergy Analysis is 

this: analysis of an existing, operating plant (or system), or 

analysis of a plant that is being designed. The intent is that all 

of the subsystems should consist of technologies that are 

                                                           
6 Figure 4 illustrates another example: B represents an equilibrium state of the 

‘body’ and all points on the planar surface are equilibrium states of the 

‘medium’; XB represents the available energy of the overall system – the 

exergy attributed to the ‘body’. 

currently available. (Comments relevant to R&D and resource 

assessment are presented later in this paper.) 

Before a plant (or system) is analyzed it is important to 

ascertain (or make reasonable assumptions) regarding the 

dead state of the materials in every subsystem. 

Given a plant and its surroundings, (a) the first step in 

determining appropriate subsystem dead states is to establish 

the relevant “composite system” (overall system, consisting 

of subsystems). That is, what parts of the ‘universe’ have 

significant effect on the performance of the plant or system. 

 Relevant: considering the purpose of the analysis.  

 Significant effect: having an effect that influences the 

outcome of the analysis within the desired significant 

figures. 
 

The 2
nd

 step: (b) the practical, technological constraints on 

(i) the interactions between subsystems and on (ii) the 

spontaneous processes within each subsystem need to be 

specified. 

These principles – (a) and (b) – are illustrated with several 

cases, by Wepfer and Gaggioli [6].  That article includes a 

section on “The selection of reference datums [dead states] for 

subsystem [exergy].” Rather than duplicate that section, see 

[6] and also [3]. 

 

Relevance to Analyses for R&D and for Resource and 

Sustainability Assessment. 

    This section will be devoted to the importance of the 

constraint concept, and to the significance of choosing a 

relevant dead state.  

 

Significance of Constraints. Again, consider a simple 

example, referred to earlier. Suppose that the system in Figure 

1 is at a condition like A in Figure 2, and consider a real 

process that is striving to deliver the available energy 

represented by AB. Invariably there would be entropy 

production, due to ‘mechanical friction’ and to heat transfer 

through temperature differences. As a result the system would 

end up at a condition to the right of B on the curve, toward C; 

the more the entropy production the closer to C (but never 

above C, which is the condition reached if the system is 

allowed, uncontrolled, to equilibrate internally, so no energy 

is delivered).  Let us suppose that, with more or less well-

controlled, but real equilibration the final condition reached 

was at , on Figure 5 (For convenience of the artwork the 

ordinate (for E) is not linear;  appears closer to C than if it 

were linear; i.e. the energy delivered (EA - E) is supposed to 

be significantly greater than the dissipation of available 

energy (E - EB).). Moreover suppose that the entropy 

production was predominantly caused by mechanical, viscous 

friction. 

Now, consider the following alternative scheme, starting 

at A, for delivering available energy: If the piston were fixed 

in place (constraining V1), and available energy was delivered 

with very little entropy production due to heat transfer, that 

delivery process would end up at a place like , below and 

slightly to the right of A. Next, deliver more available energy 

by letting V1 change by a modest amount (to V1’), with some 

but less viscous friction (because of the controlling of V1’s 

change). By repeating, once more, this procedure of fixing 

and then changing V1, the path to equilibrium would be like 

that from A to  on Figure 5. 
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Figure 5. Some processes for delivering available energy. 

 

More available energy, namely EA - E, would be delivered 

(less dissipated) than from the path A to . (By increasing the 

number of steps the delivery could be increased all the 

moreso.) This is a simplistic example of how adding 

constraints, and controlling them, can improve the delivery of 

available energy. The obvious conclusion to be drawn 

therefrom: improving the control of available energy transfer 

processes – by adding constraints – can improve the 

efficiency.  However, a more important conclusion can be 

drawn from this simple example, namely that discovering new 

constraints can improve the efficiency. 
 

The objective of adding constraints is control; that is 

accomplished by reducing states that otherwise would 

proceed more spontaneously, toward successive constrained-

equilibrium states.  

Adding effective constraints will generally depend upon 

advances in technology. 

Discovering ‘new’ constraints will often depend on 

scientific advancement as well. Such constraints ‘produce’ 

‘new’ constrained-equilibrium states (or better, find them, on 

a hypersurface with E, S, . . . and new constraints as 

variables). It can be surmised that constraints that could even 

‘increase’ the available energy do exist. That is, by allowing 

states which (at the current status of science) are believed to 

be at equilibrium but are at metastable equilibrium – such that 

the metastability can be overcome by manipulation of the 

newly discovered constraints. Moreover, if the new 

constraints can be controlled well, the delivery of the 

additional available energy can be improved.  

From the vantage point of one hundred years ago, that 

‘new’ available energy could be what we call nuclear today. 

Hopefully, and not surprisingly, several of the papers in 

these proceedings will lead to discovery of new constraints 

and means for their manipulation. 
 

Significance of the Dead State. Consider the ‘body’ of 

Figure 1 again, but this time in conjunction with a medium 

like that depicted by the flat surface in Figure 4. Then, on 

Figure 5 the slope of BC at point 0 is the temperature at the 

dead state of the body and medium together.
7
 The point  lies 

on the tangent line, directly below point A. If the object is at 

                                                           
7 That is, at any location on the curve through BC, its slope is the temperature 

of the object when at that state.  At location 0 the temperature is T0, which is 

the temperature of body and medium at the overall dead state. 

A, the energy attainable from the composite by bringing it to 

thermal equilibrium is equal to the distance EA - E on Figure 

5.
8
 If the object is at B (with no available energy of its own), 

the energy attainable is EB - E 

When the energy is being delivered from the composite 

with real processes, the overall delivery would be typified by 

EA - E. Then, the entropy production within the object, when 

starting at A, is represented by the horizontal distance 

between A and . Further entropy production, as a result of 

thermal interactions with the medium, is the horizontal 

distance between  and . 

Finally, suppose there exists an alternative medium at say 

a much lower temperature, represented by the tangent line 

through 0’ on Figure 5. Now the overall energy available 

from the composite is [EA - E]; the delivery via real 

processes is represented by [EA - E]. Clearly, these are 

greater than [EA - E] and [EA - E], respectively. 

Again, consider the nonlinearity of the E scale, and for 

example consider what the differences would be if the slope 

of the straight line through 0 were 273K and that through 0’ 

were 27.3K or 2.73K. Moreover, significantly, if the body 

started at internal equilibrium, at B, consider how large the 

ratio [EB - E]/[EB - E] would be.  

 
 

Intermediate Conclusions. In general terms,  

 Controlling better with constraints that are available with 

current technology can improve the delivery of available 

energy (to desired products). 

 Moreover, if additional, ‘new’ controlling constraints can 

be found, it is quite conceivable that delivery can be 

improved. 

o An obvious, simple example is control of chemical 

composition. In the examples presented above, chemical 

composition of Subsystems 1 and 2 could have been 

changing, and there would have been associated entropy 

production during delivery. Inasmuch as only entropy 

and volume exchanges were allowed between 1 and 2 

(and with the mediums), then: 

 If the compositions of 1 and 2 (when the object was at 

B) differed, there could be additional available energy 

deliverable, if exchange of chemicals between them 

were allowed, and controlled, while bringing the two 

subsystems to chemical equilibrium. 

 Moreover, if 1 and 2 were each, alone, at chemical 

equilibrium but not at chemical equilibrium with an 

accessible medium, there would be additional 

available energy. 

 Additionally, if the piston at the far left end in Figure 

2 were controllable (in essence, making both V1 and 

V2 constraints that could be manipulated) spontaneous 

change of composition within 1 and 2 could be 

controlled, reducing (and in theory
9
 eliminating) 

associated entropy production.  

o This simple example, chemical, is only an example. The 

important point is that it would be significant if ‘new’ 

constraints can be found, to unlock heretofore unavail-

                                                           
8 EA - E is the available energy of the composite if Vbody  is constrained to be 

equal to VB (= VA). 

9 A theoretical scheme whereby chemical conversion of a fuel could be 

accomplished without entropy generation was proposed by Keenan [8] p. 269.  

The method is also presented in Obert [9] Article 3-19. 
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able energy. (Relatedly, there may exist available energy 

that is more or less ‘hidden’, within the context of 

today’s science – like nuclear disequilibrium was hidden 

100 years ago). 

 If a medium is accessible with a lower temperature and/or 

with a lower pressure, and/or lower chemical potentials (or 

lower potentials associated with any new controlling 

constraint), the delivery can be increased. 

 
 

CLOSURE 
 

Traditionally, the development of exergy has assumed the 

existence of a ‘surrounding environment’. Necessarily then, in 

practice exergies are evaluated relative to a reference 

environment, which must be selected by the evaluator. 

Several alternative ‘standard’ reference environments have 

been proposed by various authors, and commonly the evalu-

ator will choose one of them. In any case, the ‘dead state’ of 

zero exergy is dictated by the selected ‘standard’ environ-

ment. That is, by equilibrium with that environment. And it is 

commonly held that, in theory at least, the dead state should 

be the same for all of the contents of, and the flow streams 

between, the subsystems of the facility being analyzed. 

These habitual practices have shortcomings. By and large 

the shortcomings can be circumvented by referring back to the 

more fundamental concept underlying exergy, namely 

available energy. 

As described above, if an overall system is given, then (at 

any moment) the overall dead state and the dead states of all 

subsystem and their materials is unique. No reference 

environment is necessary. If, as usual, one of the subsystems 

is a large surrounding medium, in a sense it is ‘just one more 

subsystem’. Nevertheless, it may have a dominant (if not 

total) effect upon the dead state of the other subsystems. 

However, those subsystem dead states will not necessarily all 

be in complete equilibrium with the surrounding medium. 

Generally, subsystems will be in constrained equilibrium with 

the surroundings (For example, the dead state the refrigerant 

in a vapor-compression system will be in thermal equilibrium 

with the system’s surroundings, but not in pressure or 

chemical equilibrium; [6,3])10  

The preceding paragraph began with “. . . if an overall 

system is given . . . the overall dead state . . . is unique.” That 

statement is subject to several, related stipulations: 

 The modes of interaction between subsystems must be 

specified. 

 The constraints on subsystems must be specified. 

That is, defining an overall system (making it ‘given’) 

requires not only identification of its parts, but also how they 

will be allowed to interact and what constraints are imposed 

upon the parts and the interactions. 
 

Defining an Overall System. It is imperative that whenever 

the results of an exergy analysis or exergy evaluation of 

resources is presented, it should be clear to the reader what 

the underlying “overall system” is – its make-up and the 

assumed interactions and constraints. Ideally, this requirement 

                                                           
10 Some might think that it doesn’t matter what the dead state is, because 

when one calculates exergy differences between points in a cycle, the dead 

state values cancel.  That thinking is flawed; it is important to know the 

correct, total values at every point.  Otherwise significant mistakes can occur 

in evaluating subsystem efficiencies and especially unit costs [6]. 

should be fulfilled by the author(s). If they have not been 

fulfilled explicitly, a careful reader will seek to determine 

what overall system has been assumed. If an answer cannot be 

found or assumed judiciously, the reader should question (if 

not be skeptical, or even dismiss) the conclusions that have 

been drawn.  

Engineering Systems. In the case of exergy analyses of 

engineering systems, it is generally straightforward for the 

reader to ascertain the overall system, as long as a reference 

environment has been clearly stated. The reader will naturally 

assume that the subsystems shown on the flowsheet, are 

‘standard’ – current technology. If some are not standard the 

authors hopefully will have made that known.  

Resource and Ecologic Assessment. Many laudable 

applications of exergy to ecology and sustainability have been 

carried out. These studies refer to the future and often project 

into the future – and make predictions (often dire) about the 

future, and then make recommendations. Care needs to be 

exercised when considering some of the conclusions drawn 

(especially when the conclusions and recommendations are 

presented ardently).  

It seems that there generally are assumptions that go 

unrecognized or are taken for granted by both authors and 

readers. So the following kinds of questions arise: 

 What is the overall system? Generally, it is evident that 

the overall system has been limited to the earth (or earth-

sun) and its resources. Is that a reasonable limitation when 

predicting the future?  

o Are there resources outside our ‘sphere’ that will 

become accessible? Literal ‘energy resources’? Or 

subsystems that could be invoked?  

 E.g., in some remote places, the night sky is used 

as a source of exergy today. The background 

temperature of the universe is about 3K; could it be 

used as a ‘medium’? Consider the two straight lines 

on Figure 5. 

o ‘What’s the point of all this’? Only that the reader of 

the assessments should realize that the assumed scope 

of the overall system has a very big effect on the 

results and conclusions. 

 Again, ‘What is the overall system?’  For available energy 

and exergy to be meaningful, there must be a complete 

overall system; that is, besides the resources there must be 

means for harvesting and converting them that are 

assumed. 

o What technologies have been assumed for the 

harvesting and converting? Presumably today’s 

technologies, with their ‘control constraints’? (Or 

improved equipment but with the same constraints.) 

o If so, that dismisses prospective, relevant develop-

ments in science and technology. 

 Scientific advances can lead not only to new 

technologies but also to new resources (like fission 

and fusion have ‘made’ new resources). 

 What are the ‘controlling constraints’?  

o Is it implicit that the control variables are classical? 

Electrical, mechanical, chemical and perhaps nuclear? 

– such that the perceived resource conversion is 

subject to the laws of ‘classical’ science (e.g. today’s 

chemical thermodynamics, with its assumed variables 

– its thermostatic properties). 

o Again, the reader of assessments should realize that 

there is an implicit science and technology being 

assumed. (Future developments likely will introduce 
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unforeseen variables, which could be employed to 

control/constrain phenomena relevant to resource 

conversion.) 
 

Viewpoints. All ‘energy resources’ (for example 

hydrocarbons) have uesefulness because there exists an 

associated disequi-librium with our environment. It is typical 

of resources (like the hydrocarbons) that the disequilibrium is 

‘constrained’ such that there is a metastable equilibrium. 

Their usefulness depends upon ‘breaking’ – overcoming – the 

metastable equilibrium. The better the control of the ensuing 

equilibration, using constraints, the more efficient the use of 

the resource. 

Particularly regarding resources, history is filled with 

dreadful forecasts which have arisen in the face of 

challenging circumstances. Invariably, the forecasts have 

been made under the (inherently pessimistic) assumption that 

the then-current science and technology was definitive. 

However, humankind has not only overcome the 

challenges but in dealing with them has advanced – has 

discovered ‘new’ resources, unlocked them with new science 

and new technologies, improved the efficiency of usage, . . . 

and as a consequence has improved our subsistence. 

One could say that the advances resulted, at least in part, 

as consequences of the challenges. So assessments of the type 

referred to above should be appreciated – as challenges and as 

opportunities, for improvement. 

There is a great amount of disequilibrium, particularly 

metastable equilibrium in our universe. Our future tech-

nology is not earthbound. Moreover, it can be hoped (and 

from a historical perspective, expected) that – spurred on by 

challenges – future science and technology will unlock not 

only remote resources but ‘hidden’ or currently ‘unreachable’ 

earthly resources as well. Some would say, “That’s overly 

optimistic.” “Careless.” “We should ‘play it safe!” The 

readers will have a variety of viewpoints (worth 

discussing!).
11

 

In any case, let the readers of ‘assessment’ papers that 

refer to the future understand that there are implicit 

assumptions that are very important, and will prove to have 

been very significant – rightly or wrongly. 

The Appendix outlines what I believe are reasons for 

optimism. 
 

ACKNOWLEDGEMENTS 
 

I would like to acknowledge the following ‘schools of thermo’ that I 

have learned from: Goodenough-Obert, Hirschfelder-Curtiss-Bird, 

Tribus-Evans-ElSayed, Keenan-Hatsopoulos-Gyftopoulos-Beretta. 

Also, study of the early history of the 2nd Law, of available energy 

and of entropy – particularly the contributions of Thomson (Lord 

Kelvin), Rankine, Gibbs and Maxwell – has been enlightening [10].  

Finally, I appreciate and thank all of the students, colleagues, and 

contemporaries that I have learned with. 

 

 

REFERENCES 

 
 

[1] Gibbs, J.W., 1873, “A Method of Geometrical      

Reperesenation of the Thermodynamic Properties of 

Substances by Means of Surfaces,” in The Scientific 

                                                           
11There is an old saying, “Don’t let a crisis go by without taking advantage of 

the opportunity.”  Pessimists miss the opportunity.  It should not be assumed 

that to ‘play it safe’ is without ‘cost’.  Entrepeneurs – including many 

scientists – are optimists. 

Papers of J.W. Gibbs, vol. 1, Dover Publications, 

1961. 
 

[2] Gibbs, J.W., 1875, “On the Equilibrium of 

Heterogeneous Substances,” in The Scientific Papers 

of J.W. Gibbs, vol. 1, Dover Publications, 1961. 
 

[3] Gaggioli, R.A., 2012, “The Dead State,” Int. J. of 

Thermodynamics, vol. 15 (No. 4), pp. 191-199. 
 

[4]  Gaggioli, R.A., 2010, “Teaching Elementary 

Thermodynamics and Energy Conversion: 

Opinions,” Energy, Vol. 35, pp. 1047–1056. 
 

[5] Gaggioli, R.A., Richardson, D.H., Bowman, A.J., 

Paulus, D.M. Jr., 2002, “Available Energy: a. Gibbs 

Revisited, b. Gibbs Extended”, Trans. ASME, vol. 

124, pp. 105-115). 
 

[6] Wepfer, W.J. and Gaggioli, R.A., 1980, “Reference 

Datums for Available Energy [Exergy]”, Ch. 5, pp. 

78-92, Thermodynamics: Second Law Analysis, 

American Chemical Society, Symposium Series Vol. 

122. 
 

[7]  Gaggioli, R.A., 1999, “Available Energy and 

Exergy”, International Journal of Thermodynamics, 

Vol. 1, pp. 1-8. 
 

[8] Keenan, J.H., 1941, Thermodynamics, Wiley. 
 

[9]  Obert, E.F., 1973, Internal Combustion Engines, 

Harper and Row. 
 

[10] Gaggioli, R.A., 1999, “Reflections on the History of 

            Exergy,” pp. 5-13, Proc. ECOS’99, M. Ishida, ed., 

Tokyo Institute of Technology, Japan.  
 

[11] Hatsopoulos, G.N. and Keenan, J.H., 1965, 

Principles of General Thermodynamics, Wiley. 

 

 

Appendix.  Regarding the future 
 

Predicting it requires assumptions: 

• The Subject (overall system) – its ‘extent’ 

– The Subsystems; i.e., Resources from the universe. 

• Exergy content of subsystems 

– Depends upon the available science. 

• Constraints/Controls – depend upon: 

– Available Science 

– Available Technology  

Assessing predictions requires knowing: 

• The assumed subject – its ‘extent’ 

– The Subsystems 

• The assumed future Constraints/Controls 

– The assumed future available science  

Future Prospects: 

The subject – determined by exploration, prospecting, discov-

ering, and ‘mining’ of disequilibrium: 

• Unexplored land and sea, and depths of earth 

• Space – e.g., asteroids 

• Solar system, . . . Universe – e.g., night sky at 2.5 K 

Reducing Emin – Recuperation of generated entropy 

• New ‘elements’ (subjects) – exergetic; functional 

Unexpected discoveries of resources, resulting from 

exploration. 

Constraints/controls – exploration, prospecting, discovering, 

‘mining’ of knowledge about: 
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• Science: Universe, megaverse, . . . Nanoverse, microverse, 

. . .  

• Technology, from Science, for: Controlling constraints; 

Unlocking and controlling metastable constraints  

Again, . . . and again, . . . because:  

• There is a tremendous amount of disequilibrium …. 

• There is a tremendous amount of unknown science, I 

believe – I am sure! 

• The resourcefulness of the ‘young at heart’ – of today and 

the future (near and distant) – find them: Discover, 

develop, . . . with exploration: physical, mental. 

Optimism, versus stultifying pessimism. 
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INTRODUCTION 

Exergoeconomics is aimed at evaluating the exergy and 
monetary costs associated with all mass and energy streams in 
the energy system. The basic principle of all exergoeconomic 
methodologies proposed in the literature consists in 
apportioning the costs of the input streams according to the 
exergy carried by the Fuel and Product of the system 
components. Thus, in addition to the exergy values associated 
with mass and energy streams calculated by the exergy 
analysis, this criterion of cost allocation requires a correct 
formulation of Fuel and Product of each system component. 
On the other hand, there is an intrinsic degree of subjectivity 
in the Fuel and Product definitions, i.e. there is more than one 
definition that fulfills the component exergy balance. And 
additional ambiguities may derive from the definition of the 
component boundaries which may include more than a single 
device. 

Some of the basic exergoeconomic papers written in the 
literature ([1], [2], [3], [4]) focused on the direct relationship 
between Fuel and Product and associated costs but did not put 
specific emphasis on the need of unambiguous Fuel and 
Product definitions, implicitly assuming that these definitions 
are “given” by the exergy analysis and accepting a certain 
degree of flexibility in their formulation depending on the role 
of the component in the overall system structure. 
Exergoeconomic functional approaches ([5], [6], [7]) gave 
instead a basic importance to the formulation of Fuel and 
Product of the system components, which were called 
component “functions” and specifically defined according to 
the role and location of the component in the system structure. 
These approaches require a preliminary analysis of the overall 
systems and its components to decide all the “productive” 
interactions between each component and the other system 
components. In [8] it was named “a logical approach” to 
underline that the functional interactions among system 

components depend on how each component “serves” the 
other system components. 

The Specific Exergy Costing Method (SPECO) [9] started 
from a basically different idea for the formulation of the 
components Fuel and Product, consisting in taking a record of 
all exergy additions and removals that are performed by each 
component on the mass and energy streams of the system. 
Exergy additions and removals were considered as parts of the 
Product and the Fuel, respectively. Specific exergies give the 
name to the method because they are to be calculated when 
different mass streams join within the component. The 
SPECO idea simply derives from observing that the 
productive “function” of the component is independent of the 
presence of the other components in the system, depending on 
its behavior only. Thus, the component interacts with exergy 
additions to and removals from the rest of the system only 
through the mass and energy streams crossing its boundaries. 
Accordingly, the formulation of each component Fuel and 
Product involves only exergy streams associated with these 
mass and energy streams. This concept implies that the exergy 
links of the component with the rest of the system remain the 
same as those of the system flowsheet (often named “physical 
structure”) because all the “productive” interactions between 
each component and the rest of the system are defined within 
the component boundaries. So, the “productive structure” does 
not alter the physical structure of the system, and it is built by 
analyzing each component separately without the need of a 
specific analysis of the total system configuration. In this first 
“SPECO” paper exergy and monetary costs were calculated 
using the Last In First Out (LIFO) criterion. In [10] the 
SPECO approach was extended to the calculation of average 
costs, and a computer code was developed to take an 
automatic record of all exergy and cost additions to and 
removals from mass and energy streams in order to avoid the 
need of defining in advance Fuel and Product of each 
component. This approach was further extended and 
developed and finally lead to a general criterion to formulate 
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Fuel and Product and the associated costs ([11], [12], [13)]. In 
particular in [13] it was shown how to apply the general 
addition/removal criterion in the formulation of Fuel and 
Product, and general F and P rules were formulated to obtain 
the necessary and sufficient number of cost equations in 
agreement to the Fuel and Product definitions. Several 
examples of applications were presented to underline the 
general applicability of the SPECO criterion, which basically 
consists in  
i)  calculating of the exergy differences between outlet 

and inlet of the component along each mass and energy 
stream crossing the component boundaries,  

ii) checking the sign of these differences (positive and 
negative differences correspond to exergy additions and 
removals, respectively); 
iii) including in the Product only the desired exergy additions, 
and leaving exergy removals and undesired exergy additions 
on the Fuel side.  

Only in some cases in which chemical transformations are 
involved (e.g., in a gasification reactor in which a solid fuel is 
transformed into a gas) it may be meaningful to consider input 
exergies on the Fuel side and output exergies on the Product 
side.  

This paper focuses on some specific components in which 
there might be uncertainties in the definition of Fuel and 
Product and in the consequent auxiliary cost equations, and 
tries to remove this uncertainties by comparing the results of 
the application of the SPECO method with a possible 
alternative approach under changes of the component 
behavior. 

EXAMPLES OF APPLICATION 

Heat exchangers in which both cooling and heating are 

desired and useful  

The SPECO criterion involving exergy differences in the 
Fuel and Product definitions is compared to a different 
approach according to which the exergy at the outlet and inlet 
of the component are to be considered on the Product and 
Fuel side, respectively. The comparison is performed using 
two kinds of heat exchangers having separated or mixed 
streams, respectively. In both kinds of heat exchangers the 
cooling on the hot side and heating on the cold side are useful 
and desired to improve the exergy efficiency of the overall 
system in which the heat exchangers are included. 

The criterion to used here to “evaluate” the F and P 
definitions and associated costs consists in checking the 
variation of the exergy efficiency and the cost of product of 
the component under a change of its behavior. 

 
Separate streams 

This first example refers to a heat exchanger in which the 
hot stream to be cooled and the cold stream to be heated are 
separate. Both cooling of the hot stream and heating of the 
cold stream are desired and useful to improve the exergy 
efficiency of the total system. A practical application is the 
intercooler in a multi-stage compressor (see Fig.1 [1]) in 
which the decrease of the exergy at hot side reduces the 
compression work whereas the increase of the exergy on the 
cold side is used to increase the temperature of the hot 
reservoirs, the heat of which is then supplied to a reheated 

expansion (not appearing in the figure). The heat exchanger 
flowsheet is shown in Fig.2. 

 

 
 

Figure 1: Multi-stage compression with heat recovery from 
intercooling (see, [14]) 

 

 
Fig.2. Heat exchanger with separate streams 

 
According to the SPECO method the addition of exergy to 

the cold stream is desired and therefore it makes up the 
product, whereas the Fuel  is equal to the exergy  needed to 
generate the Product, i.e to the removal of exergy from the hot 
stream 

34P EEE     21F EEE    (SPECO)         (1) 

Instead, considering the heat exchanger as having the 
“double purpose” (named in the following DP) of heating the 
output stream 4 and cooling the output stream 2 leads to the 
following definition of Product and to the consequent 
(accoding to exergy balance) definition of Fuel (see, e.g., 
[14]) 

42P EEE     31F EEE    (DP)           (2) 

Thus, using the SPECO approach (Equations (1)), the 
exergy efficiency of the heat exchanger is 

 
 21hot

34cold
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   (SPECO)         (3) 

where e indicates a specific exergy (kJ/kg) and m a mass flow 

rate, whereas using the DP approach (Equations (2)) 
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    (DP)           (4) 

The cost balance of the component indicates that the sum 
of all cost flow rates at the inlet is equal to the sum of all cost 
flow rates at the outlet 

ZEcEcEcEc 44223311
               (5) 

where c represent specific costs ($/kJ), E are exergy flow 

rates (kJ/s) and Z  ($/s) amortization cost flow rates. The 
latter are neglected here for simplicity. Specific costs c1 and c3 
are assumed to be known and equal to 1 (kJ/kJ). The cost 
balance is not sufficient to calculate the two unknown costs c2 
and c4  of the outlet streams. The F rule of the SPECO method 
states that the average specific cost at which the exergy is 
removed in the component is equal to the average specific cost 
at which the same exergy was supplied in the upstream 
components. This rule  applied to the Fuel defined according 
to the SPECO criterion (Eq. 1) supplies the auxiliary equation  

21 cc      (SPECO)         (6) 

1 2 

4 3 

Hot stream 

Cold stream 

245



 
 

Heat exchanger

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5 10 15 20 25 30 35

K∙A [kW/K]


,S

P
E

C
O

 
 

Figure 3: SPECO exergetic efficiency of the heat exchanger in 
Fig.2.   
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Figure 4: DP exergetic efficiency of the heat exchanger in Fig.2. 
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Figure 5: SPECO cost of product of the heat exchanger in Fig.2. 
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Figure 6: DP cost of product of the heat exchanger in Fig.2. 

 
Instead, the DP exergy efficiency imposes the P rule to be 

used, which states that the component products ( 2E  and 4E ) 

are generated at the same unit costs, i.e. 

42 cc      (DP)           (7) 

According to the Product definitions given in Eqs. (1) and 
(2) the costs per unit of exergy of the products (cP) are  

34

3344
P

EE

EcEc
c








    (SPECO)  

          (8) 

2P cc      (DP)   

The heat exchanger behavior was simulated by considering 
air on the hot side and water on the cold side. Mass flow rates, 
temperatures and pressures at the inlet were assumed to be 
fixed input data ( 1m =10 kg/s, 2m =1 kg/s, T1 = T3 = 298.15 K, 

p1 = 10 bar, p2= 1 bar). To consider a  wide spectrum of 
operating conditions, the heat transfer coefficient KA (kW/K) 

was varied from 0.1 to 40 kW/K.. The variation of  and cP 
versus KA are shown in Figs. 3-4, and Figs. 5-6, respectively. 

As expected, if the SPECO approach is used, the exergetic 
efficiency increases and the cost of Product decreases when 
improving the behavior of the heat exchanger (i.e., for higher 
KA values). This is because the increase of exergy is assigned 
to the Product side, whereas the decrease of exergy to the Fuel 
side (Eq.7), and the latter occurs at constant cost per unit of 
exergy (see Eq. 8). Instead, using the DP approach the 
component behavior does not affect neither the exergetic 
efficiency nor the cost per unit of exergy of the Product, which 
remain constant. Thus, the DP definitions of Fuel and Product 
and the resulting exergetic efficiency and unit cost of product 
do not “detect” the improved behavior of the component 
deriving from higher KA values, although they are consistent 
with the exergetic balance of the component. This is because 

the “desired products” ( 2E and 4E ) formulated by the DP 

approach are independent of the actual behavior of the 
component, which shows an exergy consumption on the hot 

side ( 1E - 2E ) that is used to increase the exergy on the cold 

side ( 4E - 3E ), as the SPECO approach simply records. In 

fact, when KA increases, T2 decreases and T4 increases and 

2E and 4E  show a similar trend, being 1E and 3E  fixed at 

constant values by hypothesis. The two effects compensate so 
that the DP exergetic efficiency and cost per exergy unit of the 
product remain approximately constant. 

Mixed streams 

This second example consider the mixer of the two stage 
vapor-compression system in Fig. 7. Working fluid is 
ammonia (NH3), cooling fluid in the condenser is water, 
heating fluid in the evaporator is a water-ethylene glycole 
mixture (50/50 %weight). 

In the mixer the energy rejected during de-superheating and 
condensation of the refrigerant in the low temperature cycle is 
used to evaporate the refrigerant of the higher temperature 
cycle. Thus, as in the heat exchanger of the previous example, 
both cooling of the hot stream and heating of the cold stream 
are desired and useful (the mixer operates both as condenser 
and evaporator). The stream 6-3 gains exergy due to the 
condensation below the reference temperature, whereas the 
stream 2-7 loses exergy due to the evaporation below the 
reference temperature. 

Accordingly, using the SPECO approach the exergy 
difference (   eem 633  ) is positive (addition) and desired, 

and becomes part of the Product, whereas the exergy 
difference (   eem 722  ) is negative (removal) and becomes 

part of the Fuel, i.e 

63P EE E     72F EEE    (SPECO)         (9) 

Instead, using the DP approach, the output and input 
exergy streams are on the Product and Fuel sides, respectively 

37P EEE    26F EEE    (DP)        (10) 
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Figure 7: Two stage vapor-compression system 

 
 

Figure 8: T-s diagram of the system in Fig.7 

 
Thus, the exergy efficiencies of the mixer are 
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The cost balance of the mixer is  

ZEcEcEcEc 33776622
             (12) 

Amortization cost flow rates ( Z ) are neglected here for 
simplicity as in the previous example. Specific costs c2 and c6 
are known as they are calculated in the upstream components 
by the overall system model.  

The F rule of the SPECO method applied to the exergy 

removal   eem 722  (i.e to FE , see Eq.(9)) supplies the 

auxiliary equation 

72 cc      (SPECO)       (13) 

Using the DP approach the auxiliary equation is obtained 
by the P rule applied to the two terms of the component 

Product ( 7E  and 3E ) 

73 cc      (DP)         (14) 

According to the Product definitions in Eqs. (9) and (10) 
the costs per unit of exergy of the Products are  
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The behavior of the mixer was simulated considering 
different values of the mixer pressure for two different 
temperatures of the water-ethylene glycole mixture at the inlet 
of the evaporator (T10 = -15°C, -30°C) and a fixed value of the 
heat transfer rate at the evaporator (10 kW). The water 
temperature at the inlet of the condenser was fixed at 25°C. 

Results of the simulation are shown in Figures 9 to 12. The 
increase in the SPECO exergetic efficiency at increasing 
values of the mixer pressure (Fig. 9) is substantially due to the 
increasing value of T6 which reduces the desired cooling of 
stream 6. 
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Figure 9: SPECO exergetic efficiency of the mixer in Fig.7.   
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Figure 10: DP exergetic efficiency of the mixer in Fig.7. 
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Figure 11: SPECO cost of product of the mixer in Fig.7.     
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Figure 12: DP cost of product of the mixer in Fig.7. 
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The effect is more remarkable at T10=-30°C. This 
worsening of the component behavior leads to the expected 
progressive increase in cP (Fig. 10), which is more remarkable 
at T10=-30°C as well. Instead, the DP exergetic efficiency 
decreases at increasing values of the mixer pressure (Fig. 11), 
and it is apparently not consistent with the worse component 
behavior. On the other hand, also cP shows a decreasing 
(although smoother) trend (see Fig. 12), which does not 
appear to be consistent with the exergetic efficiency growth. 

So, also in this case the information deriving from and cP 
does not seem useful in a design improvement procedure of 
the component in which improvements of the component 
behavior are expected to result in a higher exergetic efficiency 
and a lower cP cost. 

Cogeneration steam turbine 

The last example considers the back-pressure steam turbine 
in Fig. 13 in which the steam at the exit is used for heating 
purposes.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Cogeneration steam turbine. 
 
According to the SPECO method the desired Product of the 

turbine is the shaft mechanical work, whereas the Fuel is equal 
to the exergy needed to generate the Product, i.e the removal 
of exergy from the steam crossing the turbine 

W EP
    outinF EE E     (SPECO)       (16) 

Instead, using to the DP criterion both the thermal exergy 
and mechanical work at the outlet are considered as useful 
Products  

outP EW E    inF E E     (DP)         (17) 

Thus, the SPECO and DP exergetic efficiencies are 
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The cost balance of the component is  

ZEcEc outoutinin
              (19) 

Amortization cost flow rates ( Z ) are neglected for 
simplicity as in the previous cases. 

The F rule of the SPECO method applied to the exergy 
removal (Eq.12) supplies the auxiliary equation 

outin cc      (SPECO)       (20) 

Using the DP approach the auxiliary equation is obtained 
by the P rule applied to the two terms of the component 

Product ( 7E  and 3E ) 

outW cc      (DP)         (21) 

The costs per exergy unit of the Products are  
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Figure14: SPECO exergetic efficiency of the steam turbine in 
Fig.13. 
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Figure 15: DP exergetic efficiency of the steam turbine in Fig.13. 
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Figure 16: SPECO cost of product of the steam turbine in Fig.13. 
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Figure 17: DP cost of product of the steam turbine in Fig.13. 
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The turbine behavior was modified by varying the 
isentropic efficiency in the range 0.7-0.85 at fixed inlet 
thermodynamic conditions (Tin=400°C, pin=40bar) and for 
three values of the outlet pressure (pout=1bar, 10bar, 20 bar). 
Results of the simulation are shown in Figures 9 to 12. 
In this example both the SPECO and DP exergetic efficiencies 
increase as the isentropic efficiency increases. However, the 
rate of increase is higher for the SPECO formulation, and 
becomes very small for the DP one when pout is closer to pin 

(at =20 bar DP is almost constant, see Fig.17). The cost per 
exergy unit of the Product shows a similar trend, which is 
almost flat for pout 20 bar. In this latter case, as in all previous 
examples, the improvements of the component behavior are 

not detected by DP and cP,DP. This is because the definitions 
of these parameters places the “desired performance” of the 
users (that are stated according to the requirement of the 
users) before the real thermodynamic behavior of the 
component itself. So, the exergy stream at the output of the 
cogeneration turbine, which the turbine is not able to use, is 
considered as being generated in the same way of the 
mechanical work, and having the same exergetic (and 
monetary) value (per exergy unit) of the mechanical work at 
the turbine shaft. None of these two hypotheses corresponds to 
the real behavior of the turbine. The turbine “extracts” 
mechanical work from the steam flowing through it and leaves 
at the outlet some exergy which cannot be practically 
converted into mechanical work with 100% efficiency. So, its 
value cannot be the same as the value of the mechanical work. 

CONCLUSIONS 

The three examples presented in the paper show that 
components having a “double purpose” in the system in which 
they are included may suggest different Fuel and Product 
formulations, and consequently a different cost of Product. 
Two criteria were considered to formulate the Fuel and 
Product of these components:  

- The SPECO one, which takes a record of all the 
exergy differences between inlet and outlet of the 
component and includes on the Product side the 
desired additions and on the Fuel side the exegy 
removals (consumption) needed to obtain the Product 
according to the actual component behavior; 

- The so called Double Purpose approach, which states 
that input and output exergy streams belong to the Fuel 
and Product, respectively. 

Both criteria are consistent with the exergy balance, but 
they supply very different values of the exergetic efficiency, 
and in turn of the cost of Product. The amplitude of these 
differences varies depending on the design features of the 
component. In particular, it is observed that the Double 
Purpose approach may lead to constant exergetic efficiency 
and constant exergetic cost of Product when the design 
behavior of the component is modified. This implies that 
improvements in the component design might not be 
“detected” by the exergetic efficiency and cost of Product, 
which may therefore become useless performance parameters 
in a design improvement procedure. This is because the 
definitions of these parameters given by the Double Purpose 
approach places the “desired performance” of the component 
(that are stated according to the requirement of the users) 
before the real thermodynamic behavior of the component 
itself. So, different forms of exergy that undergo different 
processes within the component may be considered as being 

generated in the same way and having the same value. 
Although this approach is “allowed” by exergoeconomics, it 
should in general be avoided when not dictated by the 
aggregation level of the system components. In this case (e.g., 
complex cogeneration plants that are considered as black-
boxes having two or more products carrying different forms of 
exergy) it is necessary to consider the same cost for all the 
exergy units belonging to the different products. However, it 
is opinion of the author that the results of the analysis are 
strongly improved if the need of this approach is eliminated 
by considering a lower aggregation level of the component 
combined with the SPECO method. 
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NOMENCLATURE 

Symbol Quantity SI Unit 
   
c Specific monetary cost or  

Specific exergetic cost 
$/J

 

J/J 
e Specific exergy J/kg 

E  Exergy flow rate J/s 

KA Heat transfer coefficient W/K 

m  Mass flow rate Kg/s 

Z  Amortization cost flo rate $/s 

   
Subscripts   
   
P Associated with the Product of 

the component 
 

F Associated with the Fuel of the 
component 
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INTRODUCTION 

 

An energy system can be synthetically described as a 

network of energy flows, connecting some nodes (named 

components, or sub-systems) where different kinds of 

irreversible, energy conversion processes may occur. This 

point of view is widely adopted for analyzing either natural, 

biological and ecological systems, or human-made, 

technological production systems. In Fig.1 a combined heat 

and power (CHP) system is shown, while in Fig.2 a simple 

emergy diagram is reported for a forest with natural wood 

production. 

 
Fig.1 CHP system [1] 

 

 
Fig.2 Emergy diagram for the wood production [2] 

Indeed, ecological and technological energy systems are 

not disjoint sets of things, but they are strongly 

interconnected and interact each other, as it is especially 

evident when biomass-to-energy conversion systems, or bio-

fuel production plants are taken into account. 

Not only that, if we consider a sufficiently extensive 

network of energy connections, it is evident how all 

technological systems are directly or indirectly supported by 

relationships with the ecological systems of the biosphere 

that surrounds them. Therefore, when we focus on the design 

and optimization of an energy conversion system, or of a 

component inside a production plant, we actually define a 

control-volume, isolating a sub-system from a much bigger 

and much more complicated macro-system. As a 

consequence, some of the energy flows, consumed inside the 

sub-system, cross the limits of the control-volume and 

finally, in order to take into account the effects on the whole 

macro-system of the optimal design choices that we are 

looking for, the following question has to be answered: 

“How much primary energy has been used by the macro-

system to maintain each one of those flows at a defined 

value?” 

Various methodologies can be found in literature to 

address this problem. Two of them, in particular, are widely 

used and defined in details. They are: 

 The EMergy Analysis (EMA), defined in the ambit of 

the ecological modeling and ecological economics, 

 The Exergy Cost Theory (ECT), defined in the ambit of 

energy conversion engineering. 

In spite of some similarities, these two methodologies 

show more than a few important differences, so that the 

answers to the previous question are often not-consistent, 

even if very simple systems are considered. 
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ABSTRACT 
If a sufficiently extensive network of energy connections is considered, it is evident how all production and technological 

systems are directly or indirectly supported by relationships with the ecological systems of the biosphere that surrounds them. 

As a consequence, some of the energy flows, consumed inside production processes and technological devices, cross the limits 

of the control-volume and finally, in order to take into account the effects on the whole macro-system of the optimal design 

choices that we are looking for, the following question has to be answered: 

“How much primary energy has been used by the macro-system to maintain each one of those flows at a defined value?” 

In spite of some similarities, the two widely used methodologies show important differences, too, so that the answers to the 

previous question are often not-consistent, even if very simple systems are considered. Nevertheless, an almost complete 

integration among the two methodologies appears to be at hand, while all major differences can be explained, if we think about 

the possible behavior of the different components inside the system, instead of the axioms of previous formulations. The 

integrated approach is expected to enlarge the options the analyst can use to define and optimize the system and to allow the 

correct use of the results of both methodologies. 
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The paper highlights first the similarities, avoiding 

confusion between exergy and exergy cost analysis, in the 

comparison with the EMA, and introducing the parallel 

concepts of transformity (x) and unit exergy cost (k, by 

using the derivative approach, typical of the Structural 

Theory of Termoeconomics. The possible interpretation of 

xand k as shadow (marginal) or average cost is also briefly 

discussed. 

The differences arising when bifurcating flows, or 

recycles, are considered inside the system, are then 

introduced by showing some very simple cases, and an effort 

is done to bring the different approach about bifurcating 

flows to some (implicit or explicit) hypothesis on the 

physical behavior of the multi-product component, where the 

bifurcation occurs. Finally, by extending a recent result of 

the EMA (the Dynamic EMergy Accounting), a general 

formulation of cost allocation problem in case of recycling 

flows is obtained: in this way, the unit exergy cost (k) of 

the ECT can be re-obtained as a particular case, with a well-

defined physical meaning. 

 

THE SYSTEM AS A NETWORK OF ENERGY 

FLOWS 

 

Let’s consider a steady state operation of a multi-

component energy system (notice that its Total Fuel (FT) 

could to be regarded as the whole consumed energetic and/or 

economical resources). If the energy/exergy flows inside the 

network are defined in order to properly describe the 

productive relations among components and with the outside 

of the system, each component (or process) can be regarded, 

at local level, as an autonomous production unit, having one, 

or more, output flow named Products or Functions and one 

or more input flows, named Fuels or internal resources. As a 

result, a sort of local model of each component is isolated 

from the whole system thermodynamic model, while the 

network can be regarded as the so called Productive 

Structure (PS) of the system.  

Each flow Ei describing a productive relation among 

components has to be defined on the basis of heat, work and 

mass flow rates and of thermodynamic conditions of 

working fluids inside the plant. From a mathematical point 

of view, the choice of the analytic formulation is free and is 

left to the Analyst. If exergy flows were used to describe the 

productive relations inside the system, additional 

information could be obtained about losses inside each 

control volume and about distance from reversibility of each 

energy conversion process [3, 4, 5, 6]. Nevertheless, the 

definition of a simple (e.g. linear) model can be sometimes 

simplified by using energy based descriptions for the 

productive relations (Ei). In any case, exergy based 

productive relations have to be regarded as the general 

option [7, 8, 6]. 

Let’s go back to the basic question: “How much primary 

energy has been used by the macro-system to maintain each 

flows of the PS at a defined value?” If the system is similar 

to a linear chain (like the one in Fig.3) and it is operating in 

stationary condition,  the answer can be easily inferred. In 

fact, flows E1 and E2 do correspond to the primary energy F1 

and F2, respectively; flow E3 is maintained by F1, so that its 

unit energy/exergy cost is defined as k*3 = F1/ E3, and a 

similar situations happens for flows E4 and E5, too. Let’s 

think at the bifurcation of flow E3 as a split, without any 

thermodynamic transformation or process, therefore flow E7 

results maintained by a fraction E7/ E3 of flow F1 and its unit 

cost is defined as k*7 = (E7/ E3) (F1/ E7) = k*3. Flow E8 is 

maintained by the remaining part of flow F1 and by the entire 

flow F2. Its unit cost is k*8 = k*3 (E6/ E8) + k*5 (E5/ E8). 

 

 

Fig. 3 A simple linear system with a spit. 

 

Fig. 4 A generic single product component. 

The ratios like F1/ E3 (or E6/ E8) can be defined as the 

specific consumptions (or the partial specific consumptions) 

for obtaining a certain energy/exergy flow inside the system. 

This approach is formalized in deep detail in [4], where 

specific exergy consumptions are named ij and a very 

elegant matrix formulation is introduced. In matrix form, the 

input/output relations for all components or processes inside 

the PS, as well as all unit energy/exergy costs, can be 

expressed as follows: 

         (1) 

               (2) 

 

where K is a square matrix containing the specific 

energy/exergy consumptions ij, while  and ce are vectors 

containing the out coming products (required by external 

users) and  the unit energy/exergy cost of the incoming 

primary energy resources, respectively. Eq.(1) is named the 

Characteristic Equation of the PS. 

Notice that costs inside vector k* have to be regarded as 

average costs, because they are obtained at constant specific 

energy/exergy consumption (or at constant energy/exergy 

efficiency) of all components and processes inside the PS. 

Therefore, all energy/exergy units, making up a certain flow, 

are regarded as obtained with the same efficiency of the 

production chain that starts with the incoming energy 

resources and reaches the considered flow. 

For optimization purposes, marginal costs may be 

regarded as more appropriate, but two remarks have to be 

taken into account: 

 Dealing with large ecological-technological energy 

systems, the state of a production chain is generally 

supposed to be not affected by the additional 

production of a unit of a certain commodity (so that we 

can speak about the unit energy cost of electricity, 

natural gas, paper or corn without the need of 

specifying the exact production level at which that unit 

has been produced);  
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 Marginal cost cannot be simply obtained from the 

values of all flows in the steady state operation of the 

system, even if it is similar to a linear chain, but 

variable load operation of each component or process 

has to be taken into account. In addition, marginal cost 

can be directly calculated from the system model for 

those flows only corresponding to independent 

variables of the model. For dependent flows (or state 

variables) shadow costs only can be calculated, by 

introducing some additional fictitious variables into the 

system model. 

To introduce marginal and shadow costs, let’s suppose 

that the global model of the whole system is available. In 

this model each exergy / energy or cost flows in the PS can 

be expressed as a function of an independent variables set 

(T), made with all necessary variables for describing the 

behavior of the specific component or process obtaining that 

flow as a Product. 

The local model of a general single-product component 

(Fig.4) can be first formulated as shown in the left hand side 

below, by operating a simple variable change, i.e. by identify 

the Product as one of the local independent variables: 

                        
                 (3) 

               
                        

            

               
                       

             

 

The hypothesis that a component has to have one and only 

one Product is widely applied in Literature. The choice of a 

single outgoing flow, representing the purpose, or the 

Product of the component, makes easier the economic 

interpretation of the PS, as seen before. 

The problem of multi-product components is the key 

point where differences arise between ECT and EMA and 

will be discussed in the following. In this paragraph it has to 

be stressed that in a lot of cases the apparent second product 

is an outgoing flow from a control volume having its main 

product, but the second product may be regarded as a sub-

product or a residue, depending on whether its production 

implies a reduction, or an increase of total fuel consumption, 

respectively, at global level. The cost formation process of 

by-products and residues in the ambit of the ECT is 

discussed in [9, 10]. The heat cogenerated by an internal 

combustion engine can be regarded as an example of sub-

product (when it is supplied to thermal users), or of residue 

(when it is not).  

In other cases, inside the multi-product component an 

internal PS could be defined, where each sub-component 

obtains only one product [3]. 

The previous local model formulation, expressing local 

resources as well as eventual sub-product and residue vs. the 

local product, can be linearized, with the aim of obtaining 

the Local Linear Model (LLM). 

                                 

                              (4) 

 

In these relations the coefficients of the linearizations are 

regarded as functions of the product too. This is the general 

case. But, if the production level variations are restricted 

inside an interval where a specific linear relation is 

acceptable, the linearization coefficients can be regarded as 

independent from the production level of the component. 

This property of the LLM is expected to be an important 

advantage in further optimization procedures. In fact, 

recollecting the LLMs of all components and nodes 

(junctions and branches), the minimum resource 

consumption for the system described by the PS, can be 

obtained as the solution of the following MILP problem: 

 

          
         (5) 

                (6) 

                    (7) 

                  (8) 

 

where M is a square matrix and Q is a vector containing 

the linearization coefficients  and , respectively. 

Let’s suppose that a feasible solution were available; a 

general variation in the objective function FT can be 

expressed rearranging the total derivative of Eq.(5), taking 

into account linearization coefficients behavior (Eq.(7), (8)). 

The procedure is very similar to that presented in [16], where 

additional details can be found. In this way the so called 

Fuel impact formula is obtained: 

                                     (9) 

            
  

            (10) 

 

Eq.(10) corresponds to the structural cost formulation, 

obtained by Valero - Lozano - Serra [11] through a 

lagrangian procedure, when vector Q is equal to zero. It can 

be demonstrated [12] that costs  in Eq.(10) are the dual 

costs of the restrictions expressed by Eq.(6), therefore they 

have to be regarded as the marginal and shadow costs of 

flows E. 

Notice that costs  and average costs (k*) do coincide 

[13, 5, 14, 15] if the LLM is replaced with the characteristic 

equation, i.e. if the input/output relations of each component 

or process are replaced by the definitions of specific 

energy/exergy consumptions kij: 

                     

                       (11) 

 

It is important to notice that this means that average costs 

(k*) also can be ideally obtained through a derivative 

procedure; in addition they can be calculated from a single 

picture (state) of the system, while the costs  have to be 

obtained through an actual linearization of the energy system 

model. 

 

THE EXERGY COST THEORY AND THE EMERGY 

ANALYSIS 

 

Even if the ECT terminology has been used in the 

previous paragraph, it can be stated that the outlined 

procedure for obtaining the average costs is consistent also 

with EMA, at least from a methodological point of view.  

To recall the complete formulation of the two 

methodologies is behind the object of this work. Various 

papers about this topic may be find in the literature (see only 

few of them in the References: Frangopoulos [16], Odum et 

al. [17], Reini et al. [18], Lozano and Valero [4], von 

Spakovsky and Evans [20]). Nevertheless, the main point of 
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ECT and EMA will be re-obtained in the following, from the 

PS of an energy system. 

Let’s first focus only on the similarities between the two 

approaches: 

 They both describe an energy system as a network of 

energy/exergy flows, connecting sub-systems (or 

components), where energy conversion (or production) 

processes occur. 

 They both introduce junction and splitter as nodes of 

the network, to obtain a meaningful picture of 

interactions among components. 

 They deal with systems in stationary state (ECT), or 

evaluate flows through their annual average values 

(EMA). 

 In the network, primary energy is continuously 

consumed, converted and dissipated to obtain one or 

more product flows for the outside the system. 

 They both face the fundamental question: How much of 

primary energy flows is directly or indirectly required 

for obtaining a power unit of a certain flow inside the 

network making up the system? The answer is the 

transformity (xi) and the unit exergy cost (k*i) of the 

generic flow Ei for EMA and ECT, respectively. 

It can be inferred that transformity and unit exergy cost 

have to be analogous magnitudes and the same happens for 

the Emergy flow (Empower: Emi  xi Ei) and the exergy cost 

(E*i  k*i Ei). Emergy flow and exergy cost have, in some 

cases, the same value too, as can be easily demonstrated for 

the case in Fig.3, if solar energy is regarded as the only 

input. 

These results make evident that a strong analogy may be 

identified between ECT and EMA, whereas it does not make 

sense comparing EMA with Exergy Analysis, because the 

latter does not incorporate any concept of indirect resources 

consumption. 

Some differences arise between the two methodologies 

because they suggest different solutions to the fundamental 

problem of multi-product component or process. In fact they 

both pretend to obtain the answer only on the basis of the 

steady state values of all flows, without the need of 

introducing a more detailed model of component behavior.  

EMA consider two options for multi-product components: 

 There are only one true product and it is then spitted in 

two flows, without any transformation or losses, so that  

the true product and the spitted flows have to be 

qualitatively homogeneous; this is the case of flow 3 in 

Fig.3. 

 There are two (or more) simultaneous, heterogeneous 

products; in this case the whole emergy (exergy cost) 

of the inputs is allocated on each one of the so-called 

co-products, without any apportionment. 

The second case introduces a complication, because the 

co-products are the origins of different production chains 

that can be (partially) reunited, so that double counting of 

primary resources consumption has to be carefully avoided 

in the evaluation of the unit costs, or transformities, for the 

final products. This kind of double counting has naturally to 

be avoided also when a co-product is reunited upstream the 

multi-product component, i.e. when a co-product is recycled 

backward in its own production chain. It is surprising to 

notice that the same not-double-counting rule is applied to 

all recycling flows, even if they come from a split, where the 

emergy accounting methodology has not introduced any 

duplication of the primary energy resources! 

The EMA methodology is often presented as a set of 

axiomatic rules, that can be summarized in four points 

(Brown and Herendeen, [21]): 

1) All source emergy to a process is assigned to the 

processes’ output (or outputs). 

2) By-products (multi-products) from a process have the 

total emergy assigned to each pathway. 

3) When a pathway splits, the two “legs” have the same 

transformity. 

4) Emergy cannot be counted twice: (a) Emergy in 

feedbacks cannot be double counted; (b) by-products, 

when reunited, cannot be added to equal a sum greater 

than the source of emergy from which they were 

derived. 

If a sub-system has two product flows, the original ECT 

postulates one of the following three cases: 

 the exergy cost of the two products is the same; this 

case corresponds to the first option of EMA. 

 the exergy cost of one of the two products is externally 

fixed; this case has been afterwards developed into the 

residue and sub-product concepts [22]. 

 inside the multi-product component an internal PS 

could be defined, where each sub-component obtains 

only one product [18]. 

It has to be pointed out that the last hypothesis brings to a 

generalization of the average cost definition. In fact, the 

matrix formulation (Eq.(2)) allows average costs to be 

calculated also in cases where they cannot be inferred from 

the conservative cost balance of each component. 

The characteristic equations for the last case and for a 

residue and a sub-product accompanying the main product 

are shown in Fig.5. 

 

 
Fig.5 Characteristic Equations and PS for a multi-product 

component (a), a component with a residue (b) or a sub-product (c), 

agreeing with the ECT. 
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The additional main differences between the two 

methodologies are summarized and in the following: 

 The limit of the system is not the same. In fact ECT is 

typically applied to power plants (or other energy 

conversion systems), having a fossil fuel as the main 

input and electric and/or thermal power as output. 

EMA include inside the analyzed system also the 

ecological sub-system of the biosphere and goods and 

services from the market, directly or indirectly required 

for operating the system. 

 EMA measures energy flows through their energy 

content, while ECT measures energy flows through 

their exergy content, evaluated with respect of a proper 

set of ambient conditions. 

The first point is not a real problem. In fact, the system 

limits usually defined by the ECT could be extended, up to 

coincide with those of EMA. In any case, the exergy input 

consumed by the ecological sub-system of the biosphere, as 

well as the exergy required to make available goods and 

services in the market, could be introduced into the analysis 

through a proper set of additional exergy costs for the 

system. The problem lies in the practical evaluation of these 

additional exergy costs, rather than in some mathematical 

limitation of the methodology. In this matter, the large 

experience of EMA could be of help to extend the 

application of the energy/exergy based cost accounting 

methodology. 

The difference in the second point is vanishing in the 

recent years. In fact the idea of measuring energy flows 

through their exergy content is now widely accepted and 

practiced in the field of EMA (Odum, [23], Ulgiati and 

Brown, [24]). In addition, it could be noted that energy and 

exergy based cost accounting actually provide different 

results only if some flow splits (like flow 3 in Fig.3). 

Otherwise, in spite of being the unit costs different, the cost 

flows (E*, or Em) are the same. 

Thus, the different hypotheses, formulated to deal with 

bifurcation and recycling of flows, have to be regarded as the 

main impediment towards a unified formulation of the two 

methodologies. Notice that analogous differences can be 

found when comparing EMA with Embodied energy 

Analysis (Brown and Herendeen, [21]). 

 

RECENT DEVELOPMENTS 

 

In recent years, the effort to re-think the fundamental 

background  of EMA and the aim to enlarge its application 

field, are bringing inside the EMA some new contributions 

that could bring the two methodologies closer [25, 26, 27]. 

Yang at al. [25] proposed a new EMA method for waste 

treatment, reuse and recycle that is very similar to the sub-

product and residue concepts defined in the ambit of ECT 

and briefly summarized in previous Fig. 5.  

Reini and Valero [22, 10] have suggested how a cost 

allocation criteria, very similar to the case of co-product in 

the EMA, can be obtained in the ambit of ECT. In fact this is 

the result when there are two (or more) products, but only 

one degree of freedom is available for the multi-product 

component. 

In this case, only one of the two products may be 

identified as the component degree of freedom in the LM, so 

that a LM similar to that shown inside Fig.5.a cannot 

represent the actual behavior of the multi-product 

component, because in that case at least two, independent 

degrees of freedom are implicitly required to allow that one 

product could be modified independently by the other. 

In other words, one product only may be put in relation 

with the single degree of freedom, while the second one has 

to be regarded as a dependent flow of the LM. 

If the PS does not allow the second product to be 

identified as a sub-product, or a residue, the result obtained 

by applying Eq.(2) show a unit cost equal to zero for the 

second product, like it was a not required output, or a residue 

without any cost for disposal. To obtain the not-null value of 

its transformity, a complication has to be accepted: The roles 

of the dependent/independent flow have to be exchanged and 

Eq.(2) has to be applied a second time. This two-step 

procedure allows obtaining a couple of cost (k*), consistent 

with the co-product concept of EMA. Notice that the 

simultaneous production of two flows of different nature, 

where each one cannot be obtained without the other, has 

always been used in the emergy Literature to support its co-

product concept and its peculiar, not-conservative, cost 

allocation rule. Moreover, it has to be pointed out that co-

products are quite common inside living energy systems, 

whereas sub-product and residue cannot be easily identified 

in this kind of systems; the opposite happens dealing with 

the technological energy conversion systems, where the ECT 

has been generally applied. 

To come to the problem of recycling flows, Tilley and 

Brown [26, 27] have developed an approach to deal with 

those process in which the recycle of material is present 

inside the process itself. This kind of approach (named 

Dynamic Emergy Accounting, DEA) provides for explicitly 

taking into account the dynamic characteristic of the 

components inside the system, not only the stationary 

conditions, which are supposed to be reached at the end of a 

transient period. 

At a generic instant, the recycled flow is separated from 

the main product and is sent to a buffer, where it is 

cumulated and lies in wait to be reused within the productive 

process. At the equilibrium, the material quantity inside the 

buffer remains constant, therefore the situation is the same of 

the steady state operation of the system without buffer.  

In reality the transient period has an impact on the 

transformities at the equilibrium, in fact, the recycled flow 

has its own emergy value which is regarded as a productive 

factor in the upstream production chain. This is different 

from what traditionally happens in the EMA, in which the 

not-double-counting rule applies to all recycling flows, 

without regarding if they come from splits or co-products. 

It follows that the transformity of the material recycled 

flow do coincide with that of the material inside the buffer: 

therefore, the transformity value of the material recycled 

flow becomes an input datum, that must be known prior by 

the analyst.  

Moreover, in the DEA approach, a sort of emergy ring 

results made up by the recycled flow, together with a 

fraction of its production chain, so that the emergy of some 

flows in that chain may be greater than the total emergy 

input of the system. 

 

TOWARD A UNIFIED APPROACH 

 

By extending the result of the DEA, a general formulation 

of cost allocation problem in case of recycling flows can be 
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obtained. In fact, if the idea of an externally defined 

transformity,  or unit cost, were accepted for every recycled 

flow (of both material and energy, homogeneous or 

heterogeneous with the not-recycled part of the product) the 

following three cases could be considered: 

 The transformity is equal to zero: this case allows the 

transformites of all other flows (different from the 

recycling one) to be obtained, in agreement with 

classical EMA, 

 The transformity is equal to that of the not-recycled 

part of the product: This is a split for the EMA, but its 

emergy, or energy/exergy cost, is taken into account as 

productive factor in the upstream production chain, as 

the ECT requires. 

 The transformity is equal to a value inferred by the 

analyst (e.g. from the market): this is the original DEA 

approach. 

 

It is important to point out that the same results can be 

derived also from the cost allocation criteria of co-product, 

split and sub-product, once it has been observed that every 

recycled flow has to come from a multi-product component, 

or, in other words, that the presence of a recycle inside the 

PS implies the presence of a bifurcation, too [4]. 

This observation is the key to combine the generalized 

results of the DEA with those obtained by ECT, where the 

co-product, split and sub-product concepts have been 

introduced, as recently  suggested in [22, 10]. In this way, a 

new general cost accounting method could be outlined, in 

which the cost allocation rules of EMA and ECT apply to a 

set of particular cases, but it has to be recognized that neither 

EMA nor ECT can be properly applied to all components or 

processes inside the ecological-technological energy 

systems. 

To fix the ideas, let’s consider the system illustrated in 

Fig.6 which has two process units (represented by the 

components A and B) and 6 exergy flows, where the 

component B is supposed to have only one degree of 

freedom. 

 
Fig.6 Scheme of a system with 6 flows, 2 black boxes (A, B), a co-

product and  feedback 

 

To find the unit exergy cost of every flow, it is necessary 

to fix the independent flow outgoing from the process unit B, 

either E4 or E3. Choosing the latter as the independent flow, 

the characteristic equations of the PS in Fig.6 are listed 

below:  

 
 
 

 
 
         

         

               
         

        

         

      (12) 

 

where P3 is the only one independent product, even though 

there are two outgoing flows from the system. The previous 

equations can be written in the matrix form, Eq.(2), and 

therefore the unit exergy costs can be calculated 

(remembering that ce is a vector containing the unit exergy 

cost of the input flow, it follows that for Fig.6 the vector ce 

turns out to be equal to [k1
*
 0 0 0 0 0]

T
 ). To obtain the unit 

exergy cost of the flows E4, E5 and E6 the roles of the 

dependent/independent flow have to be exchanged and 

Eq.(2) has to be applied a second time. The resulting costs 

are shown in Table 1, together with those obtained by means 

of classical ECT and the rules of Emergy Algebra. 

Adopting the exergy cost theory (ECT), at least two 

degrees of freedom are implicitly required to allow 

independent variations of each one of the two products, P3 

and P5. therefore, the characteristic equations of the PS in 

Fig.6 become different, as it can be seen below: 

 
 
 

 
 
                              
                 
                                    
                             
                                    
                              

    (13) 

 

The unit exergy costs are obtained in a similar way as 

before, thus applying the same matrix form, Eq.(2). 

To compare these results with those obtained by the 

emergy analysis, it is necessary to apply the emergy algebra 

rules to the system illustrated in Fig.6, involving a quite 

different set of equations: 

 

                     
                     
           

                     

        (14) 

 

It can be noticed that the rules concerning the co-product, 

split and feedback were properly taken into account. The 

resulting values of transformities (xi) are shown in Tab.1. 

The same table contains: unit costs calculated by Eq.(2), 

emergies and transformities obtained from the emergy 

algebra rules and exergy costs as a function of the steady-

state values of the exergy flows in the PS. 

Notice that the exergy cost column of ECT has been left 

empty; this is because, if the two simultaneous product of 

component B are supposed to be independent, the ECT does 

not allow the specific unit consumptions (kij) to be obtained 

on the basis of exegy flow only, but additional information is 

required in order to made completely defined all terms in Eq. 

(13), e.g. the internal PS of component B. 

The table shows that the unit costs and the transformities 

of the splitting flows (E4, E5 and E6) are equal each other, in 

all cases considered, but the value of transformity is lower 

than that of the unit exergy cost. This is because an exergy 

cost ring arises in consequence of the recycling flow E6; this 

ring is completely the same of the emergy ring highlighted in 

the DEA approach [26], when a bifurcating flow is recycled 

upstream in the production chain. In fact, taking into account 

the value of the total cost for the flow E4 (in the second 

column of Table 1), it can be re-written in such a manner: 

 

  
  

  

  
   

     
  

  
    

    
  

  

  
   (15) 
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Tab.1 Summary of the results (unit costs and total cost) obtained for every theory considered above 

Flow E3 independent E4 independent ECT (E3 and E4 independent) Emergy Algebra 

n° Unit Cost Exergy cost Unit Cost Exergy cost Unit Cost Exergy cost Transformity Emergy 
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0 0 
       

         
   

    
  

  

  
 

       
         

   
  

   
 

  
   

  
  

  
 

 

It turns out that the total cost (i.e. the emergy) of the flow 

E4 is given by the exergy cost of the input flow, plus a term 

exactly equal to the exergy cost of the recycling flow (E6). 

As previously highlighted, the presence of such a ring 

makes the exergy cost of some internal flows (in this case E2 

and E4) greater than the total input; but the overall cost 

balance is kept conservative, in fact the total cost input 

equals the output. 

Moreover, if the flows E3 and E4 are two co-products of 

component B, the two-step procedure outlined previously 

supplies an exergy cost value of E3 consistent with the 

emergy algebra rules; 

 

 

CONCLUSIONS 

 

In conclusion, an almost complete integration among the 

EMA and ECT methodologies appears to be at hand, while 

all major differences can be explained, if we think about the 

possible behavior of the different components inside the 

system, instead of the axioms of previous classical 

formulations. In particular, the actual degree of freedom of 

component and process and the constraints that act on each 

of them, in consequence of the remaining part of the PS, 

should be carefully considered. In this way, the co-product, 

split and sub-product concepts can be introduced in the ECT, 

as recently suggested. 

By combining such an extended formulation of the ECT 

with a quite natural generalization of the results of the DEA, 

a new general cost accounting method could be outlined. 

It has to be recognized that, in the integrated approach, 

the cost allocation rules of classical EMA and ECT apply to 

a set of particular cases, but it has to be recognized also that 

neither EMA nor ECT can be properly applied to all 

components or processes inside both the natural, biological 

and ecological systems and human-made, technological 

production systems. The integrated approach is expected to 

enlarge the options the analyst can use to define and to opti- 

 

mize the system and to allow the correct use of the results of 

both methodologies.  

 

 

NOMENCLATURE 

 

µ,  = linear coefficients 

b, b = additional extraction and additional extractions 

vector 

ce = vector of unit energy/exergy cost of the incoming 

primary energy resources 

E
*
, E

* 
= exergy cost and exergy cost vector 

E, E = generic flow and flows vector of the energy 

system 

Emi = emergy of flow Ei 

f = generic function 

F, P = fuel and product of a component / a system 

K = unit exergy consumption matrix 

k
*
, k

* 
= unit exergy cost and unit exergy cost vector 

ke
*
 = unit exergy costs vector of the primary energy 

input
 

kij = unit exergy consumption of flow Ej to obtain flow 

Ei 

M = matrix of coefficients µ 

Q = matrix of coefficients θ 

UD = unit diagonal matrix 

xi = transformity of flow Ei 

λ = vector of ratios λi 

λi = (ΔFT/bi) 

τ = independent variables vector 

ω, ω = final product and final products vector 

indices: 

e, s = input and output of a node without exergy 

dissipation 

h, i, j, y = generic indices 

t = transposed 

T = total system 
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INTRODUCTION 

The energy utilization of a country or region is 
conventionally analyzed by examining the flows of energy 
through various sectors of the economy. But energy analysis 
can be misleading when used to analyze how effectively 
energy is utilized, and such analyses sometimes indicate the 
main inefficiencies to be in the wrong sectors and tend to state 
a technological efficiency higher than actually exists. Many 
feel that in order to properly assess how well a country or 
region utilizes its energy resources, an examination of the 
flows of exergy, rather than energy, through the sectors is 
required. The author has used exergy analysis to assess energy 
utilization in various countries, including Canada, Turkey and 
Saudi Arabia. Many other investigations have also focused on 
evaluating the energy utilization efficiency of regions and 
countries (Ertesvag, 2001; Rosen, 1992, 1993; Reistad, 1975; 
Ayres et al., 2003; Wall, 1990, 1991; Chen and Qi, 2007; 
Chen and Chen, 2006; Chen et al., 2006; Hammond and 
Stapleton, 2001; Gasparatos et al., 2008; Warr et al., 2008; 
Wall, 1987, 1991; 1997; Ertesvag and Mielnik, 2000; 
Ertesvag, 2005; Ptasinski et al., 2006; Wall et al., 1994; 
Stepanov, 1995; Ozdogan and Arikol, 1995; Dincer and 
Rosen, 2013; Ileri and Gurer, 1998; Dincer and Rosen, 2013; 
Schaeffer and Wirtshafter, 1992; Nakicenovic et al., 1996; 
Hermann, 2006). 

Given that exergy is often viewed as a measure of value of 
energy resources, research has been carried out on the relation 
of exergy to economics and several related tools have been 
developed. Bryant (2007) and others suggest that the first and 
second laws of thermodynamics have significant implications 
for economic theory. Further, many researchers observe that 
exergy, but not energy, is often a consistent measure of 
economic value, and that accounting and pricing are better 
performed when based on exergy rather than energy. Several 
exergy-based economic-analysis techniques have been 
developed, usually to help determine appropriate allocations 

of economic resources for optimal or improved systems and 
operations, aid design efforts, and enhance economic 
feasibility and profitability. Exergy-based economic 
techniques include exergoeconomics, thermoeconomics, 
exergy-based pricing, EXCEM analysis and analysis based on 
the ratio of thermodynamic loss to capital cost (Gogus, 2005; 
Tsatsaronis, 1987; Kotas, 1995; Rosen and Dincer, 2013, 
Yantovskii, 1994; El-Sayed, 2004; Sciubba, 2005; Valero, 
2006; Valero et al., 2006a, 2006b; Lazzaretto and Tsatsaronis, 
2006). One outcome of this research is the suggestion that 
financial investments in energy R&D should be related to or 
guided by exergy rather than energy measures. This work 
extends that research. 

Several researchers have suggested linkages between 
energy R&D investments and exergy factors (Dincer and 
Rosen, 2013). However, little research relating exergy 
efficiencies or inefficiencies to energy R&D for countries or 
regions appears to have been undertaken. The principal 
objective of the work reported here is to analyze the R&D 
allocations in the energy sectors and compare these allocations 
to sector energy and exergy losses. This investigation is 
intended to yield insights on how R&D funding and effort can 
best be allocated. The research utilizes assessments of energy 
resource use in countries and regions, aimed at determining 
the efficiency with which energy resources are utilized and 
based on energy and exergy analyses. Only two preliminary 
studies have been reported, to the best of the author’s 
knowledge, from over 20 years ago (Gaggioli, 2005, 2003; 
Lemieux and Rosen, 1989), and these form the basis of the 
case studies considered here. 

APPROACH AND METHODOLOGY 

One recommendation by the author a study of Canadian 
energy utilization (Rosen, 1992) was to analyze R&D funding 
in Canada or a subset thereof and to compare it to the 
corresponding energy and exergy efficiencies. The intention 
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of that recommendation was to determine if R&D funding is 
being allocated as beneficially as possible, by assessing 
whether R&D allocations were being made based primarily on 
an energy analysis of a sector or on the more rational exergy 
analysis. This idea is reinforced by Gaggioli (1985), who 
wrote, “exergy methods for analyzing ‘energy’ systems are the 
key … for the purposes of decision-making for allocation of 
resources capital [and] research and development efforts. The 
exergy methods … are a valuable first step for ascertaining 
likely prospects (opportunities) for cost effective capital 
expenditures for ‘energy’ conservation.” Some preliminary 
research in this area was performed by Gaggioli (1985, 1983). 

The methodology used in this investigation to compare 
R&D spending in a system with the energy and exergy losses 
of that system is based on that utilized by Gaggioli (1985, 
1983). The methodology involves four main steps: 

 
1. The country or region is modeled. One model is shown in 

Fig. 1, where four main economic sectors are considered: 
residential-commercial (including institutional), industrial, 
transportation and utility (electrical and other). In 
analyzing such a system, the energy and exergy flows 
through the overall system and its sectors are evaluated, 
and efficiencies and losses are determined. To model and 
assess the individual sectors, each is broken down into its 
main categories and the categories are divided into specific 
types. For instance, transportation can be broken down into 
land, air and water categories, and several types of 
transportation can be considered for each category (e.g., 
road and rail for land transportation). Energy and exergy 
efficiencies can be determined for each of the processes 
occurring in the system, the main ones of which are heating 
(electric, fossil fuel, other), cooling (electric, thermal, 
other), work production (electric, fossil-fuel), electricity 
generation and kinetic energy production. The industrial 
sector is particularly complex due to the range of processes 
occurring in it (Brown et al., 1985). A reference 
environment must be specified to evaluate exergy 
commodities and, in this analysis, a reference environment 
which simulates the natural environment is utilized. 

2. Energy and exergy efficiencies and inefficiencies are 
evaluated for a region or country, and for its sectors. For 
energy or exergy, the inefficiency is the difference between 
one (or 100% on a percentage basis) and the 
corresponding efficiency. The fraction of the total energy 
loss for a sector is considered the perceived inefficiency. 
This quantity is believed by many not to represent a true 
picture of inefficiency, despite public perception 
(Gaggioli, 1985, 1983, Dincer and Rosen, 2013). The 
fraction of total exergy loss (internal destructions plus 
waste emissions) for a sector is considered the actual 
inefficiency or real inefficiency. This label is justified, 
since the value measures how far the efficiency deviates 
from the ideal efficiency and is therefore meaningful. The 
perceived and actual inefficiencies for a sector can be 
determined. For a sector j, for instance, 
 
Sector j perceived inefficiency = 1 – ηj =  
(Sector j energy loss)/(Sector j energy input) (1) 
 

Sector j actual inefficiencies = 1 – j =  
(Sector j exergy loss)/(Sector j exergy input) (2) 
 

 where j denotes the energy efficiency and j the energy 
efficiency of sector j. It is sometimes more informative to 

consider the breakdown of the total inefficiencies by 
sector. Then, we can write 
 
Fraction of perceived inefficiency for sector j =  
(Sector j energy loss)/(Total energy loss) (3) 
 
Fraction of actual inefficiency for sector j =  
(Sector j exergy loss)/(Total exergy loss) (4) 

 
3. Funding allocations by the relevant entities (government, 

private sector, etc.) to R&D in the sectors are acquired and 
assessed to ensure they are properly interpreted. 

4. The R&D funding allocations to the different sectors are 
compared with the energy and exergy inefficiencies to help 
assess how the justified the allocations are and to help 
recommend future allocations. 
 

 
Fig. 1. Model of a region, country or the world, showing flows 
of resources like energy. 

 
In the next two sections, the author utilizes the 

methodology described here to compare R&D spending with 
energy and exergy losses in the United States and in Ontario, 
Canada. Only two case studies are considered here because 
only a few analyses like this have been carried out. The case 
studies are based on previous analyses, and permit the relation 
between R&D spending and energy and exergy losses in the 
U.S. and Ontario to be analyzed and contrasted. Although the 
results presented are based on past data, implications can be 
inferred from them for the present and future. 

CASE STUDY: ONTARIO, CANADA 

In this case study, the author uses the methodology 
described earlier to assess and compare R&D spending with 
energy and exergy losses, for the province of Ontario, Canada 
and for its sectors. Ontario is Canada’s most populous 
province and consumes over 30% of all the energy resources 
used nationally. 

 

Data and analysis 

R&D funding data. Energy R&D in Ontario occurs 
primarily in the private sector and universities. There are three 
main sources of funding for these projects: the federal and 
provincial governments and the private sector. A variety of 
programs within the federal and provincial governments exists 
from which universities and companies obtain energy research 
funding, e.g., a major federal funding body is the Natural 
Sciences and Engineering Research Council (NSERC). Two 
Ontario funding programs at the time the data for this study 
were acquired were the University Research Incentive Fund 

260



 
(URIF) of the Ministry of Colleges and Universities and the 
Enersearch program of the Ministry of Energy. 

Accessing data for all R&D projects in Ontario’s energy 
sector as well as their sources of funding was deemed 
impractical for the case study due to the variety of R&D 
sources. For this study, therefore, the authors chose to assess 
spending only in the Enersearch program. It is expected that 
research spending trends in this program are somewhat 
representative of all energy R&D efforts in Ontario, justifying 
this simplification. This simplification was made for the 
following reasons (MOE, 1989): 

 

 The requirements for Enersearch funding for a project are 
broad enough to encompass energy-related projects in all 
sectors. Enersearch projects are required to address such 
goals as reducing energy demand through the application 
of innovative technology to achieve efficient utilization of 
existing energy sources, developing innovative technology 
to gain additional supplies from alternative and renewable 
sources, developing the equipment and capabilities 
required to utilize these new energy forms, and 
encouraging replication and use of new energy processes 
and innovative technologies among potential users. 

 The range of activities to which Enersearch applies is 
broad, and include research and laboratory testing, 
equipment development and testing, pilot plant equipment, 
full-scale field trials and technical demonstrations of 
innovative technologies to determine system performance 
and economics, initial demonstrations of existing 
technologies used outside Canada to determine their 
suitability for application in Ontario, and technology and 
information transfer of results.  

 The program applies to a range of energy technologies, 
including fuel research and evaluation, transportation, bio-
energy conversion, electro-technologies, energy production 
from waste, residential, industrial and commercial building 
technologies, energy-efficient industrial processes, heat 
recovery and recuperation, hydrogen technology, and 
renewable energy systems.  

 A wide variety of organizations can apply for funding 
under this program, including energy equipment 
manufacturers and suppliers, industrial and commercial 
energy users and producer, consulting firms, industrial and 
research organizations (but excluding electric utilities and 
publicly funded institutions except when they are in 
support of private sector proponents). 

 Enersearch participated in over sixty projects totalling $27 
million between 1986 and 1989, making it the largest 
government energy R&D program for Ontario. 

 The projects undertaken in this program by the participants 
received an average total government contribution of 33% 
of their projected eligible net cost. With this substantial yet 
limited government contribution to the project, the 
participants incur a large portion of the R&D costs thus 
projects are typically well planned and thought out. 
Further, the projects thus directly account for private-
sector R&D expenditures as well as those by government. 
 
The funding data were processed to render them suitable 

for the investigation. In order to analyze the research 
initiatives under the Enersearch program, a summary of the 
approved Enersearch projects was obtained (Appendix C of 
Lemieux and Rosen, 1989; MOE, 1989). These projects are 
divided into two categories by the Ministry of Energy: 
projects related to improved energy efficiency and projects 

related to new energy supply. In order to assess R&D funding 
for individual sectors, the sector (or sectors) are determined to 
which each project is most applicable. However, some 
projects are applicable to more than one sector. Therefore, the 
sum of the individual sector funding is greater than the actual 
total funding. The total project cost (Appendix C of Lemieux 
and Rosen, 1989), which includes both private sector and 
government funding, is used to determine the total funding for 
each sector. Sector allocation totals are determined by 
summing the total project costs of each project in a sector. 

 
Energy and exergy data. Actual inefficiencies and 

perceived inefficiencies evaluated elsewhere (Section 6.1 of 
Lemieux and Rosen, 1989, Rosen, 1993) are used. These 
inefficiencies are determined from the sector and total waste 
quantities given for Ontario in Fig. 2 for energy and Fig. 3 for 
exergy. It is observed that 43% of the total energy consumed 
in Ontario is converted to useful energy. The most efficient 
sector on an energy basis is the residential sector with an 
efficiency of 74%, followed closely by the commercial and 
industrial sectors with efficiencies of 66% and 65% 
respectively. The least efficient sector on an energy basis is 
the transportation sector with an efficiency of 18%. The 
exergy analysis indicates that 24% of Ontario’s exergy 
consumption is converted into useful exergy for end uses. The 
most efficient sector based on exergy is the industrial sector 
(45%), followed by the utility sector (39%), the commercial 
sector (27%), the transportation sector (18%) and finally the 
residential sector (16%). 

The reason for the low exergy efficiencies in the residential 
and commercial sectors is due to the poor utilization of the 
quality (or work potential) of the energy entering these 
sectors. In each of these sectors, the primary use of energy is 
to produce heat. With the production of heat from a fossil fuel 
or electrical energy source, there is a loss in the quality of 
energy that can be reflected only with an exergy analysis. The 
lower the temperature of the heat produced, the lower is the 
exergy efficiency. The residential, commercial and industrial 
sectors exhibit a wide variation between energy and exergy 
efficiencies. This is attributable to the extent to which heating 
and cooling processes occur in these sectors. 

 

Results and discussion 

Energy R&D budget allocations. The allocations for 
energy R&D funding in Ontario and each of its five sectors 
via Enersearch projects for the period May 1986 to April 1989 
are listed in Table 3, in absolute terms and as a percentage of 
the overall budget allocation. 
 
Table 3. R&D Funding Data for All Sectors in Ontario* 

Sector Total project costs 
($) 

Breakdown of budget 
allocation (%) 

Residential 3,278,524 7 
Commercial 1,133,101 2 
Industrial 24,793,117 54 
Transportation 6,806,834 15 
Utility 10,008,471 22 
Overall 46,020,047 100 

* Data are obtained from MOE (1989). 
 

Based on these data, the sector that receives the most 
funding is the industrial sector, with approximately 54% of the 
spending in the Enersearch program. The funding allocations 
range from 2% ($1,133,101) in the commercial sector to 54% 
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($24,793,117) in the industrial sector. It is noted that the 
actual total R&D allocations made through the Enersearch 
program are approximately $26.8 million and not $46.0 
million shown in Table 3. This inflated overall amount is due 
to the manner in which projects are treated that are applicable 
to more than one sector, as discussed earlier. 

 
Sector inefficiencies. Inefficiencies for Ontario and each of 

its sectors are broken down in Table 4, based on data in Figs. 
2 and 3. 
 
Table 4. Breakdowns of Sectoral Inefficiencies with Sectoral 
Energy R&D  Budget Allocations for Ontario 

Sector 

Breakdown of overall 
inefficiencies 

Breakdown 
of total 
energy 
R&D 

budget 
allocations 

(%) 

Portion of 
perceived 

inefficiency 
attributable 

to sector (%) 

Portion of 
actual 

inefficiency 
attributable 

to sector (%) 

Residential-
commercial 

12 24 9 

Industrial 21 25 54 
Transportation 27 20 15 
Utility 40 31 22 
Overall 100 100 100 

 
A sample calculation for the industrial sector is presented 

of the breakdown of energy (perceived) and exergy (actual) 
inefficiencies listed in Table 4. From Fig. 3, it can be seen that 
the industrial sector contributes 613.5 PJ of waste exergy to 
the overall waste exergy (2454.3 PJ). Therefore, the actual 
inefficiency contribution of the industrial sector is as follows: 

 
Industrial sector contribution to overall actual inefficiency  
= 613.5/2454.3 = 0.25 (or 25%) 
 
The perceived inefficiency breakdown is calculated 

similarly but using the waste energy values of Fig. 2, which 
show that the industrial sector contributes 398.4 PJ of waste 
energy to the overall waste energy (1875.8 PJ). Therefore, 

 
Industrial sector contrib. to overall perceived inefficiency  
= 398.4/1875.8 = 0.21 (or 21%) 
 
Relation between energy sector R&D funding and 

inefficiencies. The breakdowns of actual and perceived 
inefficiency values for Ontario and its sectors are compared 
with the breakdown of values for energy sector R&D funding 
in Table 4. The breakdown in total energy R&D allocations 
there is based on data in Table 3. Several trends are evident in 
Table 4, two of the most prominent of which are as follows: 

 

 Actual inefficiencies exceed perceived inefficiencies in the 
residential-commercial sector and the industrial sector. For 
the transportation and utility sectors, the actual 
inefficiencies are lower than the perceived inefficiencies.  

 A relationship is observed between perceived inefficiency 
and R&D allocations, in that energy R&D budget 
allocation increases as sector perceived inefficiency 
increases in Ontario for all sectors (except industrial). 
 
These two trends in the Ontario analysis support the 

existence of a relationship between R&D allocations and 
perceived inefficiency levels. It appears that, of all factors 

affecting energy R&D budget allocations to the sectors, the 
perceived inefficiency is significant and the actual inefficiency 
is of less importance or is overlooked. If actual inefficiencies 
were considered in R&D budget allocations, one would expect 
to observe more funding for the residential-commercial and 
utility sectors, because these are the sectors with the largest 
margins for improvement. 

CASE STUDY: UNITED STATES 

Data and analysis 

Gaggioli applies exergy analysis to the energy utilization in 
the United States in order to calculate energy sector 
inefficiencies and then compare them to energy sector R&D 
funding in the U.S (Gaggioli, 1985, 1983). The main data 
used in this work are presented in Table 5, which shows the 
breakdown of actual inefficiencies, as a percentage of total 
exergy loss in the sector, and the perceived inefficiency, as a 
percentage of the total energy loss in the sector. These 
inefficiency breakdowns are calculated using Equations 3 and 
4. The budget allocation breakdown in that table lists the 
amount of funding that was allocated by the United States 
Department of Energy to sector energy R&D. 

 

Results and discussion 

Table 5 shows a clear relationship between the perceived 
inefficiency and the budget allocations. Although R&D 
allocations are not based on inefficiency levels alone, the 
results indicate that budget allocations increase as perceived 
inefficiencies increase. This leads one to believe that the 
actual (exergy) inefficiencies are being overlooked when the 
decision-making for allocating R&D spending is being made. 

For example, the two following observations in Table 5 
support the statement that R&D funding in the U.S. is based 
on an energy analysis: 

 

 The utility sector receives the second largest budget 
allocation of any sector and yet has the least losses on an 
exergy basis while, on an energy basis, it is second only to 
the transportation sector as having the most losses.  

 The industrial sector which consumes the most energy of 
any end use sector (Gaggioli, 1985, 1983) and has the most 
room for improvement on an exergy basis is funded the 
least mainly because it is perceived as being the most 
efficient sector on an energy basis.  

 
Table 5. Breakdown of Sectoral Inefficiencies with of Sectoral 
Energy R&D Budget Allocations for the U.S.* 

Sector 

Breakdown of overall 
inefficiencies 

Breakdown 
of total 
energy 
R&D 

budget 
allocations 

(%) 

Portion of 
perceived 

inefficiency 
attributable 

to sector (%) 

Portion of 
actual 

inefficiency 
attributable 

to sector (%) 

Residential-
commercial 

30 20 20 

Industrial 32 15 18 
Transportation 24 40 34 
Utility 14 25 28 
Overall 100 100 100 

* Adapted from Gaggioli (1985, 1983). 
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Fig. 2. Energy flow diagram for Ontario (in PJ or 10

15
 J) for 1987. The hatched region denotes losses and the note “1/” indicates 

steam extracted from the utility sector. Hydraulic energy is shown in kinetic energy equivalent. 

 
Fig. 3. Exergy flow diagram for Ontario (in PJ or 10

15
 J) for 1987. The hatched region denotes losses (external exergy emissions 

and internal exergy destructions) and the note “1/” indicates steam extracted from the utility sector. Hydraulic exergy is shown in 
kinetic exergy equivalent. 
 

0%

20%

40%

60%

80%

100%

Ideal High energy costs,

major environment

concerns, availability of

funds, etc.

Low energy costs, low

environment concerns,

lack of funds, etc.

E
x

e
rg

y
 e

ff
ic

ie
n

c
y

 (
%

)

Exergy efficiency Margin for improvement

 
Fig. 4. Comparison of exergy efficiencies and margin for improvement (or actual inefficiency) for regions and countries having 
various attributes. 
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DISCUSSION 

Comparison of case studies  

Several similar trends are exhibited in Table 4 for Ontario 
and in Table 5 for the U.S. First, in both jurisdictions actual 
inefficiencies in the residential, commercial and industrial 
sectors are higher than the perceived inefficiencies, while 
actual inefficiencies are lower than the perceived 
inefficiencies for the transportation and utility sectors. 

Second, as sector perceived inefficiency increases, energy 
R&D budget allocation increases in both jurisdictions (except 
for the Ontario industrial sector). These trends support the 
general contention that R&D allocations are related to 
perceived inefficiency levels, while the actual inefficiency is 
of less importance or neglected. Following actual 
inefficiencies would direct larger R&D budgets to the 
residential, commercial and utility sectors to exploit their 
relatively larger margins for efficiency improvement. 

Different behaviour is observed for the industrial sector in 
Ontario compared to that in the U.S. The industrial sector in 
Ontario has a perceived inefficiency level of 21% which is 
higher than anticipated based on perceived efficiencies. The 
U.S. industrial sector has a perceived inefficiency level of 
32% (Table 5) whereas, on the basis of the methodology, one 
would expect the energy R&D budget allocations for this 
sector to be between 15% and 9% for Ontario instead of 54% 
(Table 4). There are several reasons why the industrial sector 
funding in Ontario is not similar to that for the U.S. Size 
difference is important, as one jurisdiction is a province with a 
population exceeding 12 million while the second is a country 
with a population over 300 million. The U.S. study included 
all energy R&D funded by the United States Department of 
Energy which greatly exceeds that of the Enersearch program 
for Ontario. Not only did the Ontario analysis assess a 
province instead of a country, it assessed only one of many 
R&D funding programs in that province. If, for instance, the 
Ontario report is based R&D budget allocations on all 
provincial government R&D spending, the trend between 
perceived inefficiencies and R&D allocations may closer 
resemble that of the U.S. study. If we go one step further and 
include all R&D spending allocations in the province by 
government and private sector sources, the results may be 
closer still. Some other reasons why the industrial sector 
funding in Ontario in Table 4 differs from that for the U.S. in 
Table 5, and is higher than expected, are discussed below: 
 

 The fact that the Enersearch program operates on a two-
thirds, one-third funding policy (i.e., 2/3 of the cost of a 
project is incurred by the participant and 1/3 by the 
Ministry of Energy) results in participants primarily from 
industry, and thus may skew energy R&D budget 
allocations. Approximately 46 of the 55 projects are 
directly related to specific industrial processes, 19 of 
which are completely disassociated with any other sector 
(see Appendix C of Lemieux and Rosen (1989)).  

 Electric utilities and publicly funded institutions (e.g., 
universities, electrical utilities) are not eligible for funding, 
except in support of private sector proponents. This 
restriction significantly reduces the number of publicly 
funded organizations in the program. For instance, only 2 
of the 55 projects involve universities. If universities 
participated more, one would likely see different energy 
R&D budget allocations to the sectors, and, in particular, 

less funding to the industrial sector.  

 The documentation on the Enersearch program provided 
by the Ontario Ministry of Energy does not indicate 
funding amounts on a sector basis. Thus, since the authors 
had to subjectively estimate the separation of projects into 
sectors, inaccuracies may have been introduced. 

 The large variation in project costs in comparison to the 
overall budget may also skew the results. For example, it 
can be seen in Appendix C of Lemieux and Rosen (1989) 
that the actual total project costs in the Enersearch 
program for the period considered are $28,678,131 and the 
individual project costs range from $23,300 to $6,085,100. 
This large variation in individual project costs in relation 
to the total budget results in large variations between 
energy sector funding and may suppress the trend between 
perceived inefficiencies and R&D budget allocations.  

 The fact that other Ontario government ministries also 
allocate funding to energy R&D for specific sectors (e.g., 
the Ministry of Transportation likely allocates money for 
R&D to the transportation sector) may also skew the 
results. This skewing may be amplified because the 
Enersearch program may tend not to fund R&D in a sector 
if a particular ministry is funding it significantly. 
Therefore, a sector may in reality be receiving 
considerably more funding than indicated in Table 3. 

 The subset or sample group used in this report to assess 
R&D funding trends is relatively small. To realize more 
meaningful statistics, it is important to include as many 
sources of R&D funding as possible when analysing a 
system. In particular, confidence in the results would 
increase if a larger sample size were used, preferably by 
attaining data on the entire R&D spending in the province. 
 

Implications for the present and future 

The results of the case studies, although based on past data, 
have implications for the present and future. The author has 
begun an investigation of several countries using present and 
predicted future data and, based on the initial stages of this 
examination of research funding and energy and exergy 
efficiencies, many approximate similarities exist between the 
situation today for many countries and that at the time of the 
study for Ontario and the U.S., regarding the relation between 
sectoral energy R&D funding and sectoral inefficiencies. It is 
thus anticipated that several aspects of the trends indicated by 
the results of the case studies considered here are likely still 
valid today. In particular, energy R&D funding appears to be 
allocated more based on perceived rather than actual 
efficiencies, thereby potentially missing opportunities for 
large efficiency gains by focusing on the sectors with the 
largest margins for efficiency improvement. 

It is possible that this trend will continue into the future, 
unless understanding and appreciation of exergy methods 
increases and reaches the levels of policy makers and industry 
leaders. Thus, the need to improve knowledge of exergy in 
society appears to be of great importance, so that strategic 
steps can be taken to allocate energy R&D funding where it 
can be most beneficially utilized. 

This discussion can be extended so as to illustrate the 
variations of exergy efficiencies for regions and countries, 
characterized by their circumstances and settings, with margin 
for efficiency improvement, i.e., actual inefficiency. Factors 
and attributes that characterize the region for purposes of this 
discussion include energy resource availability and costs, 
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environmental constraints, and availability of funds. Other 
related factors are also considered implicitly. 

Exergy efficiencies and the corresponding margin for 
efficiency improvement for regions and countries with two 
sets of realistic characteristics are presented in Fig. 4. 
Countries and regions with high energy costs and major 
environment concerns and availability of funds are likely 
represented by the second bar, while those with low energy 
costs, low environment concerns and lack of funds are likely 
represented by the rightmost. These cases likely bracket other 
regions and countries, i.e., those having some but not all of 
high energy costs, major environment concerns, availability of 
funds, etc. The hypothetical case of ideal efficiency is also 
shown in the figure, both for comparison and because an 
exergy efficiency of 100% always specifies ideal but 
unattainable thermodynamic behaviour. Several other 
important points can be observed in Fig. 4: 

 

 Countries and regions with lower rather than higher exergy 
efficiencies have greater margins for efficiency 
improvement, as characterized by actual inefficiencies.  

 Low exergy efficiencies often are observed in countries 
and regions with low energy costs, lax environmental 
constraints and a lack of funding for efficient technologies, 
awareness of efficient technologies and processes, and a 
sufficiently educated and skilled workforce. High exergy 
efficiencies are usually observed in countries/regions 
where circumstances foster high efficiency, e.g., high 
energy costs, funding availability for efficient 
technologies, available energy export markets, strict 
environmental constraints or emissions limitations, etc.  

 The ultimate margin for efficiency improvement is seen to 
be the difference between the ideal exergy efficiency of 
100%, which applies to ideal processes or devices, and the 
actual exergy efficiency. An awareness of this limit helps 
in establishing realistic targets for efficiency improvement. 

 When energy-related factors change, countries and regions 
tend to respond (or should respond as it is usually in their 
best interests to do so). For instance, countries and regions 
tend to introduce measures that lead to increased exergy 
efficiency when energy costs increase or environmental 
regulations become stricter.  

 An important observation for any region or country related 
to the above point is that exergy efficiency increases when 
circumstances warrant improved efficiency, but energy 
efficiencies do not necessarily increase. Appropriate 
efficiency targets and energy research efforts and support 
should be established based on exergy, as confusion and 
waste can result if efforts to determine appropriate 
efficiency research and targets are based on energy. 
 
Specific regions or countries are not easily identified in 

Fig. 4 because their characteristics are usually much more 
complicated than the two simple cases shown. Nonetheless 
some generalities and trends, which likely apply in some 
cases, can be pointed out: 

 

 Although the characteristics of countries with developing 
economies vary greatly, many less developed countries fall 
into rightmost category in Fig. 4 because for them energy 
resources are often less affordable (i.e., energy costs are 
high as a proportion of gross domestic product or average 
income per capita), obtaining funding for efficient 
technologies is difficult, and environmental laws are less 
strict. This behaviour is partly related to the focus of such 

countries on developing economically and in other ways 
and/or meeting basic needs. 

 Developed or industrialized countries tend to fall into the 
middle category in Fig. 4, since they usually have high 
energy costs and readily available mechanisms for 
exporting energy resources, strict environmental 
restrictions and laws, and funding for efficient energy 
conversion and utilization technologies. The wealth of 
such countries often makes them require or expect energy 
resources to be used efficiently and cleanly. 

 In our globalized economy, it is unlikely that a country 
would have an extremely low exergy efficiency based on 
market forces, which exist in a similar form for developed 
or developing regions, because globalization makes it 
relatively easy to buy and sell energy commodities. 
 
The ideas discussed here are somewhat confirmed in many 

countries and regions, where significant disparities exists in 
factors like energy costs and environmental regulations. In 
much of Europe and Asia, for example, energy prices are 
roughly double those in North America, and higher exergy 
efficiencies are observed. In the future, the ideas discussed in 
this section suggest that countries and regions are generally 
likely to move towards higher exergy efficiencies due to 
factors like energy price increases (long-term), resource 
scarcities, environmental limitations, and growth in 
developing economies (which can have very significant 
impacts for large countries like China and India). An 
important strategy would be to make investments in energy 
R&D guided in part by actual rather than perceived 
inefficiencies, i.e., by exergy factors. 

CONCLUSIONS 

In comparing energy R&D budget allocations with energy 
and exergy losses, it appears that of all factors affecting 
energy R&D budget allocations to the sectors, the perceived 
inefficiency is significant and the actual inefficiency is of less 
importance or is overlooked completely. If actual 
inefficiencies are considered in energy R&D budget 
allocations, one would probably see more funding for the 
residential, commercial, and utility sectors, because these are 
the sectors with a large room for improvement. The results are 
expected to assist government and public authorities that deal 
with research and development funding and should help 
improve the effectiveness of such investments of funds and 
resources. The comparison made in the case studies between 
energy R&D spending for the sectors of a region (Ontario) 
and a country (United States) with energy and exergy 
inefficiencies in those sectors reinforces these conclusions. 
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NOMENCLATURE 

Symbol Quantity SI Unit 
η energy efficiency  
ψ exergy efficiency  
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Subscripts   
j sector j  
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INTRODUCTION 
 
When addressing issues related to “environmental 
interactions”, the difference between “anthropic” and “natural” 
systems fades: whenever a system A of either type interacts 
with an environment O, it can do so only by exchanging mass 
and/or energy through its boundaries, and such exchanges are 
ruled by the applicable laws of Thermodynamics and 
constrained by the applicable (internal and external, and 
possibly time-dependent) boundary conditions. Therefore we 
shall drop the distinction here. Another important 
consideration is that real systems are open: they either have 
permeable or/and perforated or/and diabatic or/and 
displaceable boundaries that allow exchanges of mass, heat and 
work with the “outside” against an externally imposed 
potential (concentration, temperature or pressure respectively). 
A common feature all systems of relevance display is their 
being -for a finite period of time- not in equilibrium: the study 
of “systems that have reached stable equilibrium” is actually of 
no interest to engineering sciences, because in such a state 
there can be no meaningful energy exchange; and arouses even 

less interest in biological sciences, where “stable equilibrium” 
is synonym of “dead organism”. Thus, to understand the 
dynamics of systems behaviour, we must use non-equilibrium 
paradigms, in particular non-equilibrium Thermodynamics. 
We capitalize naturally on the large, well-established  and very 
useful body of knowledge that “classical” or “equilibrium” 
Thermodynamics has contributed to create: only, the features 
of complex systems require some additional principles and 
tools to be described with sufficient (and operative) 
approximation. Non-equilibrium Thermodynamics is a 
relatively new field (a clear and rigorous review is offered in 
[19], and a discussion is provided in Panel B), and its topics are 
not as crisp as those of its equilibrium counterpart: we shall use 
here the following assumptions, which we posit without further 
justification: 
- The systems of interest are not so far from equilibrium that 

catastrophic changes happen in their structure (in other 
words, they remain sufficiently far from any bifurcation 
words, they remain sufficiently far from any bifurcation 
point may exist in their phase space evolution); 
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ABSTRACT 
Exergy analysis (ExA) has a quite extensive history of successful applications in Engineering, and especially in the original niche 
in which it saw the light, Energy Conversion Systems. A vast body of literature confirms that a correctly formulated exergy 
approach leads to a better design, in that it helps identify and refine the configuration of systems that generate the desired outputs 
(conventionally called “products”, P) by the minimum feasible use of primary resources (conventionally called “fuels”, F). A 
similarly vast body of literature deals with the more fundamental aspects of the theory: where and how ExA improves a 
conventional energy analysis, how large is the attainable marginal improvement in the efficiency (P/F), what are the implications 
of these improvements, what is their theoretical significance (especially with regard to the so-called “sustainability issue”). When 
combined with the concept of “cost”, ExA has originated a novel and industrially relevant method, Thermo-Economics (TE), 
which expresses the monetary cost of P not in terms of €/kg or €/unit but in terms of €/(exergy content). TE led to interesting 
reassessments of “optimal” energy conversion chains, and did itself undergo a quantum leap when the innovative Ecological 
Cost (EC) theory  was introduced to include one of the “costs of externalities” of P. EC expresses the production cost not on the 
basis of a monetary proxy, but of the amount of exergy in F needed to generate P. Obviously, both TE and EC are amenable to a 
genuine life-cycle analysis. Still, all of the above applications are limited to the study of engineered systems, which are usually 
designed on the basis of process diagrams that apply the concepts of Classical Equilibrium Thermo-dynamics and introduce 
proper corrections to model irreversible and non-equilibrium effects. But, unlike entropy, exergy does not require an extension of 
Classical Thermodynamics to be applied to non-equilibrium processes: if a system proceeds from whatever initial state S1 
(equilibrium or non-equilibrium) to a final state S2 in which it is no longer capable of producing useful external work, the exergy 
is a well defined quantity, regardless of S1 being homogeneous or not, in local equilibrium or not. This peculiarity suggests that 
the current methods of exergy analysis may be extended to assess the “conversion efficiency” (P/F) of systems that are not 
amenable to a classical treatment: the extension discussed in this lecture deals with societal and biological systems. Societal 
systems are treated as complex non-homogeneous thermodynamic systems interacting with a conventional environment. On the 
basis of a sufficiently detailed exergy flow diagram, it is possible to relate a set of properly defined “products” (commodities, 
including money, labour, etc.), “wastes” (discharges) and “environmental impact” with the amount of primary exergy required to 
maintain the system at a certain pre-assigned state. The theory leads to the definition of an “embodied primary exergy content” 
called the extended exergy cost of P. Biological systems are treated in much the same way, with the caveat that the description is 
global (group, species, herd), and therefore is only valid for ensembles rather than for individuals. Here, too, it is possible to 
define a “species efficiency” as the ratio of the useful accumulated exergy to the total incoming exergy flow.  
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- However complex the system, it is always possible to 

subdivide it in sufficiently small portions (subsystems) 
such that each one of them is in equilibrium (assumption of 
local equilibrium); 

- Under the above stipulations, a property “temperature” can 
be defined for the system; 

- Under the above stipulations, entropy is a state function for 
the entire system and for each of its sub-systems; 

- The boundary conditions are not a variable in this study: 
they are specified once and for all by the problem position 
and can vary both in space- and in time1; 

- All  properties of the system and of its environment can be 
described in terms of legitimate thermodynamic quantities. 

 
In such a perspective, the representation of any system of 
interest for the present discussion is relatively simple (figure 
1): a system A is in a certain configuration A0 at an arbitrary 
initial time tinit, then exchanges a certain amount of mass and 
energy with its surroundings, “growing” and/or “shrinking” in 
space state, possibly in a pseudo-periodic fashion, until it 
reaches the end of our observation window at time tfin, having 
reached a state Afin not necessarily equal to A0. The equations 
ruling the evolution from tinit to tfin are: mass conservation 

in out
dM

m m
dt

= −= −= −= −∑ ∑∑ ∑∑ ∑∑ ∑    (1) 

energy conservation 

in out
dE

E E
dt

= −= −= −= −∑ ∑∑ ∑∑ ∑∑ ∑     (2) 

entropy balance 

in out irr
dS

S S S
dt

& & &= − += − += − += − +∑ ∑∑ ∑∑ ∑∑ ∑    (3) 

exergy equation 

in out
dEx

Ex Ex Ex
dt

& & &
δδδδ= − −= − −= − −= − −∑ ∑∑ ∑∑ ∑∑ ∑   (4) 

We are seeking a general expression for the evolution of the 
state of the system in time. The independent variables are the 
extensive quantities M, E, S and Ex, and since their respective 
initial values are known (A0 must be well-defined for the 
analysis to be meaningful), the system of four equations in four 
unknowns appears well posed. The system of equations (1-4) 
must be closed by explicitly calculating the right-hand sides of 
either equation: let us examine in detail these 
input/output/generation/destruction terms. 
 

a) Mass in- and outflows 
Mass cannot be created in any of the sub-portions of A, and 
thus the variation in the total mass of A can only be given by 
the net material convection and diffusion flows through the 
boundary: 

, , ,

, , ,

in conv j j in j b
b

out conv k k out k b
b

m v dA

m v dA

ρρρρ

ρρρρ

====

====

∫∫∫∫

∫∫∫∫
   (5) 

Where j=1…J and k=1…K (J not necessarily equal to K) are 
the inlet and outlet “ports” on the boundary b where convection 
is allowed. 

                                                           
1  This implies that the “surroundings” do not change appreciably their 
thermodynamic state as a direct consequence of their interaction with the 
system: any change in the state of the environment O is specified in advance 
for each case under consideration. 

, , ,

, , ,

in diff i i b i b
b

out diff l l l b b
b

m D c dA

m D c dA

∆∆∆∆

∆∆∆∆

====

====

∫∫∫∫

∫∫∫∫
   (6) 

Where i=1…I and l=1…L are the permeable portions of the 
boundary b, D are the diffusion coefficients  and �c are the 
concentration gradients across these portions. Substituting (5) 
and (6) into (1) closes the balance: however, it must be noted 
that the coefficients D in general depend on the diffusion 
dynamics across all other internal “layers” that contribute to 
mass diffusion inside of the system [10] (figure 2). Even in the 
oversimplifying assumption of the absence of chemical 
reaction inside of A, we need to solve a set of N “internal” 
diffusion equations for each chemical species, where N is the 
number of “diffusion exchanges” among sub-systems: this is 
though feasible numerically, with a degree of accuracy 
satisfactory for most practical cases, and therefore equation (1) 
can be considered “solvable”. 
 

b) Energy in- and outflows 
Energy is also globally conserved, and the variation in the total 
energy of A can only be produced by material and immaterial 
convection, and work done at the boundary: 

, , , ,

, , , ,

in conv j in j in j b
b

out conv k out k out k b
b

e m h dA

e m h dA

====

====

∫∫∫∫

∫∫∫∫
   (7) 

, , , ,

, , , ,

in heat j in j b j b j b
b b

out heat k out k b k k b b
b b

e q dA T dA

e q dA T dA

Λ ∆Λ ∆Λ ∆Λ ∆

Λ ∆Λ ∆Λ ∆Λ ∆

= == == == =

= == == == =

∫ ∫∫ ∫∫ ∫∫ ∫

∫ ∫∫ ∫∫ ∫∫ ∫
  (8) 

, , , ,

, , , ,

in work j b j b j b
b

out work k k b b k b
b

e p dx dA

e p dx dA

∆∆∆∆

∆∆∆∆

====

====

∫∫∫∫

∫∫∫∫





   (9) 

The physical meaning of the above equations is simple: every 
elementary portion of incoming or outgoing mass carries an 
energy content equal to its enthalpy2;  heat in- and outfluxes 
can be expressed as product of an equivalent transmittance of 
the system/environment interface times an appropriate 
temperature difference across each diabatic portion of the 
boundary3; work can be expressed as an “equivalent force” due 
to a local pressure difference at the boundary times the local 
displacement of the boundary in the direction of the (local) 
normal versor. 
 

c) Entropy in- and outflows, irreversible entropy 
generation 
The entropy balance can be derived along the same line of 
reasoning: neglecting here again the contribution of chemical 
reactions, the variation of the total entropy of A is the result of 
material and immaterial convection, heat exchange at the 
boundary, and entropy generation inside of A: 

, , , ,

, , , ,

in conv j in j in j b
b

out conv k out k out k b
b

s m s dA

s m s dA

====

====

∫∫∫∫

∫∫∫∫
   (10) 

                                                           
2 Total enthalpy, if we include kinetic energy (often negligible in practical 
cases) 
3 By selecting proper expressions for � and �T, this simple formalism can be 
used to include heat exchanges due to convection and radiation. 
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, ,
, ,

, ,

, ,
, ,

, ,

in j j b j
in heat j b b

in j in jb b

out k k b k
out heat k b b

out k out kb b

q T
s dA dA

T T

q T
s dA dA

T T

Λ ∆Λ ∆Λ ∆Λ ∆

Λ ∆Λ ∆Λ ∆Λ ∆

= == == == =

= == == == =

∫ ∫∫ ∫∫ ∫∫ ∫

∫ ∫∫ ∫∫ ∫∫ ∫

 (11) 

A

irr ext
V

S S dVσσσσ= += += += + ∫∫∫∫& &     (12) 

The physical meaning of the above equations is also clear: 
every elementary portion of incoming or outgoing mass carries 
an entropy content;  heat in- and outfluxes contribute to the 
global entropy balance  each according to an appropriate 
temperature difference across the respective diabatic portions 
of the boundary; and the irreversible entropy generation 
consists of two terms: the first is purely internal and takes place 
over the entire volume of A, while the second accounts for 
possible effects of A on the surroundings. 
 

d) Exergy in- and outflows, exergy destruction 
Exergy is not a conserved quantity, but its equation can be 
written in a “conservative form” by introducing a fictitious 
term, the exergy destruction, which is not a physical flux but 
rather a convenient mathematical artefact. However, this 
exergy destruction does have a physical meaning, in that it 
measures the energy degradation (dispersion) in the process. 
Neglecting again the contribution due to chemical reactions, 
we have: 

, , , ,

, , , ,

in conv j in j in j b
b

out conv k out k out k b
b

ex m ex dA

ex m ex dA

====

====

∫∫∫∫

∫∫∫∫
  (13) 

, , , , , ,

, , , , , ,

( , ) ( , )

( , ) ( , )

in heat j in j 0 in j b in j 0 j b j b
b b

out heat k out k 0 out k b out k 0 k k b b
b b

ex f T T q dA f T T T dA

ex f T T q dA f T T T dA

Λ ∆Λ ∆Λ ∆Λ ∆

Λ ∆Λ ∆Λ ∆Λ ∆

= == == == =

= == == == =

∫ ∫∫ ∫∫ ∫∫ ∫

∫ ∫∫ ∫∫ ∫∫ ∫

      (14) 

, , , ,

, , , ,

in work j b j b j b
b

out work k k b b k b
b

ex p dx dA

ex p dx dA

∆∆∆∆

∆∆∆∆

====

====

∫∫∫∫

∫∫∫∫





  (15) 

The factor f is the so-called exergetic factor, and takes a 
different form for conduction/convection (for which it is equal 
to the Carnot factor 1-T0/Tj) and radiation (for which it is equal 

to 

4
0

j 0

j

T
T 4T

1
3 3T

    
    
    + −+ −+ −+ −  [22]). 

Equations (5-15) reveal by inspection the difficulty in closing 
the system of equations (1-4): even in the assumption of 
perfectly specified boundary conditions, the general balance 
equations depend on the internal behaviour of the system, 
because the rates of mass and energy exchange are dictated not 
only by the “layer” of the system that is in immediate contact 
with the environment through its boundary, but from the 
interactions among the internal “cells” in which we imagine to 
subdivide A. This suggests that a “lumped” treatment may be 
more appropriate for a useful description of the system’s 
behaviour. 

 
THE EXERGY COST OF A PROCESS 
 
Let us consider the exergy flow diagram of the system under 
study (figure 3): we shall follow Tsatsaronis’ notation [34], and 

denote by “F” the exergy inputs, by “P” the “products” of the 
system,  and by “W” its byproducts (unused discharges into the 
environment):  from the exergy equation we derive a measure 
of the exergy destruction (overdots omitted from now on): 

���(�) = �(�) − 
(�) − �(�)   (16) 
With the additional stipulation that P(t) includes the “products” 
internally incorporated by A at time t, i.e., those that contribute 
to its growth: conversely, a positive difference between W(t) 
and P(t), for a fixed F(t) denotes a “shrinking” system. At any 
instant t, the conversion efficiency of A is given by: 

�(�) =
�(�)

�(�)
    (17) 

And the exergetic cost of the products is the reciprocal of the 
efficiency: 

�(�) =
�(�)

�(�)
    (18) 

Thus, provided we have a complete knowledge of the input 
flows F and of the instantaneous mode of operation of A, 
equation (18) provides a measure of how many exergy “units” 
of fuel are embodied in every exergy unit of product. 
Since it is unlikely that all “fuels” reach the boundary of A 
directly from the environment, without any previous treatment, 
it is necessary to backtrack the production process of each one 
of them, to compute its own exergy cost: this backtracking 
comes to a halt when all inputs have been assigned a valid 
equivalent primary exergy value (content). This procedure was 
proposed by Szargut [32] and results in the calculation of the 
Cumulative Exergy Content (CEC) of a product: provided a 
sufficiently disaggregated database is available, equation (18) 
can be computed at any instant of time. The “cost” thus 
calculated represents the amount of primary exergy 
“embodied” in the product, and is a rational measure of the 
load placed by A on the environment at any instant of its 
(technical or real) life. 
But the picture is not yet complete: some of the effluents 
(cumulatively represented by the flux W) may be discharged in 
a physical state different than their respective “environmental 
conditions” (for example, they may consist of a material 
discharge at T≠T0 and c≠c0). This poses an additional “load” on 
the environment, which must use a portion of the primary 
exergy it can avail itself of (chemical, kinetic, radiative…) to 
exert some buffering action and reduce each discharge to its  
environmental state. The amount of exergy necessary for the 
buffering can be calculated if we know the processes involved: 
if a chemical reaction is required, its activation exergy is the 
additional cost; if a heat exchange is needed, the exergy of the 
corresponding amount of thermal exergy is the cost, and so on.  
If the system under consideration is artificial (of anthropic 
origin), a substantial portion of the effluent treatment is 
enforced by means of technical “pollution abatement” devices 
located downstream of the main process: here, the calculation 
of the extra exergy cost (called environmental remediation 
cost) requires an additional process analysis of the effluent 
treatment system: since technical pollution abatement is never 
complete, but inevitably relies on some amount of 
environmental buffering, the “technical” cost c”  must usually 
be augmented by the cost c’ of the residual treatment 
performed by the biosphere. In principle, it is always possible 
to calculate this additional exergy requirement F’4 that must be 
considered as an added cost of the product P: 

                                                           
4 In real cases, the calculation of F’ is not so simple as represented here, 
because the “remedial action” takes place not at time t, but with an obvious 
delay: we shall neglect this effect here, and consider that F’ can be “allocated” 
properly over the relevant time windows. 
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����,
(�) = �(�) + � ′(�) + �"(�) =

�(�)��′(�)��"(�)

�(�)
=

����(�)

�(�)
    (19) 

 
THE CONCEPT OF EXTENDED EXERGY 
 
The cost defined by equation (19) is expressed in units of 
kJfuel/kJproduct, and constitutes a significant indicator of 
environmental load: if a product P is generated by two different 
production chains A1 and A2, the one with the lower value of 
the � ����(�)��  over its entire lifetime is the more 
environmentally benign (less unsustainable) process. Notice 
that the rather simple considerations developed so far result in 
a proper internalization of the so-called environmental 
externalities, whose exergy cost is reallocated to the products 
of A. 
In technical systems, the economic side must also be taken into 
account: several methods exist, and the most rigorous from a 
thermodynamic point of view is the Thermo-Economic 
costing, in which a monetary cost is assigned to the unit of 
exergy of fuels, products and discharges. [2,13,18,35,36,37 
and in other papers in this Panel] present a complete and 
rigorous treatment of the underlying theory and demonstrate 
several engineering applications. The approach we propose 
here is though somewhat different: since the cost expressed by 
equation (19) represents the primary equivalent exergy 
embodied in the product and already includes the 
environmental externality, is it possible to devise a similar 
treatment for the remaining externalities, namely Labour and 
Capital? The answer is affirmative, and the method, called 
Extended Exergy Accounting (EEA), has been presented and 
discussed in several papers [25,26,31]. EEA computes the 
primary exergy equivalents of Labour (eeL, in kJ/workhour) 
and Capital (eeK, in kJ/€) on the basis of two econometric 
coefficients: the first (α) is derived from the pro-capite exergy 
consumption in the society within which the technical process 
A is operating and the second (β) from the society capital 
intensity, measured by a monetary circulation indicator, 
usually M2 (also called “money plus quasi-money). Though 
the procedure adopted in EEA to calculate the primary 
equivalents of Labour and Capital has been subjected to some 
criticism, we shall not address this point in the present 
discussion, and not delve into the numerical values of these 
equivalents, but assume that they can be calculated in an 
accurate and reproducible way [25]. Once cL=f(eeL) and 
cK=f(eeK) are known, both labour and capital expenses can be 
expressed in primary exergy units and included in the exergy 
flow diagrams as “fuels”: the final result is that an extended 
exergy cost can be assigned to any product P: 
 

���,
(�) = �(�) + � ′(�) + �"(�) + ��(�) + ��(�) =

����(�)���(�)���(�)

�(�)
      

    (20) 
 

The extended exergy cost defined by equation (20) is based 
solely on thermodynamic concepts, and is the most 
comprehensive indicator of environmental load: it includes the 
total amount of primary exergy embodied in the product, 
including the production chain “from mine to dump”, and 
considering also the equivalent primary exergy required by the 
workers’ consumptions standards. It can therefore be regarded 
as the exergy footprint of product P, a rigorous EI measured in 

kJ/kJ and rooted both in system analysis and thermodynamic 
principles. 
Obviously, the approach just described identifies cee as a global 
EI, because the environmental effects it considers concern the 
entire production chain and thus a large portion of the 
biosphere (the mine can be located very far away from the 
conversion plant, and the latter very far away from the final 
user, so that the environmental impact that must be remedied 
affect areas only remotely connected with the location where 
the product is used). But in a broader vision of a globally 
interconnected biosphere [4,17] it is clear that cee can be 
correctly applied to the analysis of systems also at a local scale. 
In the EEA method, it suffices to have access to a properly 
disaggregated database that allows for the calculation of the 
CEC of all the “fuels” entering the system under consideration. 
If such a database  is not available, the non-negligible effort 
necessary to compute these CEC anew brings a substantial 
payback, in that it leads to a consistent and rigorous calculation 
of the total environmental load placed by the system on the 
environment.  For anthropic systems, yet an additional 
complication is posed by the calculation of the primary exergy 
equivalents of Labour and Capital (eeL and eeK), but again the 
benefit in terms of the reproducibility and of the coherence of 
the approach is more than worth the effort. EEA analyses of 
several individual processes and industrial/societal sectors 
have been performed in the last few years, and they 
consistently lead to a deeper insight of the exergy dynamics 
sustaining the system operation. Most of the published studies 
of the more complex systems were performed at steady state, 
due to the difficulty of obtaining reliable time series for the 
large amount of data needed for the analysis, but as the 
database is incrementally augmented, it becomes possible to 
attempt comparative studies about non-steady situations.  

 
METHODOLOGY 
 
The calculation of the follows the same lines as any exergy 
analysis, with a couple of additional steps: 
- Obtain a detailed exergy flow diagram of the system (mass 

and energy balances are a required input); 
- Compute the CExC of all the fuels. For imports (e.g., 

electricity imported from another country) the respective 
production chain must be analyzed;  

- Derive the econometric coefficients necessary for the 
calculation of eeL and eeK. For imports (e.g., materials 
imported from another country), the econometric 
coefficients must refer to the country of origin; 

- Add the costs of externalities. For fuels, simply add the 
terms L*eeL and K*eeK to the CExC, where L are the total 
workhours and K the capital involved in the production of 
the fuel. For the environmental cost, add for each effluent 
the product of its respective c’ and c” by the effluent 
exergy. 
 

EXAMPLES OF APPLICATION 
 
As previously mentioned, several applications of the EEA 
method have been published in the archival literature. 
Processes assessed or re-assessed by means of an EEA analysis 
include the analysis of an academic institution [3]; the analysis 
of a transient in a gas turbine plant [5]; the production process 
of a commercial truck [7]; an innovative CO2 capture process 
[8]; gas-flaring in oil extraction [12]; a comparison of different 
desalination technologies [15];  the nuclear fuel extraction and 
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processing [21]; a comparative study of six different methods 
of hydrogen production [24]; biodiesel recovery from spent 
oils [33]. Additionally, EEA analysis of societal systems were 
published for China [6]; the chinese transportation and 
agricultural sectors [9]; Norway [14]; England [16]; Italy [20]; 
the Netherlands [23]; the Turkish transportation and 
wastewater sector [30]; Turkey [31]. More recently, EEA 
analyses of living systems have been performed [28,29]. 
All applications demonstrate that the EEA results provide 
additional insight in the thermodynamic intensity of the 
internal flows in a process (or in a society) and result in useful 
information about possible improvements that may be obtained 
by reducing the primary exergy consumption for a prescribed 
output. The exergy cost indicator cee defined above represents 
therefore a proper Environmental Indicator (the use of Cee as an 
exergy footprint was proposed for it [27]) and its use ought to 
be encouraged in the assessment of alternative scenarios 
towards a lower degree of unsustainability. 

 
CONCLUSIONS 
 
An elementary lumped analysis of a generic energy conversion 
system, intended in its broadest sense of “any system that 
operates by converting energy forms into one other”, 
performed by means of an exergy analysis paradigm, leads to 
the conclusion that from a technical point of view it is always 
possible to calculate the primary equivalent exergy embodied 
in a product or products: an exergy cost is defined as the ratio 
of the total embodied exergy to the cumulative production, in a 
life-cycle sense (i.e., integrated over time and space). Then, on 
the basis of the assumption that the equivalent primary exergy 
content of the remaining externalities (Labour and Capital) can 
also be computed,  a novel indicator, the extended specific 
exergy cost cee, is defined. This indicator possesses all the 
requisites requested of an Environmental Indicator, and -while 
including global effects- it can be applied at a local level, to 
assess and compare individual processes, industrial sectors or 
entire societies. This indicator represents a useful and 
thermodynamically correct measure of the absolute (primary) 
consumption of exergy in a process, and may therefore be used 
as a measure of the degree of unsustainability of the process 
itself. 

 
REFERENCES 
 
[1] S.Bastianoni et al., 2008: Exergy and extended exergy 

accounting of very large complex systems with an 
application to the province of Siena, Italy, J.Env. 
Management, v.86, n.2 

[2] A.Bejan, G.Tsatsaronis, M.J.Moran, 1996: Thermal 
Design and Optimisation, J.Wiley. 

[3] M.Belli, E.Sciubba, 2007: Extended Exergy Accounting 
as a general method for assessing the primary resource 
consumption of Social and Industrial systems. IJEX, 
v.4, n.4 

[4] K.Boulding, 1966: The Economics of the Coming 
Spaceship Earth, Proc. VI “Resources for the Future” 
Forum on Environmental Quality in a Growing 
Economy, Washington, D.C., March 8 ,1966 

[5] S.Cennerilli et al., 2009: Extended Exergy Analysis of 
the Response of a Gas Turbine Process to Variations in 
the Turbine Inlet Temperature, Proc. ECOS’09, Foz de 
Iguazu, Brasil 

[6] B.Chen, G.Q.Chen, 2007: Ecological footprint 
accounting and analysis of the Chinese Society 
1981-2001 based on embodied exergy, Ecological 
Economics, 61 (2-3) 

[7] E.Cheremnykh, F.Gori, 2010: Exergy and Extended 
Exergy  cost assessment of a commercial truck, Proc. 
ASME-IMECE 2010, Vancouver, Canada 

[8] A.Corrado et al., 2004: Environmental assessment and 
extended exergy analysis of a “zero CO2 emission”, 
high-efficiency steam power plant, Proc. ECOS’04, 
Guanajuato, Mexico 

[9] J.Dai, B.Chen, 2010: Extended exergy-based ecological 
accounting of China during 2000-2007, Int. Congr. 
Environmental Modelling and Software, Fifth Biennial 
Meeting, Ottawa, Canada, July 5-8  

[10] Y.Demirel  
[11] J.Dewulf et al., 2008: Exergy: its potential and 

limitations in Environmental Science and Technology. 
Env. Sci. & Technology 42 (7) 

[12] S.E.Diaz-Mendez et al., 2012: Extended exergy 
accounting applied to the flaring practice in oil fields, 
IJEX v.10,n.4 

[13] Y.M.El-Sayed, 2003: The Thermo-Economics of energy 
conversion, Elsevier,  

[14] I.Estervåg. 2003: Energy, exergy, and extended-exergy 
analysis of the Norwegian society. Energy 25  

[15] P.Fiorini et al., 2006: Economic Comparison of Small 
Solar-Powered Desalination Plants, Proc. ECOS’06, 
Gliwice, Poland 

[16] A.Gasparatos et al., 2008: Assessing the sustainability 
of the UK society using thermodynamic concepts: Part 
2, Renewable & Sustainable Energy Reviews 

[17] J.J. Kay, 2002: On complexity theory, exergy, and 
industrial ecology, in Kibert,Sendzimir & Guy Eds,  
Construction Ecology: Nature as a Basis for Green 
Buildings, Spon Press 

[18] T.Kotas, 1985: The exergy method of thermal plant 
analysis, Butterworths, Academic Press, London 

[19] G.Lebon, D.Jou, J.Casas-Vázquez, 2008: 
Understanding Nonequilibrium Thermodynamics, 
Springer Berlin  

[20] D.Milia, E.Sciubba, 2006: Exergy-based lumped 
simulation of complex systems: An interactive analysis 
tool, Energy, v.31, n.1 

[21] G.Orsini, E.Sciubba, Exergy Life-Cycle Analysis of the 
Uranium Cycle. Part 1: From Uranium Ore to Nuclear 
Fuel. Proc. ECOS’2010, Lausanne,Switzerland 

[22] R.Petela, 1964: The exergy of heat radiation, J. Heat 
Transfer v.86, n.2 

[23] K.Ptasinski et al., 2006: Performance of the Dutch 
Energy Sector based on energy, exergy and Extended 
Exergy Accounting. Energy 31 

[24] R.Ridolfi et al., 2008: A multi-criteria assessment of six 
energy conversion processes for H2 production, Int. J. 
Hydr. Energy, v.34, n.12. 

[25] E.Sciubba, 2001: Beyond thermoeconomics? The 
concept of Extended Exergy Accounting and its 
application to the analysis and design of thermal 
systems. Exergy, The International Journal 1 (2):68-84. 
2001.  

[26] E.Sciubba, 2004: From Engineering Economics to 
Extended Exergy Accounting: A Possible Path from 
“Monetary” to “Resource-Based” Costing, J. Ind. 
Ecology, v.8, n.4 

272



 
[27] E.Sciubba, 2012:  An exergy-based Ecological 

Indicator as a measure of our resource use footprint, 
IJEx v.10, n.3 

[28] E.Sciubba,  F.Zullo, 2011:  Exergy-based population 
dynamics: A thermodynamic view of the 
“sustainability” concept. J. Ind. Ecol., 15, 172–184 

[29] E.Sciubba, F.Zullo, 2012: An Exergy-Based Model For 
Population Dynamics: Adaptation, Mutualism, 
Commensalism And Selective Extinction, 
Sustainability, 4, 2611-2629 

[30] C.Seçkin et al., 2012: Resource Use Evaluation of 
Turkish transportation Sector via the Extended Exergy 
Accounting Method, Proc. ECOS 2012, 
U.Desideri,G.Manfrida,E.Sciubba Eds., Perugia, July 
2012  

[31] C.Seçkin et al., 2012: An application of the Extended 
Exergy Accounting method to the Turkish Society, year 
2006, Energy v.40, n.1, 151–163 

[32] J.Szargut, 2005: The Exergy Method: Technical and 
Ecological Applications, WIT press, Southhampton, 

England 
[33] L.Talens-Peiro et al., 2010: Extended Exergy 

Accounting applied to Biodiesel production, Energy 35 
[34] G.Tsatsaronis, M.Winhold, 1985: Exergoeconomic 

Analysis and Evaluation of Energy Conversion Plants.   
Part I-A New General Methodology, Energy-The 
International J. v.10  n. 1 

[35] A.Valero et al., 1986: A general theory of exergy 
saving. I. On the exergetic cost, Proc. ASME-WAM, 
Anaheim, California, v.3 - Second law analysis and 
modelling 

[36] A.Valero et al., 1986: A general theory of exergy 
saving. II. On the thermoeconomic cost, Proc. 
ASME-WAM, Anaheim, California, v.3 - Second law 
analysis and modelling 

[37] A.Valero et al., 1986: A general theory of exergy 
saving.  III. Energy saving and thermo-economics, 
Proc. ASME-WAM, Anaheim, California, v.3 - Second 
law analysis and modelling 

  

273



12th Joint European Thermodynamics Conference 
Brescia, July 1-5, 2013 

 
 

 

 
Figure 1 – Possible evolution of a system A interacting with a reference environment O 

Legenda: O=reference environment; B=buffering portion of O; Ein, Eout=net exergy input and output in O; Eb=buffering exergy 
(see text); Ein,A=exergy flux from O to A; Eacc,A=exergy accumulation rate in A; Ew,A=exergy discharge from A; E=exergy 

destruction rate 

 

 

 
 
 
 
 

 
 
 

 
 
 

 
 
 

 

 

 

 

 

 

 

 

Figure 2 – Schematic representation of internal complex diffusion chains 
Legenda: A ij = permeable contact area; cij = concentration gradient; Dij = Diffusion coefficient 
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Figure 3 – Exergy flow diagram for a generic system 
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EXTENDED ABSTRACT 

 
An exergetic analysis identifies the location, magnitude, and sources of thermodynamic inefficiencies in an energy conversion system. This 
information is used for improving the thermodynamic performance and for comparing various systems [1]. In addition, an exergetic analysis 
forms the basis for the exergoeconomic [1] and exergoenvironmental [2] analyses. These two analyses (including an exergetic analysis) are called 

exergy-based methods. 
 
A so-called conventional exergetic analysis does not consider the interactions among the components of a system and the real potential for 
improving the system. These effects can be estimated and the quality of the conclusions obtained from an exergetic evaluation is improved, when 
for each important system component the value of the exergy destruction is split into endogenous/exogenous [3] and avoidable/unavoidable [4] 
parts. We call the analyses employing such a splitting advanced exergetic analysis. 
 
Endogenous exergy destruction is the part of exergy destruction within a component obtained when all other components operate ideally and 
only the component being considered operates with the same efficiency as in the real system. 
The exogenous part of the exergy destruction is the difference between the value of total exergy destruction within the component in the real 
system and the endogenous part. 
 
The unavoidable exergy destruction cannot be further reduced in the foreseeable future due to technological limitations such as availability and 
cost of materials and manufacturing methods. The difference between total and unavoidable exergy destruction for a component is the avoidable 
exergy destruction. Improvement efforts should be focus only on avoidable exergy destructions, costs, and environmental impacts. 
 
In analogy to the advanced exergetic analysis, an exergoeconomic and an exergoenvironmental analysis can be conducted by considering 
separately the endogenous / exogenous and the avoidable / unavoidable costs and environmental impacts. In this way we obtain a consistent 
evaluation of a system from the viewpoints of thermodynamics, economics, and environmental protection. All evaluations are conducted using 
consistent definitions for exergy of fuel [5], cost of fuel, environmental impact associated with the fuel, exergy of product [5], cost of product, 
and environmental impact associated with the product. 
 
The presentation will demonstrate how advanced analyses, including exergetic, exergoeconomic, and exergoenvironmental analyses, provide the 
user with information on the formation processes and the sources of thermodynamic inefficiencies, costs, and environmental impacts [6], and 
how they can enhance the creativity of engineers to develop ways for their minimization. 
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INTRODUCTION 

The message of Thermodynamics is universal in the sense 
of it permeates any physical phenomena, but also in the sense 
of space and time. It covers and explains the whole Planet at 
any moment in history when time intervals are sufficiently 
large to reach stabilizations, patterns of change or 
equilibriums. That is in contrast to transport phenomena 
sciences like fluid mechanics, or in another realm, finances 
that describe short time-dependent behaviours.  

Economics is a science to live with in the short term. 
Money is always depreciating and historically no money 
survived more than the power of the country supporting it. We 
cannot rely on Economics to have a historical perspective of 
Man in this planet. Degradation, dissipation, deterioration, 
entropy, time´s arrow and Second Law are thermodynamic 
concepts, not economic ones. Notwithstanding, economists, 
social scientists and policy makers use these terms quite freely 
and metaphorically, not as an accounting instrument. The 
global and temporal perspective of our troubled planet can 
only be understood with the help of Thermodynamics. 
Thermodynamics is the Economy of Physics. 

 
 Two global problems concern responsible men about this 

planet: Destruction and degradation of ecosystems (biotic 
resources), and the problem of depletion of mineral resources 
and materials dissipation in the Planet (abiotic resources).  

 
Our hypothesis is that Thermodynamics can be used as tool 

for accounting scarcity, unavailability and dispersion of 
minerals. This approach has not sufficiently considered as an 
important problem to be studied from a thermodynamic point 
of view. However, a mine is a very improbable occurrence in 
the Earth’s crust and exergy can be used and accounted for to 
make a systematic inventory of the loss of Mineral Capital on 
Earth. 

 

  
This paper deals with it. It proposes a thermodynamic 

theory for calculating the annual loss of Mineral Capital on 
the Earth by using as numeraire, the exergy and replacement 
exergy cost of mines and minerals. 

  
 

THE STARTING POINT: THANATIA 

The exergy value of any system depends on its intensive 
properties and the chosen reference environment (RE). Mines, 
rivers, glaciers, or clouds are natural resources which have 
exergy. However if we do not care about the reference state, 
the exergy number one obtains may have nonsense. It is 
important to distinguish between “exergy” and “exergy 
resource”. In other words, it is critical to choose an 
appropriate RE to give full sense to the exergy and exergy 
cost values associated to natural resources.  

 In 2011, the authors proposed a model of the Planet Earth, 
namely Thanatia. It hypothetically would consist of a Planet 
totally exhausted of minerals in the crust and completely 
decimated by climate change in its atmosphere and 
hydrosphere. See refs [1] and [2]. 

Thanatia is a guess thermodynamic model for a terrestrial 
“grave”, where all fossil fuels have been burned and converted 
into CO2 and with the absence of concentrated mineral 
deposits. The resulting degraded atmosphere has a carbon 
dioxide content of 683 ppm and a mean surface temperature of 
17ºC. The degraded hydrosphere is assumed to have the 
current chemical composition of seawater at 17ºC. For the 
upper continental crust, the authors proposed a model which 
includes composition and concentration of the 294 most 
abundant minerals currently found on Earth as bare rocks.  

In this sense, Thanatia constitutes a coherent baseline for 
the assessment of mineral resources in exergy terms. Any 
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substance like mineral deposits or the poles are exergy 
resources with respect to Thanatia.  

Note that Thanatia itself has exergy to some other reference 
environment like that of the conventional Szargut’s RE [3]. 
Therefore it is not in itself another alternative RE as others 
profusely published. Thanatia is in fact an imaginary degraded 
planet that our civilization could smoothly but surely 
approach, but in the authors hope it will be never reached. 
(Thanatos means death in Greek). On the other hand, it is a 
consistent tool sufficient for providing coherent calculations.  

 
EXERGY AND EXERGY COSTS 

Once defined the baseline, exergy may be assessed 
depending on the properties that the resource is considered 
valuable, such as quantity, composition and ore grade. In this 
way exergy constitutes a universal, objective and useful tool 
for assessing resources depletion. Presented over time, it 
could provide the velocity at which extraction of each and 
every mineral resource is occurring. The exergy of a mineral 
resource has at least three components: chemical composition, 
concentration and cohesion. The chemical exergy of a mineral 
is equivalent to the minimum energy required to form the 
minerals from the substances in Thanatia and is given in Eq. 
1: 

 

        (1) 
 
where b0

chel,k is the standard chemical exergy of the 
elements that compose the mineral, νk is the number of moles 
of element k in the mineral and ∆G is the Gibbs free energy of 
the mineral. 

Since Thanatia contains virtually every mineral found in 
the crust, the chemical exergy of the minerals from that 
reference is zero (as they do not need to be constructed). 

As opposed to chemical exergy, concentration exergy 
expresses the minimum energy required to concentrate the 
given mineral from the depleted state in Thanatia to the 
conditions found in the mine (with the specific ore grade). The 
concentration exergy is calculated with Eq. 2: 

 

  (2) 
 
where R is the universal gas constant (8.314 kJ/kmolK), T0 

is the temperature of the reference environment (298.15 K) 
and xi is the concentration of the substance i. The exergy 
accounting of mineral resources implies to know the ore grade 
which is the average mineral concentration in a mine xm as 
well as the average concentration in the Earth’s crust (in 
Thanatia) xc. The value of x in Eq. 2 is replaced by xc or xm to 
obtain their respective exergies, whilst the difference between 
them represents the minimum energy (exergy) required to 
form the mineral from the concentration in the Earth’s crust to 
the concentration in the mineral deposits. 

However, Eq.2 is only strictly valid for ideal mixtures such 
as solids where there is no chemical cohesion among the 
substances. But cohesion energy is always present in any 
mineral. Thus Eq.2 would only strictly remain valid for the 
exergy of a mixture, and not for the exergy needed to break 
the binding forces among solids such as hydrogen, hydration, 
ionic and/or covalent bonds. Such forces are sufficiently 
strong enough to require physical comminution processes like 
crushing, grinding, or milling. Therefore, there is an important 

factor missing in the characterisation, namely the 
comminution exergy, i.e. the minimum energy required to 
bind the solids from the dispersed state conditions of Thanatia 
to those in the mineral deposits. Nevertheless, in [4], the 
authors demonstrated that comminution is a very energy 
intensive process when it comes to fine grinding and milling 
operations but is not so relevant in crushing operations and 
becomes negligible when evaluating the Mineral loss of 
Capital on Earth. This is why only the concentration exergy 
term is taken into account when assessing the Mineral Capital 
on Earth. 

 
It should be stated though that since exergy is assessed only 

supposing reversible processes, the numbers obtained are 
paradoxically far from expected. Hence, we need to 
complement it with actual exergy costs (kJ), which represent 
the sum of all actual exergy resources that would be required 
if we were to replace a mineral from Thanatia (or grave) to the 
conditions actually found in nature (or cradle). This 
calculation assumes that the same “backup” technologies are 
applied in the imaginary process from Thanatia to the mine 
(grave to cradle stage) than in the mine to industry (cradle to 
gate stage). Therefore Life Cycle Assessments of mining to 
industry processes become essential for assessing costs, which 
are  calculated with Eq. 3: 

                                   

                                                (3) 
 
where kc is a constant called unit exergy cost and is the 

ratio between the real energy required for the real process to 
concentrate the mineral from the ore grade xm to the refining 
grade xr and the minimum thermodynamic exergy required to 
accomplish the same process (Eq. 4). 

 

                                    (4) 
 
Since the energy required for mining is a function of the 

ore grade of the mine and the technology used, so it is the unit 
exergy cost.  

Then, the exergy cost of concentrating a mineral from the 
Earth’s crust is named exergy replacement cost. Table 1 
shows typical values for xc, xm, kc and exergy replacement 
costs for key minerals. 

All proposed concepts, Thanatia, exergy resource and 
exergy replacement cost are solidly based on the Second Law. 

The exergy and exergy replacement costs provide a 
measure for quantifying this degradation, which is 
systematically being ignored in conventional accounting 
systems. 

 
CASE STUDY 

As the method provides values in energy units, the annual 
exergy decrease in the mineral endowment of the planet can 
now take into account the fossil fuel’s exergy plus the losses 
in nonfuel exergy replacement costs.  

As a case study, the exergy replacement costs due to the 
extraction of minerals in 2008 are explored. The figures 
reported by the US Geological Survey concerning annual 
commodity production are considered [5], together with the 
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exergy replacement costs values calculated and shown in 
Table 1. 

According to the authors’ calculations, the exergy 
replacement costs associated to the 2008 production of the 
studied minerals is equal to 5.3 Gtoe. It is worth to note that 
conventional economics only accounts for the energy required 
in the extraction and refining processes. In the case of the 
materials studied, these account for around 9% of the total 
world fossil fuel produced in year 2008 (see Fig. 1).  

Nevertheless a fair accountability of resources should also 
take into account the use and the decrease of the non-fuel 
mineral capital endowment. This means that the true yearly 
balance of the exergy decrease in the mineral endowment of 
the planet should account for at least, the exergy of fossil fuels 
world production plus the loss of the mineral exergy 
replacement costs of the non-fuel minerals. As can be seen in 
Fig. 2, this accounts for 32% of the whole energy stages, if the 
cradle to grave stage is taken into account. This is a 
considerable and unexpected percentage since it has the same 
order of magnitude as the yearly loss of coal, oil or natural 
gas. 

But these minerals are not lost at all. Only those that are not 
recycled and are not in use (in-use-stock) become really lost. 
Considering the same recycling ratios for the whole world as 
in the US [5], means that from the total exergy replacement 
costs of the minerals extracted, only 72% is either lost or yet 
in use, i.e. around 3.8 Gtoe. Unfortunately only mass 
consumable metals like steel, aluminium, copper and few 
others are recycled in rates no greater than 50-60% worldwide 
The same happens with precious metals[6]. Adding the exergy 
of the fossil fuels used in the extraction and processing of the 
minerals, we obtain that the total exergy expenditure due to 
mineral production in 2008 was equal to 5.3 Gtoe. It should 
be stated that only 37 minerals have been considered. 

Hence, the previous reported value would increase, if all 
mineral commodities were to be included in the analysis. 
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Fig 2: Distribution of the exergy costs associated to the 

2008 world production of the main mineral commodities 
 
FROM SEEA TO A GLOBAL SYSTEM OF 

ENVIRONMENTAL-THERMO-ECONOMIC 
ACCOUNTS. 

The depletion of a mineral should not be more the 
difference between its world price and its economic cost of 
production as economists propose. On the contrary, it should 
be assessed as the loss of reserves quantified through its 
replacement cost with current best available technologies, 

from the bare rock to the ore grade conditions of the mine. 
This depletion indicator can be used for all fossil fuels and 
minerals no matter their chemical composition and 
concentration. Fossil fuels must be replaced with renewable 
energy sources and this replacement need to be accounted for 
such progress. In the same way, stopping depletion of metals 
will largely come from greater resource-efficient techniques 
such as designing for recyclability, reducing the number of 
alloys used, avoiding the design of monstrous hybrids, [7]  
designing for disassembly, symbiosis of industrial complexes, 
increasing the efficiency of smelters to avoid metal losses in 
slags, increasing the throughput of scrap, etc.[8].  
Conservation means, in fact, avoided replacement. Actually, 
the cost of replacement is a mind barrier for hampering 
deliberate destructions. Indeed, one can associate a cost of 
replacement to each and every conservation act, not only to 
mineral resources but, more in general, to any natural 
resource. The more irreplaceable an object is the stronger will 
be the need for its conservation. Irrecoverability would need 
ethernal conservation. Accounting replacement costs is 
accounting our debt with future generations.  
On the other hand, valuing technological improvements is as 
important as conservation of resources. An essential fact is 
that replacement costs using the “best available or back-up 
technologies” decrease as much as knowledge improves. The 
evolution of replacement costs of natural resources is a 
straightforward and quantitative indicator of technological 
achievements. Therefore, if the evolution of best available 
technologies is a reflex of increased embodied knowledge, 
one should see to what extent it decreases the debt owed to 
future generations. Nevertheless, it is not clear that any new 
technology, both directly or indirectly, improves efficiency in 
production processes, and thus diminishes the negative 
balance of the current generation. This is because of the 
rebound effect, in which better resource efficiencies may lead 
to increased resource usage. Anyhow, the concept of 
replacement cost apprehends both ideas: conservation and 
technological improvements. 

 
Yet conservation goes beyond repair, restoration, or 
replacement. It is a value that requires a change in lifestyle 
brought about through education. Education is an 
indispensable tool not just in terms of conservation but also in 
the learning of technological innovation. Education systems 
must cope with both. In fact, an intense tech oriented society 
should need to be counterbalanced with a deep sense of 
conservation. Consequently, as Snow (1959) proposed, the 
Second Law of Thermodynamics ought to be placed at the 
core of literacy classes[9]. 

 
If replacement can be calculated and registered for almost any 
action of Man on the planet, an international framework to 
provide concepts, definitions, classifications, accounting rules 
and standard tables for all countries could be built. The 
System of Environmental-Economic Accounts (SEEA) of the 
United Nations may well provide such statistical framework 
[10]. The System of National Accounts (SNA) is an 
established system for producing internationally comparable 
economic statistics which imposes the organization and 
standardization of domestic accounts. It is widely accepted 
and established worldwide. Bureaus of statistical office (BSO) 
for data recovering and economic accounting exist in almost 
any country. Companies and countries report economic and 
physical data following the established accounting procedure 
and BSOs integrate them. It is a huge infrastructure. From 
households to companies and to countries, these accounts are 
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presented in monetary values with the SEEA following the 
accounting structure of the SNA and thus facilitating the 
integration of environmental statistics with economic 
accounts. Each national BSO needs to take responsibility for 
the environmental data recovery and environmental-economic 
accounting practice. Unfortunately the information recovered 
by the physical tables needed for SEEA is rather poor since 
simply registering material tonnage is not sensitive enough for 
qualifying most of the physical phenomena.  
The aggregation level of accounting determines the numeraire 
to be used in the accounts. Monetization runs well from 
households to companies. At the countries level the money 
yardstick is proved insufficient for economic-environmental 
accounts whilst at the aggregated global level accounts, 
money losses weight in favour of physical accounts. 
Furthermore, for the proper viewing of the planet’s evolution, 
monetary accounting is not only insufficient but inappropriate.  

 
Replacement is the keyword for accounting the remaining 
planetary global resources. What is the cost of replacing those 
natural resources our society destroys? We lack costing 
accounts even though technology and enjoyment of life are the 
benefits. Technology increases knowledge at the cost of 
natural resources, but technology may be used either for 
improving its productivity or for destroying them quicker. 
There is a need to raise the awareness that it is now possible to 
put numbers to this debate. This can be done just using the 
Second Law of Thermodynamics through the exergy and 
exergy cost measured in S.I. units as a numéraire. The cost of 
replacement of non-renewable resources and the cost of 
restoring deteriorated renewable resources may be used to 
account how much effort our society should need to close the 
natural and man-made cycles. Having this accounting 
knowledge, the doors are open for a global managing of 
natural resources. This knowledge could induce efforts to pay 
some of the debt, even though many others will remain as a 
debt to future generations. These generations will thank these 
accounts. As the former  Deputy Secretary-General of  OECD, 
B. Ásgeirsdóttir [11] said “the luxuries of one generation are 
often the needs of the next “ and, “ We need to achieve more 
sustainable consumption and production patterns, to 
increasingly decouple environmental pressure from economic 
growth, to ensure sustainable management of natural 
resources, and to work together in partnership to reduce 
poverty”.  

 
The United Nations System of Environmental-Economic 
Accounting and its global framework would be the best 
starting point for achieving these accounts. To do this the 
SEEA would need another step forward to convert them into a 
Global System of Environmental-Thermo-Economic Accounts 
(SETEA). In the same way that the System for National 
Accounts has smoothly evolved into the SEEA, someday it 
would be possible to have complementary accounts for natural 
resources replacement costs into the framework of SEEA. A 
major intellectual effort needs to be done from the concepts 
stated here. At the end, the real overall accounting unit will 
be the residence time of the human species on the planet. 

For making a solid proposal, we have already developed the 
thermodynamic tools for minerals, water, natural resources. 
But the way to go is too long for only one research group. 
JETC could be a good platform for discussing such project 
and launch a truly European/international proposal to UN in 
this way.” 
 

CONCLUSIONS 
 

The power of thermodynamics is simply fascinating to give 
answers to ecological problems when thinking in a very broad 
perspective: temporal, (i.e. historic), and spatial, (i.e. 
planetary level).  
In our view, Thermodynamics may still play an important role 
in managing our planet´s resources. We think 
“Thermodynamic Accounting” may count in a global 
management of the natural resources of the Planet. Ecology 
could receive an important intellectual support, and 
economists could better understand the need for planning and 
caring today what could happen in the near long term, beyond 
several generations. Just converting ideas into numbers one 
can go beyond the debate between techno-optimists and 
techno-pessimists and provide real tools for a rational 
management of the Mineral Capital on Earth. 
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xc[g/g] xm[g/g] k(x=xc) Exergy replacement costs Mining and conc. Smelting and refining

Al-Bauxite (Gibbsite) 1.38E-03 7.03E-01 2088 627 11 24

Antimony (Stibnite) 2.75E-07 5.27E-02 3929 474 1 12

Arsenic (Arsenopyrite) 4.71E-06 2.17E-02 1470 400 9 19

Beryllium (Beryl) 3.22E-05 7.80E-02 362 253 7 450

Bismuth (Bismuthinite) 5.10E-08 2.46E-03 7859 489 4 53

Cadmium (Greenockite) 1.16E-07 1.28E-04 39230 5898 264 279

Chromium (Chromite) 1.98E-04 6.37E-01 48 5 0 36

Cobalt (Linnaeite) 5.15E-09 1.90E-03 - 10872 9 129

Copper (Chalcopyrite) 6.64E-05 1.67E-02 525 110 29 21

Fluorite 1.12E-05 2.50E-01 582 183 1 -

Gold 1.28E-09 2.24E-06 6380357 583668 107752 -

Gypsum 1.26E-04 8.00E-01 118 15 0 -

Iron ore (Hematite) 9.66E-04 7.30E-01 165 18 1 13

Lead (Galena) 6.67E-06 2.37E-02 384 37 1 3

Lime 8.00E-03 6.00E-01 13 3 0 6

Lithium (Spodumene) 3.83E-04 8.04E-01 190 546 13 420

Manganese (Pyrolusite) 4.90E-05 5.00E-01 37 16 0 57

Mercury (Cinnabar) 5.73E-08 4.41E-03 209116 28298 157 252

Molybdenum (Molybdenite) 1.83E-06 5.01E-04 6505 908 136 12

Nickel (sulphides) Pentlandite 5.75E-05 3.36E-02 13039 761 15 100

Nickel (laterites) Garnierite 4.10E-06 4.42E-02 876 167 2 412

Phosphate rock (Apatite) 4.03E-04 5.97E-03 77 0 0 5

Potassium (Sylvite) 2.05E-06 3.99E-01 1926 1224 3 N.A.

REE (Bastnaesite) 2.54E-03 8.11E-02 588 31 10 374

Silicon (Quartz) 2.29E-01 6.50E-01 6 1 1 76

Silver (Argentite) 1.24E-08 4.27E-06 112846 7371 1281 285

Sodium (Halite) 5.89E-04 2.00E-01 71 44 3 40

Tantalum (Tantalite) 1.58E-07 7.44E-03 6729367 482828 3083 8

Tin (Cassiterite) 2.61E-06 6.09E-03 2704 426 15 11

Ti-ilmenite 4.71E-03 2.42E-02 172 5 7 128

Ti-rutile 2.73E-04 2.10E-03 143 9 14 244

Uranium (Uraninite) 1.51E-06 3.18E-03 13843 901 189 N.A.

Vanadium 9.70E-05 2.00E-02 4174 1055 136 381

Wolfram (Scheelite) 2.67E-06 8.94E-03 69721 7429 213 381

Zinc (Sphalerite) 9.96E-05 6.05E-02 104 25 1 40

Zirconium (Zircon) 3.88E-04 4.02E-03 10580 654 739 633  

 

Table 1: Exergy replacement costs of key minerals compared to conventional costs of mining and concentrating and smelting and 

refining. Values are in GJ/ton if not specified. 
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Fig. 1: Exergy replacement costs associated with the extraction of mineral commodities in 2008. 
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INTRODUCTION 

The concept of district heating was quite standardized but 

has evolved in the last few years, mainly because of new 

opportunities that the development of renewable energy plants 

and energy saving techniques have created. Using low-

temperature heat from industrial waste heat in district heating 

has proven to be attractive from energy and economic 

viewpoints [1]. Furthermore an important aspect of new 

building development is their increasingly high standards of 

efficiency. In order for district heating networks to remain an 

effective option for such developments, reductions in 

temperature supply should be achieved. This allows one to 

use different sources of locally available waste and renewable 

heat [2] and to reduce the heat losses.  

The role of district heating in future renewable energy 

systems has been evaluated in Lund et.al [3]. More 

specifically, district heating is expected to supply heat to the 

buildings located in more densely populated areas, primarily 

taking advantage of thermal energy sources that are recovered 

from industries or produced by WTE plants, cogeneration 

systems and renewable energy plants. Areas with lower 

population density are more suitable for heating through 

alternative technologies such as geothermal heat pumps. 

District heating networks involve the use of at least two 

forms of energy: mechanical and thermal energies. In fact, the 

network distributes heat, that is produced in one or more 

plants, to the users, while power is required for the fluid flow. 

These energy forms are somehow competing, since a 

reduction in the quality of heat generally allows one to 

increase the performance of the thermal plant, but may 

involve larger amount of power for pumping. Moreover there 

are links between the design/operation conditions of the 

network and the performance of the thermal plant and thus the 

production cost of heat.  

Thermoeconomic approaches have proven to be suitable 

for the design of this kind of systems since they allow one to 

account for the effects that the characteristics of the various 

users (mainly their position and their thermal needs) have on 

the cost of heat supplied and on the total primary energy 

requirements. Thermoeconomics is a branch of engineering 

combining exergy and economic principles (Reference [4] 

provides an introduction to the subject, and references to 

earlier works.) The thermoeconomic analysis of an energy 

system allows one to calculate on a thermodynamic and 

economic base the cost rate of all the fluxes flowing in, out 

and through the system, and in particular its products. The 

cost calculation gives as much information as the 

representation of the system is detailed. This is more 

important as the number of products is high, because in those 

cases the number of components and fluxes, both with 

physical and productive meaning, are high. Thermoeconomics 

can be used for costing purpose, design improvement, 

optimization and the analysis of operating conditions, as 

illustrated in [5]. 

For these reasons, thermoeconomics has been used for the 

design of optimal district heating networks, for the 

optimization of the supply temperature during operation and 

the analysis of possible network expansions.  

The first application of exergy costing to a district heating 

system was proposed by Keenan in 1932 [6], who suggested 

that the production costs of a cogeneration plant should be 

distributed among the products according to their exergy. 

Various applications of thermoeconomic analysis to DHS 

have been proposed successively.  

Adamo et al. [7] have used a thermoeconomic approach for 

the optimal choice of diameters in a district heating network.  

Verda et al. [8] have proposed the design optimization of a 

district heating system using a thermoeconomic approach. 

The relation between exergy based parameters of the network 
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and the unit cost of heat supplied to the users is also 

investigated. A procedure for the search of the optimal 

configuration of district heating networks is proposed in [9]. 

The optimization was performed using a probabilistic 

approach based on the calculation of thermoeconomic cost of 

heat associated to each single user connected with the 

network. It was shown that the minimum cost for the entire 

community is obtained by disconnecting from the network 

some small buildings, which are located far from the thermal 

plant, and providing them heat with local boilers. Oktay and 

Dincer [10] presented an application of an exergoeconomic 

model, which included both exergy and cost accounting 

analyses for a geothermal district heating system. 

In [11], a thermoeconomic approach for the analysis of 

other possible improvements of existing district heating 

networks is proposed. These are related to changes in the 

operating strategies, connection of new users and application 

of energy savings initiatives in buildings connected to the 

network. 

Other problems are still open in district heating that can be 

solved through a thermoeconomic approach. In particular, the 

link between quality of heat and its price should be considered 

in the analysis of both the producers and the users. In the near 

future it is expected that multiple producers are allowed to 

supply heat to the same district heating network, similarly to 

what happens in the case of the electric grid. Not only the 

amount of heat they may produce should be properly 

accounted, but also its quality. Exergy is an effective way to 

evaluate both quantity and quality of energy flows. Moreover, 

users characterized by a heating system able to operate at 

lower temperatures should be considered in a different way 

than users requiring the same amount of heat, but at higher 

temperature. As an example, in buildings where radiant panels 

are installed, the temperature difference between supply and 

return piping can be increased significantly. As an alternative, 

these buildings may be theoretically connected directly with 

the return piping network (i.e. water supplied to the buildings 

comes from the main return piping instead of the supply 

piping network), thus using low grade heating. In both cases 

there is generally a big benefit for the overall energy system, 

since the returning temperature decreases and a more effective 

heat recovery is obtained in the thermal plant. In all cases, low 

temperature heating systems use less exergy than 

conventional heating systems. 

In the present work, the use of thermoeconomics for the 

analysis of these aspects is proposed. Some scenarios are also 

analyzed in order to provide a quantitative evaluation of the 

various cost terms as the function of the operating conditions, 

topology and characteristics of the users/producers.  

THERMOECONOMIC ANALYSIS OF DISTRICT 

HEATING NETWORKS 

Thermoeconomic analysis is based on cost balance 

equations that are written for all components. This balance 

can be written for the ith component as 

  ∑      ̇       (1) 

where     is its thermoeconomic cost and  ̇  the moneraty cost 

rate of owning the ith component. Physical flows can be 

composed in order to define resources (F) and products (P) of 

the components. Equation (1) can be thus rewritten as 

       ̇        (2) 

Unit costs can be also introduced. The thermoeconomic unit 

cost     is the ratio between the thermoeconomic cost of a flow 

    and its exergy    . Using these concepts, equations (1) and 

(2) become: 

  ∑           ̇      (3) 

           ̇            (4) 

Equation (4) can be rearranged introducing the relation 

between resources and products, when these quantities are 

expressed in terms of exergy flows  

             (5) 

where I is the irreversibility. The unit cost of the product is 

expressed as: 

                
 

   
 

 ̇ 

   
   (6) 

In a network, each single pipe can be considered as a 

component, which goal consists in transporting the inlet 

exergy flow to the outlet section. The inlet flow can be 

considered as the resource while the outlet flow as the 

product. This concept can be applied to the entire system. In 

this case the unit cost of exergy supplied to the users depends 

on the unit cost of resource (i.e. the heat flux supplied by the 

thermal plants to the network), the irreversibilities occurring 

in the network (heat losses, pressure drops, mixing of streams 

at different temperature) and the investment cost. In addition, 

it should be considered that “users need energy not exergy”. 

This means that the final product that is supplied to the users 

is a heat flux at the indoor temperature, no matter the 

operating temperature of the system, therefore the comparison 

between district heating and alternative systems or between 

different district heating configuration or operating conditions 

should be performed on the basis of a product evaluated in 

energy basis: 

        
  

 
   (7) 

where    is the unit cost of heat (calculated using exergy 

accounting) and   is the heat flux supplied to the users.  

The same type of analysis can be performed at component 

level, which brings to a different unit cost for the various 

users. This cost depends on the characteristics of the user, 

particularly its heat request and the position of the user with 

respect to the other users and the thermal plants. Its position 

affects the irreversibilities and the investment cost of the 

portion of network required to reach it. This concept is the 

basis for using thermoeconomics in optimal planning of 

district heating networks (see for example [9]). 

Among the available techniques that have been proposed 

in the literature for thermoeconomic analysis, a useful 

approach that can be adopted for the analysis of district 

heating network is that proposed by Valero and co-workers in 

the eighties [12, 13]. One of its main characteristics is the 

matrix based approach, in particular the use of incidence 

matrix for  expressing the equation of cost conservation. The 

incidence matrix (see for example [14]) was formulated in the 

ambit of the graph theory [15], which is widely adopted for 

the topology definition as well as the fluid dynamic and 

thermal calculation of distribution networks [16]. The 

incidence matrix, A, is characterised by as many rows as the 
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branches (m) and as many columns as the nodes (n). The 

general element Aij is equal to 1 or –1, respectively if the 

branch j is entering or exiting the node i and 0 in the other 

cases. The use of the incidence matrix allows one to express 

the balance equation of the flow of the general extensive 

quantity Gx as:  

 0GGA 
dxx  (8) 

where Gx is the vector containing the values assumed by 

the quantity Gx in the nodes and Gxd is the vector that allows 

to account for the amount destructed in the branches, if non 

null. In thermoeconomics, equation (9) allows one writing the 

cost balance: 

 0ZA   (9) 

where  is the vector containing the cost of all the flows, 

while Z contains the cost rate of the components. The 

calculation of all the costs require the formulation of n-m 

auxiliary equations, which are obtained through definition of 

resources and products of each component, expressed in terms 

of exergy flows [17]. The auxiliary equations were formulated 

as four propositions, whose first (P1) is the conservation of 

cost, expressed by equation (14) [12]. The others are: (P2) in 

absence of a different evaluation the economic unit cost of an 

exergy flow entering the system from the environment can be 

assumed equal to its price; (P3) in absence of a different 

evaluation, the unit cost of a lost exergy flow is the same; 

(P4a) if the fuel of a component is defined as the difference 

between two exergy flows, the unit cost of these flows is 

equal; (P4b) if the product of a component is defined as the 

summation of two or more flows, the unit cost of these flows 

is the same. 

In the case of a DHN the only auxiliary equations to be 

applied is the assignment of the same unit cost to the flow 

exiting each bifurcation and the assignment of unit costs to 

the flows entering the system from outside, i.e. the unit cost of 

thermal exergy supplied in the plants and the unit cost of 

electricity required for pumping [18]. 

THIRD PARTY ACCESS TO DISTRICT HEATING 

NETWORKS 

In 1996, when the European electricity market opened up 

for competition, the earlier regulated district heating market 

was de-regulated in the sense that the companies now could 

set their own prices. The earlier directive that the district 

heating companies should not make any profit was removed, 

and any firm (not only municipal) could enter the market [19]. 

However, the lack of attention and targeted policies, the 

absence of a European directive that takes care of the 

particular case of district energy led to a situation in which 

district heating sector becomes substantially an example of 

market failure, because, in the absence of regulation 

authorities and measures, economic operators in free market 

have not been able to solve the main problem related to 

district heating systems: natural monopoly, third party access 

and effective competition, increasing prices due to unbalances 

in the market concentration. 

This situation entails costs and inefficiencies for consumers 

and communities, for this reason in the current years many 

voices were raised in favour of a new regulation of the sector 

according to its new free market configuration, both on the 

academic side [19-21], both on the consumers side [22]. Also 

National Competition Authorities have several time - in 

Sweden for instance - urged the need for adjustment in district 

energy system free market, or are starting to do it, as in the 

case of Italian Competition Authority, which in January 16, 

2012, launch a survey on the level of prices, constraints on 

choice for consumers of whether or not connect to the 

network of district heating and procedures for service 

management. 

According to Becchis et al. [21], absence of regulation in 

the district energy markets exposes consumers to possible 

exploitations by a monopolist willing to maximise his profit. 

Considering the strong pressure against DHC projects coming 

from conflicting market interest and the relevant transaction 

and regulatory costs, a bit of regulation of the costs and tariffs 

might improve the penetration capacity of the technology and 

should be welcomed by DHC true supporters. 

The main causes of market inefficiencies that require 

regulation are: 

-  situations leading to highly prices, such situations of 

economies of scale or scope, anticompetitive behaviour, 

network externalities, government limits to competition 

(patents, for instance); 

-  externalities leading to inappropriate prices; 

-  information problems, that might lead to market 

breakdown, for example quality; 

Regulation deals with the considered situation, explicitly 

controlling prices, profits and quality. Regulation specifies 

precise details of what companies can and cannot do (ex-ante 

intervention). 

The aim of regulation is fundamentally to reach economic 

efficiency, that is, prices equal to marginal costs, taking into 

account the externalities, assuring entry of most efficient 

companies (productive efficiency), dynamic efficiency. 

Moreover it has also re-distributional concerns between 

consumers and shareholders and between poor and rich 

consumers. 

Third Party Access (TPA), i.e., separation between 

generation and retailing of district heating in order to open up 

the network for more competitors, is one suggestion that has 

been addressed in order to increase the competition in the 

market. Generally TPA implies that a third party can access 

the district heating network in a non-discriminatory way, in 

order to supply its heat, but there exist different forms of TPA 

that all are compatible with the above definition: 

1) Regulated TPA refers to a situation of full access to the 

district heating networks, where the network owner has a 

legal obligation to allow access to the network. The network 

operations are regulated ex ante, i.e., the conditions for access 

to the network (e.g., fees, etc.) are determined in advance. 

2) Negotiated TPA implies that the district heating network 

owners are required to negotiate about access to the network 

with the producers of heat. The main difference between 

regulated and negotiated TPA is thus that the latter form 

implies that the network operations are determined ex post. 

The specific conditions for network access are negotiated 

between the network owner and the third party. 

3) Finally, a so-called single-buyer solution means that all 

potential consumers in the network have the right to negotiate 

contracts with all eligible suppliers to the network. The 

single-buyer is obliged to purchase the contracted volume 
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from this supplier and resell it to the customer at a price equal 

to the contract price plus distribution or system costs. 

In this paper the third party access is analyzed from 

technical and economic viewpoints. This analysis aims at 

showing that these aspects can be correctly captured using a 

thermoeconomic approach for costing purpose. A simple 

example, shown in Figure 1, is considered. This consists of a 

district heating network with two thermal plants that can 

supply heat to the users. The two plants are characterized by a 

different position, which involves a different contribution due 

to pumping. The quality of heat that is supplied to the network 

by the two plants is considered as different, which means that 

water is heated by the two plants at different temperature. 

 

 

Figure 1. Schematic of a district heating network with two 

heating plants 

 

For sake of simplicity some assumptions are considered. 

Pressure drops in the pipes are assumed as proportional to the 

square of the mass flow rate: 

          
 
   (10) 

Pipes in the present analysis are considered as perfectly 

insulated. The following quantities are assumed:  

1) thermal request of the users in design conditions, =20 

MW;  

2) pressure loss coefficient in pipe b1, 1=10;  

3) supply temperature from the thermal plant TP1, Tb1=100 

°C;  

4) supply and return temperatures on the secondary circuit of 

the users, Ts=80 °C and Tr=60 °C;  

5) return temperature on the main temperature of the district 

heating network, Tb4=65 °C;  

6) cost of thermal exergy produced by the thermal plant TP1, 

cTP1=0.16 €/kWh.  

The latter has been considered as constant in all operating 

conditions. This is a good approximation of the behavior of 

combined cycles operating in cogeneration mode, if the effect 

of ambient temperature is not considered. In fact these kind of 

plants are characterized by an almost constant exergetic 

efficiency when steam extraction is varied from zero to the 

maximum value. 

Only operating costs have been considered in the analysis, 

since the district heating network has been considered as 

existing, therefore the contribution of the investment cost is 

the same in all the examined scenarios. 

A first case that can be considered in the analysis 

corresponds to the thermal plant TP2 producing heat at lower 

temperature than TP1. TP2 is considered as located closer to 

the users with respect to TP1. The pressure loss coefficient in 

the pipe b2 is assumed as 10% of that in b1, the supply 

temperature from thermal plant TP2 is assumed as 90 °C. The 

analysis has been conducted by varying the percentage of heat 

supplied by TP2, the unit cost of thermal exergy supplied by 

the thermal plant TP2 and the heat requested by the users. 

Figure 2 shows  the unit cost of heat supplied to the users 

as the function of the percent heat load supplied by the 

thermal plant TP1, for three different values of the unit cost of 

thermal exergy. If this cost is considered equal to that for 

TP1, the unit cost of heat supplied to the users decreases with 

increasing contribution of the thermal plant TP2. This means 

that, despites the reduced temperature of the water flow 

exiting TP2, the smaller friction losses associated with b2 

allow one to reduce the cost of heat supplied to the users. 

Similar results are obtained by increasing the unit cost of 

thermal exergy produced by TP2 up to 4%. If this  unit cost is 

increase to 8% (i.e. about 0.173 €/kWh) the minimum cost is 

obtained by using the plant TP1 only. This means that the 

beneficial effects of a reduced pumping cost is always lower 

than the effects due to the smaller unit cost of thermal exergy 

produced by TP1 and the larger specific exergy.  

In the case of costs of thermal exergy produced by TP2 

between 4% and 8% larger than the cost of TP1, the optimal 

cost of heat is obtained by supplying heat from the two plants.    

 

Figure 2. Unit cost of heat as the function of the percent 

thermal supply from TP2 at design load. 

 

At partial load, the unit cost of heat reduces, because of the 

reduction in pumping costs as well as the reduction in the 

temperatures on the secondary circuit. The latter causes a 

reduction in the returning temperature of the district heating 

network, which means that the exergy content associated to 

the enthalpy flux supplied by the thermal plant to the network 

reduces and so the corresponding unit cost of heat. Figure 3 

shows the unit cost of heat supplied to the users as the 

function of the percentage of heat supplied by the thermal 

plant TP2. The curves refer to three different percentage of 

the total heat request and are obtained considering a cost for 
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the thermal exergy produced by TP2 6% higher than that 

produced by TP1. In the case of design load, there is a 

minimum when 45% of heat is produced by TP2. When a 

smaller heat load is considered, the curves is flattened and the 

minimum shifts towards lower percentage of contribution by 

TP2. In the case of heat load reduced to 75% of the design 

value, the minimum is obtained when about 40% of heat is 

produced by TP2. In this case, the minimum cost is 5% lower 

than the minimum cost at design load. When the heat load is 

reduced to 50%, the minimum is obtained when heat is 

entirely produced by TP1, but the cost is almost constant. The 

unit cost of heat is about 11% lower than at design load.  

 

Figure 3. Unit cost of heat as the function of the percent 

thermal supply from TP2 per various thermal loads, at fixed 

cost of thermal exergy. 

Similarly, when lower costs of thermal exergy supplied by 

TP2 are considered, the unit cost of heat is reduced as the heat 

load reduces. The curves are flattened and keep a similar 

slope as the one shown in figure 2. Analogous behavior is 

observed when the unit cost of thermal exergy produced by 

TP2 is increased. 

The present analysis highlights that cost analysis applied to 

district heating operation in the case of multiple heat 

producers requires the evaluation of various aspects: unit cost 

of heat supplied to the network, quality of heat (i.e. supply 

temperature) and pressure required for correct operation. An 

additional aspect that should be considered refers to the use of 

thermal storage devices, which operation (charge and 

discharge) may be decided on the basis of the cost of heat, 

total heat request, supply temperature of the network.  

All these aspects are included in the costing analysis when 

a method based on the exergy evaluation of energy flows is 

considered, therefore thermoeconomics is a suitable tool to 

manage third-party access to the district heating network. 

USERS WITH REDUCED OPERATING 

TEMPERATURES 

A further aspect that deserves to be considered refers to 

users using low temperature heating systems, such as radiant 

floor. This kind of systems have positive impact on the 

efficiency of district heating systems, since network can be 

reduced. Similar effect is achieved in existing buildings, 

where energy savings initiatives (e.g. wall, roof or window 

insulation) are introduced. In this case, the existing heating 

system becomes oversized and its operating temperatures can 

be reduced. 

Buildings with these characteristics can be connected on 

the supply network as the other buildings. In this case the 

temperature difference between supply and return values can 

be significantly increased. In fact the return temperature has a 

lower bound imposed by the return temperature on the 

secondary circuit. If the latter is lowered, the return 

temperature can be lowered as well. The positive effect is 

particularly important in the case of small networks, which 

are designed with small difference between the supply and 

return temperature. An alternative configuration is also 

possible. Buildings with low temperature heating system can 

be theoretically connected to the return pipeline. The inlet 

temperature on the hot side of the heat exchanger is therefore 

equal to the return temperature of the district heating network. 

Water is then rejected, at lower temperature, on the same pipe. 

Figure 4 shows the unit cost of heat supplied to a user 

connected with the supply network as the function of the 

operating temperature on the secondary circuit. The analysis 

is performed considering two values of the supply 

temperature on the main circuit. 

 

Figure 4. Unit cost of heat as the function of the supply 

temperature on the secondary circuit. 

 

The figure shows that, for fixed value of the supply 

temperature of the district heating network, unit cost of heat 

decreases with decreasing operating temperature on the 

secondary circuit. A reduction in the network temperature also 

allows on to reduce the unit cost of heat. 

As already mentioned the main advantage in the reduction 

of the operating temperatures consists in the larger plant 

efficiency. An additional advantage that is obtained by 

lowering the return temperature consists in the reduction of 

the mass flow rate flowing in the district heating network, 

which allows one to reduce the pumping cost. The effect of 

secondary temperature on the specific mass flow rate (i.e. the 

mass flow rate per unit heat flux) flowing in the network is 

shown in figure 5. The curves show that there is a significant 
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reduction, especially in the case of network operating with 

smaller supply temperature. An additional potential advantage 

in lowering the mass flow rate is registered in the case of 

existing network in areas where there are possible urban 

expansions. In this case, new users may be connected to the 

network even in the case of a “saturated” network, i.e. when 

the thermal request of the user causes water velocity in 

portions of the system close to the upper limit. A reduction in 

the mass flow rate that is requested to supply the connected 

users with their thermal request allows one to connect new 

users.  

 
Figure 5. Specific mass flow rate in the district heating 

network as the function of the supply temperature on the 

secondary circuit. 

 

It is finally worth considering the analysis of unit cost of 

heat as the function of the temperature on the district heating 

network, for fixed operating temperatures on the secondary 

circuit. These have been fixed equal to 40 °C (supply) and 30 

°C (return).  

 
Figure 6. Unit cost of heat as the function of the network 

temperature. 

 

The figure shows that unit cost decreases with decreasing 

temperature, which means that a configuration with the 

building connected on the returning pipe would allow a cost 

reduction, therefore the price of heat for this user should be 

lower than a user connected on the supply network. In 

addition, the figure shows that a reduction in the source 

temperature causes a significant increase in the mass flow 

rate, about 4 to 6 times larger than usual connection, 

depending on the supply temperature. Therefore this kind of 

configurations is possible only in portion of the network 

where the number of users is large enough, so that the mass 

flow rate flowing in the pipes is sufficient. 

CONCLUSIONS 

Future district heating systems are expected to be flexible 

in the operation, based on renewable energy sources and open 

to various producers. In principle, the users can also become 

producers, thus implementing a sort of “pear-to-pear” energy 

exchange system. Additional aspects related to this new 

vision of district heating networks are related with the 

possibility of also supply cooling to the users through 

thermally driven chillers, or the possibility to distribute heat 

produced by heat pumps that are fed with excess productions 

of electricity (e.g. from wind farms).   

The present paper represents a first attempt to tackle 

particular aspects that can occur in the operation of advanced 

district heating systems, such as the third party access and the 

low temperature heating systems. The analysis is conducted 

by examining simple examples, that show how the use of 

different energy forms, their quality and cost can affect the 

cost of the product supplied to the users. Thermoeconomics, 

which is based on exergy based costing, allows one to account 

for the various thermodynamic and economic aspects that are 

involved, thus it represent a useful tool not only in the design 

process but also in the operation.  
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EXTENDED ABSTRACT

We develop the classical idea of limiting step to the asymptotology of multiscale reaction networks. The concept of limit simplification is
proposed. For multiscale reaction networks the dynamical behavior is to be approximated by the system of simple dominant networks. The dominant
systems can be used for direct computation of steady states and relaxation dynamics, especially when kinetic information is incomplete, for design
of experiments and mining of experimental data, and could serve as a robust first approximation in perturbation theory or for preconditioning. They
give an answer to an important question: given a network model, which are its critical parameters? Many of the parameters of the initial model are
no longer present in the dominant system: these parameters are non-critical. Parameters of dominant systems indicate putative targets to change the
behavior of the large network.

Following Kruskal [1], asymptotology is “the art of describing the behavior of a specified solution (or family of solutions) of a system in a
limiting case.” We analyze dynamics and steady states of multiscale reaction networks. We focused mostly on the case when the elementary
processes have significantly different time scales. In this case, we obtain “limit simplification” of the model: all stationary states and relaxation
processes could be analyzed “to the very end”, by straightforward computations, mostly analytically. For any ordering of reaction rate constants we
look for the dominant kinetic system. The dominant system is, by definition, the system that gives us the main asymptotic terms of the stationary
state and relaxation in the limit for well separated rate constants.

The theory of dominant systems for linear reaction networks and Markov chains is well developed [2; 3]. Complete theory for linear networks
with well separated reaction rate constants allows us to elaborate algorithms for explicit approximations of eigenvalues and eigenvectors of kinetic
matrix. We found the explicit asymptotics of eigenvectors and eigenvalues. All algorithms are represented topologically by transformation of the
graph of reaction (labeled by reaction rate constants). The reaction rate constants for dominant systems may not coincide with constant of original
network. In general, they are monomials of the original constants. In the simplest cases, the dominant system can be represented as dominant path
in the reaction network. In the general case, the hierarchy of dominant paths in the hierarchy of lumped networks is needed.

Accuracy of estimates is proven. Performance of the algorithms is demonstrated on simple benchmarks and on multiscale biochemical networks
[4]. These methods are applied, in particular, to the analysis of microRNA-mediated mechanisms of translation repression [5; 6; 7]. Although
remarkable progress has been made in deciphering the mechanisms used by miRNAs to regulate translation, many contradictory findings have been
published that stimulate active debate in this field. There is a hot debate in the current literature about which mechanism and in which situations
has a dominant role in living cells. The same experimental systems dealing with the same pairs of mRNA and miRNA can provide ambiguous
evidences about which is the actual mechanism of translation repression observed in the experiment. We analyse dominant systems for the reaction
kinetic network that includes all known mechanisms of miRNA action and demonstrate that among several coexisting miRNA mechanisms, the one
that will effectively be measurable is that which acts on or changes the sensitive parameters of the translation process. This analysis of dominant
systems explains the majority of existing controversies reported.

For general nonlinear systems, the problem of dominant systems is still open. It is discussed in the framework of the modern theories of tropical
asymptotic [8; 9]. For nonlinear reaction networks, we present a new heuristic algorithm for calculation of hierarchy of dominant paths. Our
approach is based on the asymptotic analysis of fluxes on the Volpert graph [10; 11].

The results of the analysis of the dominant systems often support the observation by Kruskal [1]: “And the answer quite generally has the form
of a new system (well posed problem) for the solution to satisfy, although this is sometimes obscured because the new system is so easily solved
that one is led directly to the solution without noticing the intermediate step.”

REFERENCES

[1] M.D. Kruskal, Asymptotology, In: Mathematical Models in Physical Sciences, ed. by S. Dobrot, Prentice-Hall, New Jersey, Englewood Cliffs,
pp. 17–48, 1963.

[2] A.N. Gorban, O. Radulescu, A.Y. Zinovyev, Asymptotology of chemical reaction networks, Chemical Engineering Science, vol. 65, pp.
2310–2324, 2010.

[3] A.N. Gorban and O. Radulescu, Dynamic and Static Limitation in Multiscale Reaction Networks, Revisited, Advances in Chemical Engineer-
ing, vol. 34, pp. 103–173, 2008.

[4] O. Radulescu, A.N. Gorban, A. Zinovyev, and A. Lilienbaum, Robust simplifications of multiscale biochemical networks, BMC Systems
Biology, 2:86, 14 October 2008.

[5] N. Morozova, A. Zinovyev, N. Nonne, L.-L. Pritchard, A.N. Gorban, and Annick Harel-Bellan, Kinetic signatures of microRNA modes of
action, RNA, vol. 18 (9), pp. 1635–1655, 2012.

[6] A. Zinovyev, N. Morozova, A.N. Gorban, and A. Harel-Belan, Mathematical Modeling of microRNA-Mediated Mechanisms of Translation
Repression, in U. Schmitz et al. (eds.), MicroRNA Cancer Regulation: Advanced Concepts, Bioinformatics and Systems Biology Tools (Series
Advances in Experimental Medicine and Biology, vol. 774), Springer, pp. 189–224, 2013.

292



[7] A. Zinovyev, N. Morozova, N. Nonne, E. Barillot, A. Harel-Bellan, and A.N. Gorban Dynamical modeling of microRNA action on the protein
translation process, BMC Systems Biology 4:13, 24 February 2010.

[8] O. Radulescu, A.N. Gorban, A. Zinovyev, V. Noel, Reduction of dynamical biochemical reaction networks in computational biology, Frontiers
in Genetics (Bioinformatics and Computational Biology), vol. 3, Article 131, July 2012.

[9] V. Noel, D. Grigoriev, S. Vakulenko, O. Radulescu, Tropicalization and tropical equilibration of chemical reactions, arXiv:1303.3963 [q-
bio.MN].

[10] A.I. Vol’pert, Differential equations on graphs, Mathematics of the USSR–Sbornik, vol. 17 (4), pp. 571–582, 1972.
[11] G.S. Yablonskii, V.I. Bykov, A.N. Gorban, and V.I. Elokhin, Kinetic models of catalytic reactions. (Series Comprehensive Chemical Kinetics,

vol. 32), Elsevier, Amsterdam, 1991.

293



12th Joint European Thermodynamics Conference
Brescia, July 1-5, 2013

CPT INVARIANCE AND ITS IMPLICATIONS
FOR THERMODYNAMICS AND KINETICS

A. Y. Klimenko*, U. Maas**

*The University of Queensland, SoMME, QLD 4072, Australia, E-mail: klimenko@mech.uq.edu.au
**Karlsruher Institut fur Technologie, ITT, 76131, Germany, E-mail:Ulrich.Maas@kit.edu

ABSTRACT
This work reviews the modern understanding of thermodynamics and kinetics while taking into account CPT (charge-parity-
time) invariance. The CPT invariance is one of the key principles of modern physics and is linked to Lorentz invariance of
special relativity. While CPT invariance has been proven in quantum mechanics as a theorem, we consider this principle as a
general law applicable to the universe and not restricted to quantum mechanics. Consistency between two perspectives on the real
world – that of thermodynamics and that of CPT invariance is the focus of our consideration. While extending thermodynamics
from matter to antimatter and postulating that there is a fundamental similarity in physical laws controlling matter and antimatter,
we show that there are two different extensions possible: CP-invariant thermodynamics, which is commonly implied in various
applications, and CPT-invariant thermodynamics, which has not been explored yet. Since both thermodynamics are different only
by their treatment of antimatter but are the same in describing our world dominated by matter, making a clear experimentally
justified choice between CP invariance and CPT invariance in context of thermodynamics is not possible at this stage. This work
investigates the comparative properties of CP- and CPT-invariant thermodynamics and their implications for kinetic processes.

INTRODUCTION

Boltzmann’s time hypothesis

In the 1890s, the kinetic theory of Ludwig Boltzmann, which
represents an important link between thermodynamics and clas-
sical mechanics, attracted both interest and criticism. The criti-
cism was to some extent motivated by doubts about the atomic
(molecular) structure of matter, which were quite persistent at
that time, but also involved a series of very interesting ques-
tions about consistency of the reversibility of classical mechan-
ics with the irreversible nature of thermodynamics. Some of
these questions (e.g. the exact physical mechanism determin-
ing the direction of time) are not fully answered even today. In
response to his critics, Boltzmann put forward a number of hy-
potheses of remarkable originality and depth [1]. One of these
hypotheses identifies our perceived direction of time with the
second law of thermodynamics. Another hypothesis links the
second law to the temporal boundary conditions imposed on
the Universe (or the observed part of it). The consequence of
these hypotheses is the astonishing possibility (which was ex-
plicitly discussed by Boltzmann [1]) that, given different tempo-
ral boundary conditions, the perceived time may run in opposite
directions in different parts of the Universe.

More than 100 years after, we still do not have a full explana-
tion for the physical mechanism of the direction of time, and the
second law of thermodynamics remains our key indicator for the
time arrow. It seems, however, that while the low entropy condi-
tions in the past of the Universe are important, there should be a
more specific and more local mechanism that enacts asymmetry
of time. Indeed, consider the following gedanken experiment.
Figure 1 depicts a piston-cylinder device, which is placed in a
very remote part of the Universe, surrounded by a perfect re-
flective mirror and, hence, is completely insulated from the rest

of the Universe for a very long time. This removes any direct
external influence of the Universe on the system with exception
of the position of the piston. The piston is moved by an external
force in a manner that is symmetric with respect to the past and
the future. As we can guess, if the piston motion is sufficiently
fast, the response of the system to this motion is not time sym-
metric: a compression shock wave appears when the piston is
moving in, and a rarefaction wave is formed when the piston is
moving out. Note that rarefaction shock waves do not violate
the first law of thermodynamics but are prohibited by the sec-
ond law, since entropy would decrease in these waves. The time
asymmetry in this experiment is enforced not by the direct influ-
ence of the Universe but through the property of matter placed
into the cylinder. The low-entropy initial conditions imposed on
the Universe result in the formation of matter, which can exist
for a very long time and, as it seems from the example of Figure
1, is not fully time-symmetric.

The time primer.

From the perspective of the ergodic theory, increase of en-
tropy in dynamic systems of large dimensions is associated with
ergodic mixing [2; 3]. This perspective is based on classi-
cal mechanics, which is time-reversible and preserves volume
measures in the extended phase space (whose dimension is very
large and determined by the overall number of microscopic de-
grees of freedom in the system). Note that quantum mechanics
possesses similar properties linked to the unitarity of quantum
evolutions. Ergodic mixing can be understood through analogy
between evolution of volumes in the extended phase space with
mixing of fluids. This analogy was first introduced by Gibbs
in his fundamental work [4], which laid the foundations of sta-
tistical physics. Ergodic mixing can be illustrates by Figure 2,
which depicts the extended phase space of a dynamic system.
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Figure 1. Direction of time in a system, which is completely isolated
and affected only by piston movement.

The ensemble of states is initially (at t = 0) confined to the black
region in Figure 2(IIa). The evolution of the system changes the
shape of the region but does not alter its volume measure so that
after a sufficiently long period of time t1, the trajectories become
densely distributed in a larger and larger segment of the domain;
Refer to Figure 2 : the black areas have exactly the same mea-
sure (i.e. the same number of black pixels) in IIa and IIIa but
the segment effectively occupied by the black spot is larger in
IIIa. The increasing volume measure of this segment is conven-
tionally associated with an increasing entropy, as required by
the second law. This logic, however, encounters severe prob-
lems when states of the system are considered back in time [5].
Since the evolution of a dynamic systems is time-reversible, it
can be extended back to negative times and a state of the sys-
tem similar to the state shown in IIIa should also be expected at
t = −t1 (see Figure 2, Ia). How can time-symmetric evolution
(compare Ia and IIIa in Figure 2) be consistent with the second
law?

The resolution of this apparent paradox in the process, which
can be called the time primer. This process causes a diffusion-
like increase of the black volume into the white region so that
the state of the system at t = t1 looks as shown in Figure 2(IIIb).
The time primer is a violation of both classical mechanics and
quantum mechanics, but its magnitude is so small that it is very
difficult to detect the time primer directly. The influence of the
time primer on the Universe is nevertheless profound. Due to
ergodic mixing, the area of the black/white interface in Fig-
ure 2(IIIa) becomes so large that even very small coarsening of
the distribution results in a large increase of the black volume.
Hence entropy increases forward in time. The time primer is
not time-symmetric and when we move back in time to t =−t1,

it acts to decrease the black volume as depicted in Figure 2(Ib).
Hence entropy reduces back in time.

In spite of the overwhelming evidence for directional asym-
metry of time around us, the physical nature of the time primer
still remains a mystery. In quantum mechanics, the time primer
is linked with the process of decoherence, which is expected to
violate unitarity of quantum evolutions. Although time symme-
try is broken in quantum mechanics by weak interactions, there
is no evidence that the known T-violating processes are the ones
enacting the direction of time. Penrose [5] believes that de-
coherence is linked to interactions of quantum mechanics and
gravity (although gravity, classical or relativistic, is convention-
ally seen as time-symmetric). A few theories (see, for example,
[6; 7]) are related to the process of quantum decoherence. We,
however, do not link the time primer to any specific theory or
mechanism. In principle, the time primer may be a) a sponta-
neously generated property of matter and antimatter or b) can
be induced by interactions with a special time-generating field.
It is likely that generation of the time primer combines spon-
taneous (a) and induced (b) mechanisms. This means that the
temporal irreversibility can be initially generated within matter
(and also antimatter) and then propagate through interactions
(for example, interactions by radiation). Even very small inter-
actions, which have magnitudes below the detection limits, can
be sufficient to tip entropy increase towards the common time
direction.

Figure 2. Evolution of a selected volume in the phase space.

Causality

The asymmetric nature of the time primer enacts causality:
we see that future is determined by the past but not vice versa.
Indeed, consider evolution of the phase volume schematically
shown in Figure 3. If the initial state of the system is known
as, say, area A at t = t0, the state of the system at any following
moment can be predicted: for example, it is area B at t = t1.
The converse statement is, however, incorrect: knowing that the
system is in state B at t = t1 does not allow us to conclude that
it was in state A at t = t0, since the system state at t = t0 could
well be A′, or many other states determined by various possible
contractions of the phase volume measure. While moving back-
wards in time, the choice between A and A′ is seen as a random
event. We interpret this by saying that A causes B but B is not
a cause for A. The causality principle allows to treat mechan-
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ical evolutions (classical or quantum) as time-reversible, while
replacing the temporal irreversibility by requirement of setting
the initial conditions before and not after the process under con-
sideration. This principle provides a great simplification and
works really well in many respects. The philosophical aspects
of causality are discussed by Price [8].

The causality principle has another important implication: a
non-equilibrium state must have its cause in the past but not in
the future. For example, footsteps on a beach will eventually
reach equilibrium with the sand and disappear (no special effort
is needed for this) but the footsteps could not appear without a
reason (i.e. someone walking across the beach) as this would
contradict to the second law. A system that evolves very slowly
towards its equilibrium (a photograph, for example) is a testi-
mony of a distant past when its initial state was created by an
external disturbance. The main implication of causality is that
we can remember the past and can forecast the future but we
cannot remember the future and cannot forecast the past.

The time primer does not have to be a fully deterministic
process and the phase volume may fluctuate slightly from point
to point, provided the overall trend for the phase volume to
increase forward in time is dominant. We may observe some
randomness forward in time (which, as the reader may notice,
should be seen as causality backward in time). The forward-
time randomness can be seen as a minor fluctuation of the time
primer process, which results in a small local reduction of the
phase volume. For example a rolling coin will finish on one
of its sides, but it is impossible to predict if this is going to be
”heads” or ”tails”. When the outcome becomes known, the re-
duction of uncertainty in this single bit (i.e. heads or tails) does
not cause a global entropy decrease since the falling coin dis-
sipates energy and this is accompanied by a large increase in
molecular entropy.

Figure 3. Causality induced by the time primer.

SYMMETRY OF MATTER AND ANTIMATTER

The Universe is populated mostly by radiation, has signif-
icant quantities of matter and, as far as we know, very small

quantities of antimatter in the form of scattered elementary par-
ticles. Antimatter is not identical to matter but there is a strong
similarity between them [9]. We give this similarity a very
broad interpretation: if our Universe were mostly composed
from antimatter, we (also made of antimatter) would not be able
to tell the difference as the physical laws of the antimatter uni-
verse would be the same.

If we change matter to corresponding antimatter by so called
charge conjugation or (C-conjugation), the heat fluxes q can
change according to the following linear operation C(q) = αq,
where q is a conventional vector and α is a real constant. This
operation takes us to antiuniverse with the same physical laws
as ours but the constant α is not necessarily 1 since we do not
know the correspondence of space and time between the two
universes, composed of matter and antimatter. Applying the
charge conjugation again results in converting antimatter back
to matter, i.e. to going back to the original state. This means

q =C(C(q)) = C(αq) = α
2q =⇒ α =±1 (1)

We will show that these two values of α correspond to differ-
ent thermodynamics: CP-invariant (α = +1) and CPT-invariant
(α = −1). Here, we refer to parity, which represents change
of directions of spatial coordinates (P(x) = −x), as P and to
time reversal, which represents change of directions of time
(T(t) =−t), as T. These operations are known in quantum me-
chanics but here we follow Sakharov [10] and interpret them as
general physical principles not confined to the field of quantum
mechanics. Sakharov’s principles that are necessary for expla-
nation of the matter/antimatter bias are often quoted as:

� existence of reactions violating baryon numbers
� violation of the C and CP symmetry
� deviation from thermodynamic equilibrium

This list, however, does not include the fourth important as-
sumption made by Sakharov in the same work [10]: CPT invari-
ance is a global property of the Universe. While CPT invariance
is commonly known as a theorem in quantum mechanics, its
more general interpretation is a hypothesis, not a theorem. Pen-
rose [5] believes that CPT invariance will not hold if applied
to the whole of the Universe due to action of the second law.
In the terms used here, this view corresponds to CP-invariant
thermodynamics. The current status of the experimental confir-
mation of quantum symmetry principles is that C, P, T and CP
symmetries are broken by weak interactions but the CPT sym-
metry, which is linked to the fundamental Lorentz invariance, is
believed to be upheld. The CP and T violations have been found
in meson decays but are much less common than CP-preserving
C and P violations. Note that CP violation combined with CPT
invariance implies T violation [9].

Since thermodynamics mainly deals with macroscopic scalar
quantities, parity transformations are not important for a ther-
modynamic analysis.1 In the following consideration we pre-
serve conventional notations adopted in quantum mechanics and
retain P in transformations. The implications of having positive
and negative α in (1) are shown in Figure 4, which illustrates an
experiment conducted by placing matter and antimatter in the
focuses of a perfectly reflective ellipsoid (Figure 4(A)). Heat is
transferred by radiation between matter and antimatter. The di-
rection of the heat transfer changes as the transformations are

1Although particles with opposite chiralities may need to be treated as dif-
ferent species in thermodynamics and kinetics.296



Figure 4. CP and T transformations of thermodynamics sytems; ”cold”
and ”hot” refer to intrinsic temperatures

applied. In simple terms, T reverses the direction of the heat
transfer, C converts matter into antimatter and vice versa, while
P swaps the systems located in the focuses and reverses the
heat flux accordingly. Since thermodynamic laws are not time-
invariant, the T-transformation of case (A) results in case (B)
prohibited by the second law. The other cases, (C) and (D),
are possible and correspond to CP-invariant and CPT-invariant
thermodynamics. Note that, since thermodynamics is not T-
symmetric, it must also violate at least one of the symmetries,
CP or CPT.

In general, it is difficult to determine how thermodynamics
should be extended from matter to antimatter due to the paucity
of antimatter in the Universe. Both CP- and CPT- invariant ther-
modynamics give the same description for our current world
populated by matter. CP-invariant thermodynamics is conven-
tional and thus does not need extensive analysis here. CPT-
invariant thermodynamics, it seems, has not been considered
in the past but it is linked to the status of the CPT invariance,
which is commonly seen as fundamental, and to our existing
knowledge that CP symmetry is not a universal property of the
Universe.

CPT-INVARIANT THERMODYNAMICS

Our previous discussion results in postulating the following
key principles:

� Reversible equivalence. There is no distinction between
matter and antimatter with respect to the first law of ther-
modynamics.

� Inverted irreversibility. Thermodynamically isolated an-
timatter can increase its entropy only backward in time (un-
like any isolated matter, whose entropy increases forward
in time).

� Observational symmetry. Antimatter and its interactions
with matter are seen (i.e. observed, experimented with
or measured) by antiobservers in exactly the same way as
matter and its interactions with antimatter are seen by ob-
servers.

These principles correspond to CPT-invariant thermodynamics.
In the case of CP-invariant thermodynamics (not considered in
this section), the second principle is to be replaced by entropy
increase forward in time for both matter and antimatter. Hypo-
thetical observers made of antimatter, are called antiobservers,
while the term observers refers only to us — observers made of
matter. Properties of matter measured by us (the observers) and
properties of antimatter measured by antiobservers are referred
to as intrinsic. The properties of matter and antimatter measured
by observers are referred to as apparent, while the properties of
matter and antimatter measured by antiobservers are referred to
as antiapparent.

The competing physical intuitions of CPT invariance and of
conventional thermodynamics has been recently discussed by
Downes et al [11]. The present approach should not be con-
fused with the thermodynamic analysis conducted by Dunning-
Davies [12] on the basis of Santilli isodualities and having
physical outcomes and interpretations very different from ours.
The reversible equivalence principle treats matter and antimat-
ter as being the same with respect to mechanical laws, does not
change the signs of energy and mass, and does not imply ex-
istence of antigravity and anti-photons that are associated with
Santilli isodualities. A popular presentation of CPT-invariant
thermodynamics is given in Ref.[13] from the perspective of a
space traveller visiting world made of antimatter.

Interactions of thermodynamic systems and antisystems

In this subsection, we consider thermodynamic interactions
of two systems comprised of matter and antimatter (i.e. a sys-
tem and an antisystem). The interactions are limited, while the
systems remain autonomous and isolated from the rest of the
Universe. Due to autonomy, we can still apply causality in its
modified form: the initial conditions for the matter system are
set before and for the antimatter system are set after the interac-
tion. Here, ”before” and ”after” refer to the observer’s time.

Thermodynamics is based on determining the direction of
processes where states (i.e. macrostates) can be realised by the
largest possible number of microstates (given the constraints
imposed on the system) and thus are overwhelmingly more
likely than states encompassing fewer microstates. The logic
of thermodynamics considers what is likely and neglects what
is unlikely. The most likely state is called equilibrium. In con-
ventional thermodynamics, unlikely states may be set as initial
states while the system tends to move towards its equilibrium
as time passes. This is reflected by the well-known Boltzmann–
Planck entropy equation

Si = kB ln(Γi) (2)

linking the entropy Si in the state i to the number of microstates
Γi in this state. The number of microstates Γi is further re-
ferred to as the statistical weight of the thermodynamic state
i. The constant kB is the Boltzmann constant that rescales very
large changes in Γi to more manageable thermodynamic quan-
tities. Here, we do not discriminate the past and the future a
priori — thermodynamic principles are applied by maximising
the number of microstates associated with macroscopic evolu-
tions, given spatial and temporal boundary conditions as well as
other physical constraints imposed on the overall system. The
term ”overall” stresses inclusion of both the system and the an-
tisystem.
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Apparent temperatures. The temporal boundary conditions
for the example shown in Figure 5 are: energy Um and entropy
Sm are specified for the system at t =−t1 and t̄ = t1, while Ūa S̄a
are specified for the antisystem at t̄ =−t1 and t = t1. The over-
bar symbol indicates that the value is antiapparent, i.e. evalu-
ated from the perspective of an antiobserver, whose time t̄ =−t
goes in the opposite direction as compared to our time t. The
system and antisystem are isolated from each other for most
of the time but a limited thermodynamic contact of matter and
antimatter, allowing for transition of a small quantity of heat
δQ through exchange of radiation, occurs at t = 0 (and t̄ = 0).
The time window is selected so that |δQ| cannot exceed δQmax
where δQmax is sufficiently small. According to the observer
the thermal energy δQ is transferred from the antisystem to the
system as shown by the black solid arrow. According to the an-
tiobserver, who interpret the same event in the opposite direc-
tion of time, the same thermal energy δQ is transferred from the
system to antisystem as shown by the red dashed arrow. Heat
δQ is assumed to be positive when transferred in the direction
shown in Figure 5: from the antisystem to the system according
to the observer and from the system to the antisystem according
to the antiobserver. The total energy

Utot = Um +(Ūa +δQ) = (Um +δQ)+Ūa (3)

(evaluated at any constant time t = −t̄) is preserved in this ex-
ample, as it should since the formulation of the first law of ther-
modynamics does not depend on the differences between mat-
ter and antimatter due to the postulated reversible equivalence.2

Note that Ūa = Ua due to reversible equivalence. The entropy
change of the system as observed by us and the entropy change
of the antisystem as seen by the antiobserver (these are the en-
tropies linked to Γ) can be easily evaluated and these changes
of intrinsic entropy are shown in Figure 5 for the states m′ and
a′.

Figure 5. Thermodynamic interactions of a system and antisystem.

We now evaluate the overall statistical weight Γtot that cor-
responds to different trajectories that are allowed by the first

2Interactions of matter and antimatter may include the third key compo-
nent — coherent radiation. In thermodynamics, this would correspond to con-
sidering work reservoirs in addtion to heat reservoirs (see, for example, the
”weight process” of Ref.[14]). The energy balalnce at the moment of contact is
Utot = Um0 +Ua0 +Ur0 where Ur is the radiation energy and the substript ”0”
indicates states taken at t = 0.

law of thermodynamics. The overall state is related to the four
sub-states: m, a, m′ and a′. The overall statistical weight Γtot is
linked to the product of the statistical weights of the sub-states
ΓmΓm′ΓaΓa′ and, according to equation (2), becomes

Γtot(δQ)∼ ΓmΓm′ΓaΓa′ = exp
(

Sm +Sm′ + S̄a + S̄a′

kB

)
(4)

The value Γtot depends on δQ. Note that Sm and S̄a are fixed
by the boundary conditions and only Sm′ and S̄a′ depend on δQ.
In this example, we should place the time moments t =−t1 and
t = +t1 as far apart as needed to ensure establishment of equi-
libriums within the system and the antisystem before and after
the interaction, which is used in (4) in form of stochastic inde-
pendence of microstates that correspond to the macrostates m
and m′, a′ and a. Two of the states, m and a, are fixed by the
boundary conditions.

Equation (4) can be simplified through normalising Γtot by
the value of Γtot at δQ = 0

Γtot(δQ)
Γtot(0)

= exp
(

δQ
kB

(
1

Tm
+

1
T̄a

))
(5)

where conventional definitions of the temperature

1
Tm

=
∂Sm

∂Um
,

1
T̄a

=
∂S̄a

∂Ūa
(6)

are used. (The quantity δQ is assumed to be too small to af-
fect the intrinsic temperatures of matter and antimatter, which
remain Tm and T̄a correspondingly.). From observer’s perspec-
tive, the conventional equilibrium condition is given by equiv-
alence of apparent temperatures Tm = Ta. If the system and the
antisystem are in thermodynamic equilibrium, both directions
of heat transfer δQ > 0 and δQ < 0 must be equally likely and
have the same statistical weight Γtot . This occurs only when
Tm =−T̄a indicating that the apparent temperature of antimatter
is Ta = −T̄a. In the same way, the antiapparent (i.e. perceived
by the antiobserver) temperature of matter is T̄m = −Tm. It is
easy to see that thermodynamic quantities S̄a, T̄a, and Ūa that
characterise the intrinsic properties of antimatter are apparent
as

Ta =−T̄a, Sa =−S̄a, Ua = Ūa (7)

from our perspective. The sign of Ua is selected to be consis-
tent with the first law of thermodynamics (3), while the sign
of Sa is chosen to be consistent with the definition of temper-
ature T−1

a = ∂Sa/∂Ua and with equations (6). The change of
sign does not affect our interpretation of reversible transforma-
tions of antimatter since Sa is constant whenever S̄a is constant,
which is consistent with our assumption that matter and anti-
matter behave in the same way in reversible processes. The
state of having the same positive (and finite) intrinsic tempera-
tures Tm = T̄a does not correspond to equilibrium and, according
to (5), transfer of heat from antisystem to system in observer’s
time is strongly favoured by thermodynamics.

It appears that a system created in our world with negative
temperatures can, at least in principle, be placed into thermal

298



equilibrium with an antisystem or, analogously, an antisystem at
negative intrinsic temperatures can be in thermodynamic equi-
librium with a system having a positive intrinsic temperature.
This equilibrium state, however, would be predominantly un-
stable, since in most cases the antimatter system according to
(7) is likely to have negative apparent heat capacities

Ca =
−1
T 2

a

(
∂2Sa

∂U2
a

)−1

=
1

T̄ 2
a

(
∂2S̄a

∂Ū2
a

)−1

=−C̄a (8)

This equation indicates that changing the sign of the entropy S
changes the sign of the heat capacity C irrespective of the sign of
the temperature T . Hence, a thermodynamic contact of an an-
tisystem and a system predominantly results not in reaching the
corresponding thermal equilibrium state but in the antisystem
losing energy (to the system) and further increasing its apparent
temperature until the temperature of the antisystem reaches its
intrinsic ground state −Ta = T̄a → +0. Note that stable ther-
modynamic equilibrium between a system and an antisystem is
possible at Tm = Ta = T̄a = ∞.

Mass exchange between matter and antimatter. An an-
timatter system with a variable number of particles is
characterised by the equation

dŪa = T̄adS̄a + µ̄adN̄a (9)

which remains the same as conventional as long as it is pre-
sented from the perspective of the antiobserver. From our per-
spective, this equation changes according to (7). The reversible
equivalence requires preservation of mass, which demands that
the apparent and intrinsic numbers of particles composing anti-
matter are the same. Hence, the apparent and intrinsic values of
the number of particles (or moles) N and of the chemical poten-
tials µ coincide:

Na = N̄a, µa = µ̄a (10)

Similar relations can be drawn for other thermodynamic quan-
tities such as volume and pressure. Due to the observational
symmetry, µa = µ̄a(T̄a, N̄a, ...) is the same function as µm =
µm(Tm,Nm, ...).

We note first the at infinite temperatures Tm = Ta = T̄a =
∞, the same quantities of matter and antimatter Na = Na =
N, which are kept under the same conditions, are in both
thermal and chemical equilibrium since µa = µ̄a(∞,N, ...) =
µm(∞,N, ...). If, however, Tm < ∞, then thermal equilibrium
Tm = Ta = −T̄a does not imply that matter and antimatter un-
der similar conditions are in chemical equilibrium since µa =
µ̄a(−T, ...) is generally different from µm = µm(T, ...) for the
same T . Hence, even if it might be possible to put an antisys-
tem in thermal equilibrium with a system by using negative tem-
peratures, this equilibrium does not extend to chemical stability
between matter and antimatter.

If a system and an antisystem are kept at the same intrinsic
temperatures Tm = T̄a = T < ∞ (and the same other conditions),
then µa = µ̄a(T,N, ...) = µm(T,N, ...). In this case, however,
equality of chemical potentials does not ensure chemical equi-
librium since there is no thermal equilibrium Tm 6= Ta = −T̄a.
Consider the following example: matter and antimatter are con-
fined to the system and antisystem correspondingly and can not

mix (mixtures are considered in the following subsection). Mat-
ter and antimatter can react with each other n � n̄ and can an-
nihilate to produce radiation n + n̄ � 2γ.3 These two reactions
can be combined to result in conversion 2n̄ � 2γ � 2n; that
is antimatter is moved from antisystem to system by radiation
and converted to matter possessing the same energy. Assuming
that pressures are kept the same and constant in the system and
antisystem, this transition does not affect intrinsic temperatures
Tm = T̄a and intrinsic entropy per particle (or per mole) sm = s̄a,
where s = S/N. The total apparent entropy Stot = Nmsm−Nas̄a
clearly increases. We see that CPT-invariant thermodynamics
strongly favours conversion of antimatter into matter (from ob-
server’s perspective), even if the intrinsic properties of matter
and antimatter are exactly the same. For an antiobserver, this
process seems as conversion of matter into antimatter.

Mixed matter and antimatter

When matter and antimatter are mixed, they do not form
semi-autonomous thermodynamic systems with effectively in-
dependent directions of time. We shall distinguish two cases:
when matter dominates antimatter in the mixture and when a
50:50 mixture is formed.

Mixtures dominated by matter. Consider a mixture of
many particles nm with very few antiparticles na. The transla-
tional degrees of freedom are entangled to produce a dominant
direction of thermodynamic time for the whole mixture. Since
particles have the numbers, this direction must be forward
in time. Presence of antiparticles may slightly increase the
fluctuating components of the time primer without any no-
ticeable effect on thermodynamic properties. If particles and
antiparticles are considered as mechanical or quantum systems
and the direct effect of the spontaneous time primer on the
particles is below detection limits, the presence of antiparticles
does not affect the thermodynamic properties of the mixture
(we do not consider annihilations, of course).

A different situation appears when each particle (and each
antiparticle) represents an autonomous thermodynamic subsys-
tem (i.e. having a large number of comparable internal degrees
of freedom). In this case, the thermodynamic time runs in op-
posite directions within particles and antiparticles (and in the
normal direction for the whole mixture). While the thermody-
namic subsystems can, in principle, be placed in thermal equi-
librium when intrinsic temperature of the antiparticles is nega-
tive (this is possible when internal energy levels of antiparticles
are bounded — see [15]) but this equilibrium is typically un-
stable as discussed previously. Hence, antiparticle subsystems
should fall into their ground state (which is nevertheless subject
to fluctuations, significant for microscopic subsystems), while
particle subsystems remain in conventional thermal equilibrium
with the mixture. While techniques based on evaluating statisti-
cal sums can not be used for systems with negative heat capac-
ity (see [15]), there is no contradiction in using these techniques
when antiparticle systems are in their ground state. Let us see

3We use hypothetical reactions with neutrons n and antineutrons n̄ to illus-
trate our point. The reaction n � n̄ (or similar) is predicted by the 1st Sakharov
condition but has not been observed so far under current conditions prevailing
in the Universe.
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how the partition function Z should be evaluated in this case

Z = (Z0)Nm+Na
(Zm)Nm

Nm!
(Za)

Na

Na!
, (11)

Zm = ∑
i

exp
(
− Ei

kBT

)
, Za = exp

(
− E0

kBT

)
, (12)

where Z0 is the partition function without considering internal
degrees of freedom, Zm is partition function for particle internal
energy levels and Za is the partition function for antiparticles
in their ground state. Note that Za can be made unity (Za =
1) without loss of generality by selecting E0 as the reference
energy level (i.e. E0 = 0). The difference in chemical potentials
of particle and antiparticles can be evaluated by using standard
techniques [16]

∆µ = µa−µm =
(

∂A
∂Na
− ∂A

∂Nm

)
T

= kBT
(

ln
(

Na

Nm

)
+ fm(T )

)
(13)

where A =−kBT ln(Z) is the Helmholtz potential and fm(T ) =
ln(Zm(T )) ≥ 0. The asymmetry of the chemical potentials ∆µ
tends to be higher at higher temperatures. Note that particles
and antiparticles may have not only different chemical poten-
tials but also slightly different masses as they have different av-
erage energies.

The 50:50 mixture. The case of having 50% particles and
50% corresponding antiparticles in the mixture is the most dif-
ficult case to analyse. The thermodynamic time can not run in
any direction due to matter/antimatter symmetry. This generally
means that only reversible processes can occur in this mixture
and there is no relaxation towards equilibrium state in any di-
rection of time. Any process that is irreversible (formation of a
black hole, for example) is impossible in this mixture.

Although there is no direction of thermodynamic time on av-
erage in this mixture, there are fluctuations in the system. The
thermodynamic time might also fluctuate, moving slightly for-
ward or backward due to a minor local prevalence of one of
the mixture components over the other. At this point things
get more complicated. The areas with a small excess of mat-
ter can be seen as forming systems, while the areas with a small
excess of antimatter form antisystems. If all temperatures are
infinite Tm = Ta = T̄a = ∞, then systems and antisystems are in
equilibrium according to the analysis of the previous subsection.
If, however, the intrinsic temperatures are high but finite, then
(as also discussed in the previous subsection) thermodynamics
favours transfer of energy, volume and matter/antimatter from
antisystems to systems. This process can be seen as thermody-
namic instability resulting in systems (with the forward-directed
thermodynamic time) taking over and antisystems (with the
backward-directed thermodynamic time) disappearing. In anti-
system regions matter and antimatter can unmix forward in time
reducing further the volume occupied by antisystems. Matter
needs to retain its leading role over antimatter within the sys-
tem regions, if the forward-time evolution is to continue in these
regions. The asymmetry of chemical potentials (13) stimulates
conversion of antimatter into matter within the systems. Note
that the same mechanism converts matter into antimatter within
the antisystems but this happens in the forward direction of an-

tiobserver’s time; hence antimatter is converted into matter in
our time.

DISCUSSION AND CONCLUSIONS

Thermodynamics can be extended to include antimatter in
two different ways: CP-invariant and CPT-invariant. Due to
the time-directional nature of thermodynamics, its CP-invariant
and CPT-invariant versions can not be valid at the same time.
Philosophically, CPT-invariant thermodynamics connects two
major asymmetries in nature — the observed direction of time
and abundance of matter combined with absence of antimatter,
while CP-invariant thermodynamics sees these issues as sepa-
rate. In the absence of appreciable quantities of antimatter in our
world, it is very difficult to determine, which one of these ther-
modynamics is not only logically possible but also real: both
versions give the same predictions for the matter and similar
predictions for autonomous particles and antiparticles. If, how-
ever, baryons (neutrons and protons) can be treated as stochastic
systems, then CP-invariant thermodynamics requires the sim-
ilarity of particles and antiparticles, while CPT-invariant ther-
modynamics predicts differences in chemical potentials (and,
possibly, other properties) between particles and their antiparti-
cles. Is there experimental evidence to make a choice between
the two versions of thermodynamics on this basis?

Recent experiments in high-energy accelerators, indicate that
thermodynamics might be relevant to very small scales (within
a hadron) and high energies [17]. Protons and neutrons seem
to contain myriads of appearing and annihilating gluons and
quarks. Collisions involving protons and nuclei produce vari-
ous particles and antiparticles with distributions strongly resem-
bling a thermodynamic equilibrium. This equilibrium is charac-
terised by a number of parameters, including µB — the chemical
potential associated with the baryon number B, so that baryons
(B = +1) and antibaryons (B = −1) have different chemical
potentials [17]. This seems to confirm the CPT-invariant ver-
sion of thermodynamics but, in our opinion, this is probably not
the case. In the absence of reactions violating B, true chemical
potential associated with the baryon number is not revealed4.
Hence, µB is likely to be an effective quantity reflecting initial
conditions, although it does seem that thermodynamic equilib-
rium is achieved in these experiments with respect to the other
parameters.

We assume that spontaneous time-priming processes are of
very small magnitude and, thus, are not directly detectable in
conventional experiments. This is plausible since, in spite of
the clear presence of an arrow of time (presumably everywhere,
including in remote and isolated systems), we still do not know
its exact mechanism. Induced time priming, whose magnitude
is amplified by thermodynamic surroundings, may be possible
to detect in quantum systems. Interactions of a quantum system
with time-priming process do not cause any detectable anoma-
lous behaviour when the system is CP-symmetric. If, however,
a quantum system displays a CP violation, its interactions with
time priming induced by the environment are likely to produce
an impression of a CPT violation. Two versions of thermody-
namics differ in its interpretation. CP-invariant thermodynam-
ics admits that CPT is violated. CPT-invariant thermodynamics
insists that the world is CPT-invariant so that the CPT viola-
tion is only an apparent phenomenon created by asymmetrically
dominant presence of matter in the Universe.

4One can compare this with assigning elements arbitrary chemical potentials
in chemical reactions conserving the elements300



The difference between CP- and CPT-invariant thermody-
namics is not limited to philosophical interpretations. CPT-
invariant thermodynamics indicates that nature has difficulties
in assembling substantial quantities of antimatter due to its ther-
modynamic antagonism with matter (thermodynamics favours
the latter over the former when observed forward in our time).
Collecting statistically significant quantities of antimatter at
a sufficient density and insulating it from the dominant time
priming influence of the environment should result, according
to CPT-invariant thermodynamics, in changing the thermody-
namic arrow of time and a very unstable state associated with
negative apparent temperatures. The chaotic energy of random
motions can then be converted to coherent light of high intensity
in complete agreement with the laws of thermodynamics. CP-
invariant thermodynamics, on the contrary, does not expect any
dangerous thermodynamic instabilities in these experiments.

While CPT-invariant thermodynamics seems to be conceptu-
ally consistent with the invariance principles adopted in other
branches of physics, making an experimentally justified choice
between two versions of thermodynamics is not possible at
present, since both of the versions give the same predictions for
our world populated by matter. However, this may change as
more and more substantial quantities of antimatter are produced
in experiments by high-energy accelerators [18].
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NOMENCLATURE

kB Boltzmann constant
t time
C heat capacity
N number of particles
Q heat energy
S entropy
T temperature
U energy
Γ number of microstates
µ chemical potential
q heat flux
C charge conjugation
H Hamiltonian
P parity transformation
T time reversal
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Appendix A: Quantum Example

Consider a quantum system, which involves particles and an-
tiparticles and is placed into environment filled by radiation (see
Figure 6). The radiation is equilibrated by surroundings, which,
of course, is made of matter prevalently present in the Universe.
The system is quantum and not thermodynamic; hence its time
priming is induced and not spontaneous. Note that we do not
consider emission or adsorption but only very weak interactions
of the system and radiation. We conduct our analysis within the
limits of quantum mechanics and take into account time priming
through causality and choice of the interaction parameters5.

The state of the environment (i.e. radiation bath) is char-
acterised by its set of energy eigenstates HB |β〉 = Eβ |β〉 . The

5In principle, the time primer can violate unitarity of quantum mechanics
equations by increasing the phase volume available to the system, although the
magnitude of this direct violation is expected to be very small. Here, we are
interested not in intrinsic spontaneous increase of the phase volume within the
system but in transferring the phase volume increases from environment to the
system (i.e. induced time priming). This can be modelled within the framework
of conventional quantum mechanics but the time-asymmetric nature of this pro-
cess should be noted and taken into account as a selection rule. Radiation is
understood as any field or interaction that can induce time priming, whose ef-
fect is related but not necessarily limited to quantum decoherence.
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Figure 6. Quantum system placed into a radiation bath.

wave function of the environment is deemed to be in thermal
equilibrium

ΨB = ∑
β

cβ |β〉 |β) , pβ = c∗
β
cβ ∼ exp

(−Eβ

kBT

)
(14)

Here, we specify the maximally mixed state of the environment
by using the random phase notation detailed in Appendix B.
The environment is large and not significantly affected by in-
teractions with the system and remains in its maximally mixed
state.

The state of the system can is characterised by a set of system
ket states |s〉 while the state of the supersystem, which involves
the system and the radiation bath, are specified by the tensor
product |s〉⊗ |β〉= |s〉 |β〉= |sβ〉. The overall wave function Ψ

and the reduced wave function of the system ΨS can be repre-
sented in form of the expansions:

Ψ = ∑
s,β

csβ |sβ〉 |β) , ΨS = ∑
s,β

csβ |s〉 |β) (15)

where ΨS is obtained by multiplying Ψ by the environmental
bra state 〈α| , noting orthonormality 〈α|β〉 = Iαβ and summing
over all α. Here, Iαβ is the identity matrix Iαβ = 0, α 6= β and
Iαβ = 1, α = β. The random phase |β) in ΨS indicates a mixture
of states that correspond to different β. This is similar to writing
the overall state as |s〉 |β〉 and then assuming that states |β〉 are
not measurable and replacing |β〉 by |β). Since |β) do not evolve
in conventional quantum mechanics, the system wave functions
Ψ

(β)
S that correspond to different β can be considered indepen-

dently

Ψ
(β)
S = ∑

s
c(β)

s |s〉 , c(β)
s =

csβ(
pβ

)1/2 , pβ = ∑
s

c∗sβ
csβ (16)

The overall Hamiltonian that corresponds to our assumptions
is written in the form

H = HS⊗ IB+IS⊗HB +HSB (17)

where HS is Hamiltonian of the system, HSB is the system/bath
interaction Hamiltonian and I is the identity operator. Assume
that

〈αq|HSB |sβ〉= h(β)
qs Iαβ (18)

The system/radiation bath interaction term can be approximated
by h(β)

qs = φ(β)h(0)
qs , where φ(β) is the β-dependent intensity of

coupling and h(0)
qs is the associated Hamiltonian.

The interactions with radiation-induced time priming should
be CP-invariant and T-asymmetric so that the corresponding
properties of the Hamiltonian are

〈αq|HSB |sβ〉=
〈

αq
∣∣∣HSB

∣∣∣sβ

〉
⇒ h(β)

qs = h(β)
q̄s̄ (19)

∆h(β)
qs = 〈βq|HSB |sβ〉−〈βs|HSB |qβ〉 6= 0 (20)

where the overbars denote anti-states. The property β = β̄ is
taken into account for radiation (i.e. matter and antimatter in-
teract with radiation in the same way). Note that ∆h(β)

qs is imag-
inary when H is Hermitian. Equations (19) and (20) imply a
CPT violation:

〈βq|HSB |sβ〉 6=
〈

βs
∣∣∣HSB

∣∣∣qβ

〉
(21)

The different versions of thermodynamics, however, give differ-
ent interpretations for this violation:

� CP-invariant thermodynamics admits (21) as CPT viola-
tion;

� CPT-invariant thermodynamics sees (21) as apparent and
induced by the fact that matter, which surrounds the exper-
iment and is implicitly present in the interactions by equi-
librating the radiation, is not replaced by antimatter.

Decay kinetics

Among the system states |s〉, we distinguish two groups: the
initial states |k〉 (or 〈 j| when an alternative symbol is needed
for the bra-space), and the final states, which are indexed by
| f 〉. The system is initially placed into a pure state that spans
over the k-states but then decays into one or several of the
f -states. Both, the k-states and the f -states, are eigenstates
H0 | f 〉= E f | f 〉 , H0 |k〉= Ek |k〉 of the undisturbed Hamiltonian
H0; the initial states are degenerate: Ek = E0 for all k. The
system Hamiltonian is given by HS = H0 +H1, where smaller
component H1 is responsible for interactions of the initial and
final states. After tracing out the state of the environment and
denoting H(β) = 〈β|H |β〉−EβIS and h(β) = h(β)

k f |k〉〈 f | , we can
write

H(β) = H0 +H(β)
2 , H(β)

2 ≡H1 +h
(β) (22)
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The effective Hamiltonian Λ
(β)
jk of the decaying k-states is

obtained by using the Weisskopf-Wigner approximation [19],
which plays in quantum decays the same role as kinetic equa-
tions in chemistry,

Λ
(β)
jk = 〈 j|H(β) |k〉+λ

(β)
jk (23)

λ
(β)
jk ≡∑

f

〈 j|H(β)
2 | f 〉〈 f |H

(β)
2 |k〉

E0−E f + iε

where ε→ 0 and the sign of ε is selected to produce decaying
exponents required by causality. Approximation (23) is conven-
tionally used to analyse decay of neutral kaons, K◦ and K̄◦ [9].
We investigate the CPT-compliance of the decay, which requires
that Θ(β) ≡ Λ

(β)
kk −Λ

(β)
k̄k̄ = 0 [9].

The case of CP symmetry. Most quantum systems possess
CP symmetry and relatively few CP violations are known in
quantum mechanics. When the system Hamiltonian HS is CP-
invariant, we obtain

Hk f = 〈k|HS | f 〉=
〈
k
∣∣HS

∣∣ f 〉= Hk̄ f̄ (24)

Θ
(β) ≡ Λ

(β)
kk −Λ

(β)
k̄k̄ = 0 (25)

Here we use equations (19), (23), (24) to obtain (25) and con-
clude that the system appears to be CPT-compliant.

The case of CPT symmetry and CP violation. The system
Hamiltonian HS is CPT-invariant provided

Hk f = 〈k|HS | f 〉=
〈

f
∣∣HS

∣∣k〉= H f̄ k̄ (26)

We use equations (19), (23) and (26) and note that the first term
in (23) does not contribute to Θ(β) so that

Θ
(β) = λ

(β)
kk −λ

(β)
k̄k̄

= ∑
f

(
H ′k f +h(β)

k f

)(
H ′f k +h(β)

f k

)
−
(

H ′k̄ f̄ +h(β)
k̄ f̄

)(
H ′f̄ k̄ +h(β)

f̄ k̄

)
E0−E f + iε

= ∑
f

(
H ′k f +h(β)

k f

)(
H ′f k +h(β)

f k

)
−
(

H ′f k +h(β)
k f

)(
H ′k f +h(β)

f k

)
E0−E f + iε

=−∑
f

∆H ′k f

E0−E f + iε
∆h(β)

k f (27)

where H ′k f ≡ 〈k|H1 | f 〉 , ∆H ′k f = H ′k f −H ′f k. Hence, interactions
with time priming can appear in CP-violating (but CPT preserv-
ing) systems as an apparent CPT violation. Absence of the time
symmetry ∆H ′k f 6= 0 and ∆h(β)

k f 6= 0 is essential for this effect.

Appendix B: Random Phase Notation

This appendix explains the notations, which are used to dis-
tinguish pure and mixed states of quantum mechanics and are
based on random phases. Let

|β) = exp(iθβ) (28)

where θβ is a random angle uniformly distributed between 0 and
2π. The inner product is defined as averaging

(α|β) =
〈
exp(i

(
θβ−θα

)
)
〉

= Iαβ (29)

and different random phases are presumed to be stochastically
independent so that the system of vectors |α) , |β) , ... is or-
thonormal. These vectors can be seen as special quantum states
that cannot be measured since only one operator — the identity
operator I — can be applied to these states: (α|I|β) = (α|β) =
Iαβ.

Let ψ be a wave function represented by the expansion

ψ = ∑
j,β

c jβ | j〉 |β) (30)

then the density matrix is evaluated by tracing out the random
phases, that is

ρ = ∑
i, j,α,β

c∗iαc jβ | j〉〈i|(α|β) = ∑
β

∑
i, j

c∗iβc jβ | j〉〈i| (31)

As an example of using this notation, consider the following
expressions

ψ+1 =
|↑〉+ |↓〉√

2
|α) , ψ−1 =

|↑〉− |↓〉√
2
|β)

ψ2 =
|↑〉 |α)+ |↓〉 |β)√

2
, ψ3 =

ψ+1 +ψ−1√
2

The first two expressions specify ψ+1 and ψ−1as pure states
(with arbitrary phases nominally given as |α) and |β)). The last
two expressions indicate that ψ2 is a mixture of two pure states
|↑〉 and |↓〉 with equal probability and that ψ3 is a mixture of
another two pure states ψ+1 and ψ−1 (since ψ+1 and ψ−1 have
different random phases |α) and |β)). Note that ψ3 is different
from ψ2 and this difference is reflected by the random phase
notation. The density matrices corresponding to these cases are
evaluated according to (31):

ρ+1 =
1
2

[
1 1
1 1

]
, ρ−1 =

1
2

[
1 −1
−1 1

]
ρ2 =

1
2

[
1 0
0 1

]
, ρ3 =

1
2

[
1 0
0 1

]

In conventional quantum mechanics, the random phase multipli-
ers |α) , |β) are orthonormal and do not evolve in time. Sponta-
neous decoherence, however, corresponds to |α) being the same
as |β) initially but then evolving into stochastically independent
quantities.

303



12th Joint European Thermodynamics Conference
Brescia, July 1-5, 2013

HIERARCHICAL CONCEPTS FOR MODEL REDUCTION FOR REACTING FLOWS
BASED ON LOW-DIMENSIONAL MANIFOLDS

U. Maas*, A. Y. Klimenko**

*Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany E-mail: Ulrich.Maas@kit.edu
**The University of Queensland. QLD 4072, Australia, E-mail: a.klimenko@uq.edu.au

ABSTRACT
The description of chemically reacting systems leads very often to reaction mechanisms with far above hundred chemical species
(and, therefore, to more than a hundred partial differential equations), which possibly react within more than a thousand of ele-
mentary reactions. These kinetic processes cover time scales from nanoseconds to seconds. An analogous scaling problem arises
for the length scales. Due to these scaling problems the detailed simulation of three-dimensional turbulent flows in practical
systems is beyond the capacity of even todays super-computers. Using simplified sub-models is a way out of this problem. The
question arising in mathematical modeling of reactive flows is then: How detailed, or down to which scale has each process to be
resolved (chemical reaction, chemistry-turbulence-interaction, molecular transport processes) in order to allow a reliable descrip-
tion of the entire process. Both the chemical source term and the transport term have one important property, namely that they
cause the existence of low-dimensional attractors in composition space. These manifolds can be parameterized by a small num-
ber of variables. In this work we discussed several model reduction aspects based on the concept of low-dimensional manifolds,
namely the efficient identification of the low-dimensional manifolds, the efficient implementation to simplify the chemical kinet-
ics, the hierarchical nature of the low-dimensional manifolds the use of the hierarchical nature to devise hierarchical modeling
concepts for turbulent reacting flows.

INTRODUCTION

Reacting flows are governed by a complex interplay of chem-
ical reaction, flow and molecular transport. They can be de-
scribed mathematically based on conservation equations for
mass, momentum, energy and species masses. These conser-
vation equations form a large system of stiff partial differential
equations and, therefore, their solution is a great challenge [1;
2]. In the past many attempts have been made to simplify the
description of chemically reacting flows while still capturing
the essential features of the dynamics of the system. The de-
veloped methods focus both on a simplified description of the
chemical kinetics and on a simplified description of the turbu-
lent flow and the chemistry-turbulence interaction (see e.g. [3;
4; 5]). Different methods for dimension reduction have been
proposed for the chemical kinetics. Many of them are based on
a detailed analysis of the chemical source term (see e.g. [6; 7;
8; 9; 10; 11; 12; 13; 14]). Methods that account for the in-
teraction of chemical reactions and physical processes are e.g.
[15; 16; 17; 18; 19; 20]. An overview of several methods can be
found in [21]. Furthermore many methods for the description of
the chemistry-turbulence interaction make use of the existence
of low-dimensional manifolds in composition space. Examples
are the flamelet concept [22], conditional moment closure [23]
and multiple mapping conditioning [24].

The dynamics of reacting flows is governed by the system
of conservation equations for mass, momentum, energy, and
species masses [25]. For the following analysis it is useful to
separate the equations for the thermokinetic state variables from
the equations for the flow field and to assume (for sake of sim-
plicity) a low Mach number flow with constant thermodynamic
pressure (a generalization to general flows is straight forward

and shall not be considered here). The governing equation sys-
tem for the scalar field can be written as:

∂ψ
∂t

= F −�vgradψ− 1
ρ

div (Dgradψ) , (1)

where t denotes the time, ψ the (n = ns + 2)-dimensional
thermokinetic state vector (which is, e.g. given as ψ =
(h, p,y1, . . . ,yns)

T, where ns is the number of species, h is the
specific enthalpy, p the pressure, and yi the mass fraction of
species i), and ρ is the density, �v the velocity, D the (n by n)-
dimensional matrix of transport coefficients (see, e.g., [26] for
details), and F the (n)-dimensional vector of source terms. The
source terms F as well as the transport matrix D are complicated
nonlinear functions of the thermokinetic state vector ψ [27; 26;
28]. Because (1) does not invoke any modeling procedure, it is
valid for laminar as well as for turbulent flows.

Both the chemical source term and the transport term have
one important property, namely that they cause the existence of
low-dimensional attractors in composition space. They result
from fast chemical processes leading to species in steady states
or reactions in partial equilibria. These manifolds can be pa-
rameterized by a small number m of variables, represented by
the vector θ of reduced coordinates (θ = (θ1,θ2, . . . ,θm)T).

M = {ψ = ψ(θ) , θ ∈ Rm,ψ ∈ Rn} , m << n (2)

At each point ψ of a manifold M m perturbations off the mani-
fold are relaxed according to a relaxation rate |ω| that is larger
than a given |ωm(ψ)|. Note that this relaxation rate ω is for
example for intrinsic low-dimensional manifolds given by the
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value of the smallest (in magnitude) decoupled eigenvalue [8;
9]. Many model reduction techniques make use of the exis-
tence of such low-dimensional attractors (see e.g. [21]). Fur-
thermore, methods like conditional moment closure [23] and
multiple mapping conditioning [24] rely on the existence of
such attractors in composition space. However, there exists
also a hierarchy of the attractors, i. e. in the state space re-
laxation to equilibrium can be represented as a cascade through
a nested hierarchy of smooth hypersurfaces [29]. While it is
now well accepted that such a hierarchy exists, it is still neces-
sary and useful to show, whether mathematical constructions of
low-dimensional manifolds (i.e. model reduction concepts) can
represent this behavior. It can be shown for several manifold
based reduction concepts (see below) that attractors M m of di-
mension m < m + p are under certain conditions embedded in
attractors M m+p of dimension m+ p, i.e. M m ⊂ M m+p. This
hierarchical nature can be used in many applications, e.g.

for an efficient construction of low-dimensional manifolds
for a hierarchical improvement of the model accuracy in
reacting flow calculations
for devising hierarchical methods for turbulence/chemistry
interaction closure.

These issues will be addressed below.
In the following we shall focus only on some examples

of manifold concepts, namely those based on quasi steady
state assumptions (QSSA) and partial equilibrium assumptions
(PEA) [30], intrinsic low-dimensional manifolds (ILDM) [8]
and global quasi-linearization (GQL) [11], which are based on
an analysis of the chemical source term only, and the concept of
reaction diffusion manifolds (REDIM) [19], which is based on
a coupled analysis of reaction and molecular transport.

THE HIERARCHICAL NATURE OF QSSA, PEA, ILDM
AND GQL

Fur a pure homogeneous reaction system (1) reduces to

∂ψ
∂t

= F(ψ). (3)

In principle the assumption of species i being in steady state
simply implies Fi+2 ≈ 0 (note that the first to entries in ψ are
the enthalpy and the pressure, and the first species evolution
equation has index 3). For n f = n−m species being in steady
state the steady state conditions can be written as

C̃mF(ψ) = 0, (4)

with

C̃ =











0 0 δ1k1 δ2k1 · · · δnsk1

0 0 δ1k2 δ2k2 · · · δnsk2
...

...
...

...
...

0 0 δ1kn f
δ2kn f

· · · δnskn f











, (5)

where δ denotes the Kronecker-δ, and k j is the index of the
species in the jth steady state assumption. This yields a defini-
tion of the (m = n−n f )-dimensional QSSA manifold:

M m =
{

ψ|C̃mF(ψ) = 0
}

(6)

It is easy to see that if we have a set of (n−(m+ p))) species as-
sumed to be in steady state, which is a subset of (n−m) species
assumed to be in steady state

{

k1,k2, . . . ,kn−(m+p)
}⊂ {k̂1, k̂2, . . . , k̂n−m

}

, (7)

(where ˆ is is only used to indicate a possible different ordering
of the species in the two subsets), then the matrix Cm+p is in the
span of the matrix Cm, and it follows directly from (6) that

M m ⊂ M m+p (8)

In partial equilibrium approximations (in the simplest for-
mulation, see [21]) each partial equilibrium assumption defines
a nonlinear equation via equating the rates of the forward and
backward reaction. It is easy to show that if we define two
low-dimensional manifolds via (n− (m + p)) and (n−m) par-
tial equilibrium conditions, respectively, where the (n−(m+ p))
vectors of the stoichiometric coefficients of the partial equilib-
rium reactions for M m+pare in the span of the (n−m) vectors of
stoichiometric coefficients of the partial equilibrium reactions
for M m, then again the m-dimensional manifold is a subset of
the m+ p-dimensional manifold.

This means that QSSA and PEA manifolds can be con-
structed in such a way, that a hierarchy of the manifolds ex-
ists, although it shall be noted that very often different sets of
assumptions for different dimensions are used, i.e.

{

k1,k2, . . . ,kn1
f

}

�⊂
{

k̂1, k̂2, . . . , k̂n2
f

}

, (9)

In this case a hierarchical nature of the manifolds is not guaran-
teed.

Let us now discuss the hierarchy in the context of ILDM and
GQL. The mathematical model of these methods is described in
detail in previous works (see e.g. [8; 31; 9; 32; 33; 34; 11; 35]).
Here, only a short repetition to clarify the presentation shall be
given. ILDM and QGL differ in principle how the fast and slow
processes are identified. For ILDM [8] the (n by n)-dimensional
Jacobian matrix V ILDM = Fψ (with

{

Fψ
}

i j = ∂Fi/∂ψ j) of the
chemical source terms is used to identify the fast/slow decom-
position of chemical processes. For GQL [11] the analysis is
based on the so-called global quasi-linearization matrix. This
matrix is obtained by picking n random states in the composi-
tion space and looking for a linear representation of F(ψ).

V GQL =





| |
F(ψ1) · · · F(ψn)

| |









| |
ψ1 · · · ψn

| |





−1

(10)

Issues like the choice of the reference points cannot be dis-
cussed here, and we simply refer to [11; 35]. The equation for
the low-dimensional manifolds is then obtained by an invariant
subspace decomposition of the matrices V ILDM or V QGL

V =
(

Zs Z f
) ·
(

Ns 0
0 Nf

)

·
(

Z̃s

Z̃ f

)

. (11)

The matrices Z and Z̃ span up the right invariant subspace and
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the left invariant subspace, respectively:

Z̃ = Z−1 =
(

Zs Z f
)−1 =

(

Z̃s

Z̃ f

)

. (12)

Here Zs is the (n by ns)-dimensional invariant subspace belong-
ing to the ns eigenvalues λ(Ns) having the largest real parts and
Zf is the (n by n f )-dimensional invariant subspace belonging
to the n f eigenvalues λ(Nf ) having the smallest real parts, re-
spectively, where ns and n f denote the number of eigenvalues
according to slow and fast processes. This means that the eigen-
values of the matrix V are divided into two groups

i = 1, . . .ns k = ns +1, . . .ns +n f ns +n f = n (13)

|Re (λi (V ))| ≤ a � b ≤ |Re(λk (V ))| Re(λk (V )) < 0
(14)

and fulfill a spectral gap condition (for more details see [36;
11]).

The general assumption that the fast processes have already
relaxed defines an m = ns = n−n f -dimensional manifold in the
state space (note that additional constraints for the conserved
variables can be used to further reduce the dimension m of the
manifold[8; 36]). This subspace is composed of points where
the reaction rates in direction of the n f fast processes vanish

Z̃ f (ψ)F(ψ) = 0, (15)

This under-determined equation system can be solved using
path following algorithms [36] to yield an (m = n − n f )-
dimensional manifold. In this case the manifolds are parame-
terized by a set of m reduced coordinates (e.g. mixture fraction,
reaction progress variables) θ = (θ1,θ2, . . . ,θm)T:

M = {ψ = ψ(θ),θ ∈ Rm,ψ ∈ Rn} (16)

The investigation of the hierarchical nature of ILDM and
GQL is now quite straight forward, due to the algebraic def-
inition of the manifolds. Let us assume that we decompose
the matrix V into invariant subspaces according to two different
splitting conditions with ns = m and ns = m + p, respectively
(p > 0).

V =
(

Zm
s Zm

f

) ·
(

Nm
s 0
0 Nm

f

)

·
(

Z̃m
s

Z̃m
f

)

. (17)

V =
(

Zm+p
s Zm+p

f

)

·
(

Nm+p
s 0
0 Nm+p

f

)

·
(

Z̃m+p
s

Z̃m+p
f

)

. (18)

In this case it follows directly from the definition of the invariant
subspaces that the (n−(m+ p)) by n- dimensional matrix Z̃m+p

f

is in the span of the (n−m) by n- dimensional matrix Z̃m
f , and

together with the manifold equation (16) we obtain

{

ψ|Z̃m
f F(ψ) = 0

}⊂
{

ψ|Z̃m+p
f F(ψ) = 0

}

(19)
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Figure 1. Example of a 1-dimensional ILDM (thick curve) embedded

in a 2D-ILDM (mesh) plotted into the space of specific mole numbers

(mass fractions divided by the molar mass in mol/kg) for the syngas/air

system (composition and conditions are the same as in [8]

yielding

M m ⊂ M m+p (20)

An example of a one-dimensional manifold embedded in a two-
dimensional manifold for a syngas-air system is shown in Fig-
ure 1. Note that there exists also a hierarchy caused by the
chemistry of higher hydrocarbon oxidation in the case of com-
bustion processes. A discussion on this subject can be found in
[33].

THE HIERARCHICAL NATURE OF REDIM

In contrast to ILDM and GQL the REDIM concepts takes
into account the molecular transport processes in the identifica-
tion of the low-dimensional manifolds. Based on equation (1)
the REDIM method uses estimates for the spatial gradients and
solves an evolution equation for an m-dimensional manifold pa-
rameterized by the reduced coordinates θ= (θ1,θ2, . . . ,θm)T for
a pseudo-time τ→ ∞

ρ
∂ψ
∂t

=
(

I−ψθψ
+
θ

){ρF +(Dψθχ)θ χ} (21)

where F = F(ψ(θ)), D = D(ψ(θ)), ρ = ρ(ψ(θ)), χ = χ(ψ(θ)),
ψθ = ψθ(θ)), ψ+

θ = ψ+
θ (θ)). In these equations I is the identity

matrix, ψθ is the matrix of partial derivatives of ψ with respect
to θ ({ψθ}i j = ∂ψi/∂θ j, and ψθ spans the tangent space to the
manifold), and ψ+

θ is a pseudo-inverse (e.g. the Moore Penrose
pseudo-inverse) of ψθ, see [11]. Note that this is a partial dif-
ferential equation system with the thermokinetic state vector ψ
as dependent and the time t and the reduced coordinates θ as
independent variables.

The m-dimensional vector χ of gradient estimates used in this
equation relies on a gradient guess ζ(ψ) for the thermokinetic
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state vector ζ(ψ) = grad ψ, which is assumed to be a function
of the local thermodynamic state (see [19; 37; 38]) The gradient
estimates χ are calculated via

χ = ψ+
θ ζ(ψ) (22)

The solution

M m = {ψ = ψ(θ),θ ∈ Rm} (23)

for τ→ ∞ fulfills the invariance condition

(

I−ψθψ
+
θ

){ρF +(Dψθχ)θ χ} = 0 (24)

For the following analysis it is useful to investigate the de-
pendence of the REDIM evolution equation with respect to a
change of the parametrization. Let a change of the parametriza-
tion of the manifold from θ to θ̂ be given by the (m × m)-
dimensional regular transformation matrix X = θ̂θ. It can be
shown (see Appendix A) that the projection matrix is invariant
with respect to a change of the parameterization (equation 35),
and it can also be shown (see Appendix A) that the diffusion
term ∆ = (Dψθχ)θ χ is invariant with respect to a change of the
parameterization (equation 36). This means that the governing
equation system does not depend on the choice of the parame-
terizing coordinates, a result which allows a simple analysis of
the hierarchy of manifolds of different dimensions.

Let M m denote an m-dimensional Manifold with a tan-
gent space defined by the matrix ψθ of tangent vectors, and
M m+p denote an m + p-dimensional Manifold with a tangent
space defined by the matrix ψη of tangent vectors, where θ =
(θ1, . . .θm)T , and η = (η1, . . . ,ηm+p)

T From the invariance of
the equation system with respect to a change of the parameteri-
zation, it follows that we can represent the manifold M m+p by
new coordinates θ = (θ1, . . .θm,ξ1, . . . ,ξp)

T with

ψξ ∈ span(ψη) ∧ ψξ ⊥ ψθ. (25)

This has several consequences for the evolution equation (21)
for the REDIM The projection operators Pm and Pm+p are re-
lated via (see Appendix B).

(

I−ψηψ+
η

)

=
(

I−ψθψ
+
θ −ψξψ

+
ξ

)

, (26)

In Appendix C it is shown that if the vector of gradient es-
timates for ψ ∈ M m is tangent to the m-dimensional manifold
( ζ ‖ ψθ), then it follows that the m-dimensional manifold is
invariant with respect to the evolution equation of the (m+ p)-
dimensional manifold, and therefore the m-dimensional mani-
fold is embedded in the (m+ p)-dimensional manifold.

Examples of one-dimensional manifolds embedded in a two-
dimensional manifold for a syngas-air system are shown in Fig.
2 for a premixed reaction system (conditions were taken from
[19]) and in Fig. 3 for a non-premixed system (conditions were
taken from [20]).
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Figure 2. Example of a 1-dimensional REDIM (thick curve) embedded

in a 2D-REDIM (mesh) plotted into the space of specific mole numbers

(mass fractions divided by the molar mass in mol/kg) for the syngas/air

system.
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Figure 3. Example of 1-dimensional REDIMs (thick curves) for different

gradient estimates embedded in a 2D-REDIM (mesh) plotted into the

space of specific mole numbers (mass fractions divided by the molar

mass in mol/kg) for the syngas/air system.

CONSEQUENCES OF THE HIERARCHICAL NATURE
OF LOW-DIMENSIONAL MANIFOLDS

Having shown that REDIMs exhibit a similar hierarchical na-
ture as QSSA, PEA, ILDM and QGL, we can state that in all
these concepts lower dimensional manifolds M m are embed-
ded in higher dimensional manifolds M m+p. This has several
consequences for the identification and the use of these low-
dimensional manifolds.

307



N2
15

20
25

C
O

2

0

1

2

3

H
2O

0

2

4

6

Figure 4. Example of two 1-dimensional REDIMs (thick curves) defin-

ing the boundary of a 2D-REDIM (mesh) plotted into the space of specific

mole numbers (mass fractions divided by the molar mass in mol/kg) for

the syngas/air system.

Efficient hierarchical construction of higher dimensional
manifolds

One aspect where the hierarchy of the low-dimensional man-
ifolds can be used efficiently is the hierarchical generation of
higher dimensional manifolds starting from lower-dimensional
manifolds. In the case of ILDM this concept has already been
applied successfully [39], and due to the similarity of GQL and
REDIM in the identification of the manifolds [11], an exten-
sion to GQL is straight forward. Therefore we shall focus here
on discussing a possible implementation in the REDIM con-
cept. One possibility to calculate higher dimensional REDIMs
starting from lower-dimensional ones is based on two ingredi-
ents. The first is to construct boundaries for m+1-dimensional
manifolds starting from m-dimensional ones. This can be il-
lustrated by Fig. 4. It shows a two-dimensional REDIM for a
non-premixed syngas system (same system as above, but Lewis
number assumed to be 1). The green curve corresponds to a
one-dimensional REDIM with a very high estimated gradient
(corresponding to a dissipation rate much above the quenching
limit). The red curve corresponds to a REDIM with gradient es-
timates taken from a counterflow flame with a small strain rate.
An initial guess for the construction of the 2D REDIM has been
obtained by a simple interpolation method (see [38]). Then the
evolution equation for the REDIM has been solved to yield the
2D REDIM (mesh in the figure). This strategy can be further
improved if lower-dimensional manifolds are not only used as
boundaries, but also within the domain to improve convergence
of the REDIM equation (cf. Fig 3).

Efficient adaptive use of REDIMs and control of the model
error

In typical computational fluid dynamics (CFD) applications
the overall computational domain exists of many different do-
mains, which are governed, e.g., by mixing and diffusion, con-
vection and chemical reaction. The hierarchical nature of the

Figure 5. Effects of mixing and chemistry. Scatter plots of specific mole

numbers of CO2 and H2O (mass fractions divided by the molar mass in

mol/kg) for the syngas/air system in a partially stirred reactor, reprinted

with permission from [41]

manifolds allows to use different degrees of approximation in
different domains. In domains far from equilibrium (e.g. in the
transient fuel conversion zone in combustion processes) high
dimensional manifolds can be used, whereas close to equilib-
rium a representation by one or two-dimensional REDIMs is
sufficient. Recently methods have become popular, which can
estimate the modelling error [40]. Such methods could in future
be used to estimate the error resulting from an approximation
of the state space by low-dimensional manifolds of different di-
mensions.

Hierarchical concepts for the chemistry/turbulence cou-
pling

Due to the enormous computational effort, reduced mecha-
nisms based on low-dimensional manifolds are frequently used
for modeling of turbulent reacting flows [5; 4; 3]. In many cases
reduced models are only used to describe the kinetics. On the
other hand the coupling of the chemical kinetics with the turbu-
lent micro-mixing is governed by the hierarchy of the kinetics,
too. This can be seen from a scatter plot of a PDF-calculation
of a partially stirred reactor with a syngas/air mixture [41].
Calculations were performed until a statistically stationary so-
lution was obtained. The scatter plots in the state space us-
ing detailed chemistry are shown in Fig. 5. Obviously only a
small domain is actually accessed, a behavior which is also well
known from direct numerical simulations [42]. The domain
Ωmix shows considerable scatter, and Ωreac shows considerably
less scatter, which is caused by a one-dimensional attracting
manifold (note that in this representation it cannot be identified
whether in the domain Ωmix higher dimensional attractors ex-
ist. The lower boundaries of the accessed domain is the mixing
line between the unburnt mixture (origin) and the completely
burnt mixture (chemical equilibrium state). Due to fast chemi-
cal reaction the domain Ωno is never accessed, because even if
mixing brought particles into this domain, fast chemistry would
relax the states towards the accessed domain (note that the re-
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sults of the calculation were plotted after the chemistry step in
the PDF method [41]. From these observations we can state that
the chemical kinetics does not only give rise to low-dimensional
manifolds in composition space, but that it also influences the
chemistry/turbulence coupling. In methods like the conditional
moment closure (CMC) [43; 23] or multiple mapping condi-
tioning (MMC) [24] exactly this effect is used in the statistical
treatment of turbulent flows. Whereas in CMC the correlations
are used explicitly to describe the thermokinetic state, in MMC
the correlations introduced by the low-dimensional attractors in
composition space are used only for conditioning mixing oper-
ation, which is not necessarily confined to a low-dimensional
manifold associated with the attractor.

The Manifold’s Hierarchy in the context of MMC

Based on the observations made above, we suggest to use the
hierarchical structure of the manifolds in the context of MMC.
The basic idea is to use the results from a low-dimensional
manifold M m to represent the evolution of the reference vari-
ables. Let ψ(θ(x,t)) represent a solution of a transport prob-
lem obtained with a high spatial resolution and the use of low-
dimensional manifolds parametrized by θ = (θ1, ...,θm)T . The
function θ◦ = θ(x◦(t),t) denotes the values of θ evaluated at La-
grangian trajectories — these values are deployed as MMC ref-
erence variables. The scalars are modelled by quantities ψ∗(t)
that represent unrestricted kinetics (or kinetics confined to a
manifold of a larger dimension M m+p in a hierarchical treat-
ment of the problem) evaluated on a system of Pope particles;
only relatively few particles are to be used in calculations (the
reader is referred to sparse-Lagrangian methods [44]). Mixing
operation is performed in MMC with localization in the com-
bined space of the reference variables and physical coordinates.
This enforces transport properties, which are accurately eval-
uated for θ◦, on scalars ψ∗ that have only sparse representa-
tions in physical space. Unrestricted treatment of chemical ki-
netics gives indication whether solution deviates from the m-
dimensional manifold. Let us consider this point by introducing
ψ◦ = ψ(θ◦(t)). These values do not coincide with ψ∗(t) but, if
the chemical kinetics of the fast subspace is indeed fast, ψ∗ can
be represented by ψ∗ = ψ(θ∗(t)). Note that values θ∗ do not
coincide with θ◦, and can experience so called minor fluctua-
tions with respect to θ◦. The main difference between ψ∗ and
ψ◦ is that ψ∗ is not forced to be confined to the m-dimensional
manifold and may deviate from the manifold when the absolute
values of the eigenvalues of the fast subspace are not sufficiently
large. The use of the manifold-constructed reference variables
θ◦ plays an important role in the method, as these variables al-
low to perform economical evaluations of ψ∗ on a very sparse
system of particles. The suggested method combines advan-
tages of the manifold-based reduction techniques and MMC.
In principle, a hierarchical system of manifolds of increasing
dimensions can be deployed to form a hierarchical system of
MMC reference variables.
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A INVARIANCE OF THE REDIM WITH RESPECT TO
THE PARAMETERIZATION

Let a change of the parametrization of the manifold from θ
to θ̂ be given by the (m×m)-dimensional regular transformation
matrix

X = θ̂θ (27)

where ψθ transforms according to

ψθ̂ = ψθθθ̂ (28)

and χ(θ) transforms according to

χ̂(θ̂) = ψ+
θ̂
ζ(ψ) = (ψθθθ̂)

+ζ(ψ) = θ−1
θ̂

ψ+
θ ζ(ψ) = θ−1

θ̂
χ(θ)

(29)
and

θ̂θθθ̂ = I, θθ̂ = θ̂−1
θ (30)

The projection matrix is given as

P =
(

I−ψθψ
+
θ

)

, (31)

and in the new parameterization the projection matrix P̂ is given
as

P̂ =
(

I−ψθ̂ψ
+
θ̂

)

(32)

Using ψθ̂ = ψθθθ̂ we obtain

ψ+
θ̂

= (ψθθθ̂)
+ (33)

which yields

ψ+
θ̂

= θ−1
θ̂

ψ+
θ (34)

yielding

P̂ =
(

I−ψθ̂ψ
+
θ̂

)

=
(

I−ψθθθ̂θ
−1
θ̂

ψ+
θ

)

=
(

I−ψθψ
+
θ

)

= P

(35)
This means that the projection matrix is invariant with respect
to a change of the parameterization. The diffusion term ∆ =
(Dψθχ)θ χ with the changed parametrization is:

∆̂ =
(

Dψθ̂χ̂
)

θ̂ χ̂ =
(

Dψθθθ̂θ̂θχ
)

θ̂ χ̂
=
(

Dψθθθ̂θ̂θχ
)

θ θθ̂θ̂θχ = (Dψθχ)θ χ = ∆
(36)

This means that the diffusion term is invariant with respect of a
change of the parameterization, too.
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B EMBEDDING REACTION/DIFFUSION MANI-
FOLDS

At each ψ ∈ M m the tangent space of M m+p can be repre-
sented by an alternative set of basis vectors given by

ψη =





| | |
ψη1 ψη2 · · · ψηm+p

| | |



=





| | | |
ψθ1 · · · ψθm ψξ1

· · · ψξp

| | | |



 ·Z

(37)
or in simplified notation

ψη =
(

ψθ ψξ
) ·Z, (38)

where Z denotes an (m + p) by (m + p)-dimensional regular
transformation matrix, and where ψξ is constructed such that
it is in the span of ψη and orthogonal to ψθ:

ψξ ∈ span(ψη) ∧ ψξ ⊥ ψθ. (39)

Noting that the projection operator P is invariant with respect to
a change of the parameterization (see 35), we obtain

(

I−ψηψ+
η

)

=
(

I− (ψθ ψξ)(ψθ ψξ)
+) , (40)

and because ψξ is orthogonal to ψθ it follows that

(

I−ψηψ+
η

)

=
(

I− (ψθ ψξ
)

(

ψ+
θ

ψ+
ξ

))

=
(

I−ψθψ
+
θ −ψξψ

+
ξ

)

.

(41)

From this several useful properties can be derived:

(

I−ψηψ+
η

)

ψξ =
(

I−ψθψ
+
θ −ψξψ

+
ξ

)

ψξ

=
(

I−ψξψ
+
ξ

)

ψξ = 0,
(42)

(

I−ψηψ+
η

)

ψθ =
(

I−ψθψ
+
θ −ψξψ

+
ξ

)

ψθ

=
(

I−ψθψ
+
θ

)

ψθ = 0,
(43)

Pn+pPn =
(

I−ψηψ+
η

)(

I−ψθψ
+
θ

)

=
(

I−ψθψ
+
θ −ψξψ

+
ξ

)

(

I−ψθψ
+
θ

)

=
(

I−ψθψ
+
θ

)(

I−ψθψ
+
θ

)−
(

ψξψ
+
ξ

)

(

I−ψθψ
+
θ

)

=
(

I−ψθψ
+
θ

)−
(

ψξψ
+
ξ

)

(

I−ψθψ
+
θ

)

=
(

I−ψθψ
+
θ −ψξψ

+
ξ

)

= Pn+p

(44)

PnPn+p =
(

I−ψθψ
+
θ

)(

I−ψηψ+
η

)

=
(

I−ψθψ
+
θ

)

(

I−ψθψ
+
θ −ψξψ

+
ξ

)

=
(

I−ψθψ
+
θ

)(

I−ψθψ
+
θ

)− (I−ψθψ
+
θ

)

(

ψξψ
+
ξ

)

=
(

I−ψθψ
+
θ

)− (I−ψθψ
+
θ

)

(

ψξψ
+
ξ

)

=
(

I−ψθψ
+
θ −ψξψ

+
ξ

)

= Pn+p

(45)

C ANALYSIS OF THE HIERARCHY OF THE REDIM
INVARIANCE CONDITION

Let ψ ∈ M m fulfill the invariance equation

0 = ψ⊥T

θ {ρF +(Dψθχ)θ χ} (46)

which is in this case equivalent to

{ρF +(Dψθχ)θ χ} = ψθX , (47)

where X denotes the coordinates in the local coordinate system
of the ψθ. The evolution of the M m+p-dimensional manifold is
given by

ρ
∂ψ
∂t

=
(

I−ψηψ+
η

)

{

ρF +(Dψηϑ)η ϑ
}

(48)

with

ϑ = ψ+
η ζ(ψ) (49)

Using the transformation equations for the projection term
we obtain.

ρ
∂ψ
∂t

=
(

I−ψθψ
+
θ −ψξψ

+
ξ

){

ρF +(Dψηϑ)η ϑ
}

(50)

In the local coordinate system the gradient estimate vector is
given by

ϑ̂ =
(

χ
σ

)

=
(

ψ+
θ

ψ+
ξ

)

ζ (51)

Because of the invariance of the diffusion term we have

(Dψηϑ)ηϑ =
{

Dψ(θξ)

(

χ
σ

)}

(θξ)

(

χ
σ

)

= (Dψθχ)θ χ+(Dψθχ)ξ σ+
(

Dψξσ
)

θ
χ+

(

Dψξσ
)

ξ
σ

(52)

If ζ ‖ ψθ it follows with ψξ ⊥ ψθ that σ = 0, and we obtain

(Dψηϑ)ηϑ = (Dψθχ)θ χ (53)

This results in an evolution equation for the subset M m accord-
ing to

ρ
∂ψ
∂t

=
(

I−ψθψ
+
θ −ψξ ψ

+
ξ

)

{ρF +(Dψθχ)θ χ} (54)

and using {ρF +(Dψθχ)θ χ} = ψθX

ρ
∂ψ
∂t

=
(

I−ψθψ
+
θ −ψξψ

+
ξ

)

ψθX

=
(

ψθ−ψθψ
+
θ ψθ−ψξψ

+
ξ ψθ

)

X = 0
(55)

This means that an m-dimensional manifold is (for the given
conditions) invariant with respect to the evolution equation of
the (m+ p)-dimensional manifold.
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INTRODUCTION 

The development of kinetic models for describing the time 
evolution of chemically reacting systems is a fundamental 
objective of chemical kinetics. Such models can easily include 
several hundred of species and several thousands of reactions 
for heavy hydrocarbon fuels. The fact that the equations 
governing the dynamics under such models are highly stiff 
necessitates the development of tools to reduce the 
complexity of the model while maintaining the degree of 
detail of predictions.  Many approaches for this problem have 
been proposed over the last two decades among which are the 
Quasi-Steady State Approximation QSSA [1], Partial 
Equilibrium Approximation PEA [2], Intrinsic Low 
Dimensional Manifolds (ILDM) [3], Computational Singular 
Perturbation (CSP) [4], Adaptive Chemistry [5], Directed 
Relation Graph (DRG) [6], ICE-PIC method [7], and Rate-
Controlled Constrained-Equilibrium (RCCE) [8]. 

Perhaps the most appealing feature of RCCE, as has also 
been explained in [9] is that, contrary to all dimension 
reduction models in which the constrained equilibrium 
assumption is not used, it is not necessary to start with a 
detailed kinetic model (DKM) which must then be simplified 
by various mathematical approximations. Instead, one starts 
with a small number of constraints, to which more constraints 
can be added, if necessary, to improve the accuracy of the 
calculations. The number of constraints needed to describe the 
dynamic state of the system within experimental accuracy can 
be very much smaller than the number of species in the 
system.  

Therefore fewer reactions are needed to describe the 
system’s evolution. Given the fact that in the entire body of 
thousands of chemical reactions perhaps less than hundred 
have rate constants known better than a factor of two, this 
feature of RCCE could help remove a great deal of uncertainty 
from the system by properly invoking the constrained-
equilibrium assumption. Reactions which do not change any 

constraint are in constrained-equilibrium and need not to be 
specified. Nonetheless, the successful implementation of the 
RCCE method depends critically on the choice of constraints 
and knowledge of the rates of the constraints-changing 
reactions is required.  

In this paper we use the method of RCCE to study the 
kinetics of H2/O2, CH4/Air and C2H5OH/Air under constant 
volume, constant energy constraints. The aim of this paper is 
to present a set of constraints, for each kinetic model, based on 
a careful study of the kinetics of the system, which yields 
good agreements with the corresponding DKM over a wide 
range of initial temperatures and pressures. 

 
GOVERNING EQUATIONS 

    The changes in the species composition of a system are the 
result of chemical reactions of the form 
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where jA  is the symbol of species j , rN is the number of  

reactions, sN  is the number of species, +jkυ and −
jkυ  are the 

forward and reverse stoichiometric coefficients of species j 
for reaction k. 

For a given mechanism, the rate equation for an individual 
species j  is given by  
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where Nr is the number of reactions, −+ −= jkjkjk υυυ  is the 

net stoichiometric coefficient of species j in reaction k and +
kr
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and −
kr are the forward and the reverse rates of reaction k 
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The principle of detailed balance is also used to relate the 

forward and reverse reaction rate constants, +
kk and −

kk

through the reaction equilibrium constant. 

Constrained Equilibrium  

Constraints are assumed to be a linear combination of species 
composition present in the system, namely   
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where aij is the value of the i th constraint for the jth species and 
NC is the number of constraints. The constrained equilibrium 
composition found by minimizing the Gibbs free energy 
subject to a set of constraints using the method of Lagrange 
multipliers is 

∑
=

−=
Nc

j
iijjj aTVQN

1

)exp()( γ                            (4) 

where  

))(exp()( 00 T
TR

p
TQ j

u
j µ−=  

is the partition function of species j. Also  µ0
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and γi are, respectively,  the non-dimensional standard Gibbs 
free energy of species j and the constraint potential (Lagrange 
multiplier) conjugate to constraint i. It is important to notice 
that once the value of constraint potentials are obtained, the 
mole number of all species can be obtained through equation 
(4). This equation also established the reduced dimensional 
space as 
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Rate Equations for the Constraints 

The rate equations of constraints can be determined by 
differentiating equation (3):  
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is the change of constraint i due to reaction k. Since elements 
are conserved bik = 0 for i=1....., Ne where Ne is the number of 
elements in the system. Upon integration of Nc rate equations 
(6), the Nc algebraic equations (3) and (4) must be solved to 
obtain the constrained-equilibrium mixture composition.  

Constraint Potential Rate Equations 
 
To avoid solving the algebraic equations involved in 
integration of constraints, the RCCE equations can be directly 
cast into the constraint potential forms, �. Following similar 
steps detailed in [11], the equations governing the constraint 
potentials can be obtained by combining equations (5), (6) 
and (7) as follows 
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Integration of equations, either (2), (7) or (8) need to be 
coupled with the equation of state and an appropriate energy 
equation.  

Equation of state 

For an ideal gas mixture the equation of state can be written: 
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Energy Equation  
 

For an ideal gas mixture, the energy can be written: 
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where ej(T) is the energy per unit mole of species j. Also, the 
energy equation for an adiabatic, closed homogeneous system 
is:  
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Obviously, energy remains constant during an adiabatic 
constant volume process, while for an adiabatic constant 
pressure process enthalpy, i.e. H=E+pV, is conserved. 
Substituting relation (10) into equation (11), one obtains  
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Also, replacing equation (5) into equation (12), the energy 
equation will have the following form: 
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vj
C is the frozen molar heat capacity of species j at constant 

volume and p is pressure.  

Equations (8), (9) and (13) form a set of Nc+2 equations for 
Nc+2 unknows (T,V,	�). 

 
SELECTION OF CONSTRAINTS 

 
The  major area of research in RCCE is selection of kinetic 

constraints. Constraints could be either linear combinations of 
species or single species. 

The main aim of our studies in RCCE is directed toward 
identifying the pattern of conversion of heavy hydrocarbons to 
smaller intermediates and ultimately to combustion products. 
In this paper we will discuss three chemical kinetic models, 
H2/O2 [13], CH4/air and C2H5OH/air. The mechanism used for 
CH4/air studies is  the GRI-mech3.0 [14] plus an additional 
nine C1 alkylperoxides and organic acids, with rates obtained 
from [15]. These species enable the model to be used at high 
pressures and low temperatures. Also, the C2H5OH 
mechanism is taken from [16]. 

 
Since the set of constraints required to model the chemistry 

of each kinetic model is different, we will only present one set 
of constraints, that for CH4/air model. For more information 
about the other two kinetic models, please review [12-13].   
Over the range of temperature and time scales of interest to 
combustion applications, the rates of ionization reactions are 
negligible compared to those of chemical reactions and the 
fixed constraints are the neutral elements of hydrogen, carbon, 
oxygen, nitrogen, designated by EH, EC,EO, EN. 

Moreover, the slowest reactions controlling the chemical 
composition are three-body dissociation/recombination 
reactions and reactions which make and break valence bonds. 
Such reactions are slow in the endothermic direction because 
of the high activation energies required, and in the exothermic 
direction because of small three-body collision rates and small 
radical concentrations. They impose slowly varying time-
dependent constraints on the number of moles, M, and the free 
valence, FV, of the system, respectively. A finite value of FV 
is a necessary condition for chain branching chemical 
reactions to proceed. 

A third important time-dependent constraint is free oxygen, 
FO which is defined as any oxygen atom not directly bound to 
another oxygen atom. Free oxygen is imposed by slow OO 
bond-breaking reactions. An increase in FO is a necessary 
condition for the formation of the major reaction products of 
hydrocarbon oxidation, H2O, CO2 and CO. 

Two additional time-dependent constraints which slightly 
improve the agreement between RCCE and DKM calculations 
under some conditions are: Moles of water radicals           
OHO ≡ OH+O and moles of HCO+CO ≡ DCO. The OHO 

constraint is a consequence of the relatively slow constraint-
changing reaction RH+OH = R+H2O coupled with the fast 
reaction RH + O = OH+R which equilibrate OH and O. The 
DCO constraint is a consequence of the slow reaction CO + 
HO2 = CO2+OH coupled with the fast reaction HCO+O2 = 
CO+HO2 which equilibrate HCO and CO.  

For systems involving the elements C, H, O and N, the nine 
constraints EC, EH, EO, EN, M, FV, FO, OHO, and DCO are 
independent of the initial reactants and may, therefore, be 
considered ‘‘universal” constraints. 

In the present investigation of C1 hydrocarbon oxidation, 
additional fuel-dependent constraints have been used. The first 
is a constraint on the fuel, FU, imposed by slow hydrogen – 
abstraction reactions of the type FU+O2=FR+HO2 and even 
slower dissociation/recombination of the type AB+M = 
A+B+M. This constraint is necessary to hold the system in its 
initial state. The second is a constraint on fuel radicals, FR, 
which is necessary to prevent the equilibration of forbidden 
exothermic global reactions such as CH3+2O2+2H2O => 
CO2+2H2O2+H2+H, which will otherwise convert fuel radical 
directly to products. 

The third is a constraint on alkyl peroxides, APO≡ 
CH3OOH+CH3OO+CH2OOH, imposed by slow reactions 
which convert APO to hydro peroxides coupled with fast 
reactions which equilibrate the species comprising APO. The 
fourth is a constraint on alcohol plus formaldehyde, ALCD ≡ 
CH3OH+CH3O+CH2OH+CH2O imposed by relatively slow 
reactions which generate/remove ALCD coupled with fast 
reactions which equilibrate the species comprising ALCD. 

In the case of close to stoichiometric or rich conditions the 
path from C1 to C2 becomes important, which introduces an 
important structural constraint on the number of C-C bonds. A 
change in the value of this constraint is a necessary condition 
for formation or consumption of heavier hydrocarbons. This 
constraint controls the paths from C2 to C1 and vice versa. It 
takes the value of zero for C1 species and the values of one 
and two for non-ether C2 and C3 molecules, respectively.  

The next constraint identified is C2H6, which in a species 
map is directly connected to C2H5. The calculations of the rate 
of formation and consumption of C2H6 compared to the rate of 
consumption of C2H5 show that C2H6 is an important rate-
controlling constraint over a wide range of thermodynamic 
conditions. Such calculations further show that the path from 
C2H5 to C2H4 can be assumed equilibrated subject to 
formation of C2H5 and consumption of C2H4. In other words,  
the slow reactions: C2H6+M = CH3+CH3+M,  
C2H6+O2=C2H5+HO2 and C2H4+O2=C2H3+HO2 coupled with 
fast reaction C2H5+O2=C2H4+HO2 impose C2H6 and C2H5 + 
C2H4 as extra C2-specific constraints.  

The set of constraints mentioned above, enables agreements too 
within 5% accuracy with DKM calculations over a a wide range 
of initial temperatures, pressures and equivalence ratios 

RESULTS  

H2/O2 Model 
 

Ignitions of H2/O2, CH4/air and C2H5OH/air have been 
studied using RCCE over a wide range of initial temperatures 
and pressures. Comparisons have also been made with DKM 
results. In all Figures, solid lines represent the DKM 
predictions while the dashed lines represent the RCCE 
predictions. 
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The H2/O2 chemical kinetic model includes 9 species and 

19 chemical reactions. Ignition has been studied for initial 
temperatures varying from 900 K to 1500 K and initial 
pressures varying from 30 atm to 100 atm under 
stoichiometric conditions. the RCCE calculations were carried 
out under 6 constraints, namely EH, EO, EN, M, FV and FO. 
Results are shown in figures 1 and 2 respectively. 

 
Fig.1: Temperature profiles for stoichiometric H2/O2 mixtures at 
pi=50 atm and for varying initial temperatures. 
 
For this range of initial conditions, the set results in 
predictions to within 5% accuracy against DKM calculations.  

 
Fig.2: Temperature profiles for a stoichiometric mixture of H2/O2 at 
Ti=1500 K and different initial pressures.  
 
CH4/Air Model 
 
The CH4/air kinetic model includes 60 species and 352 
chemical reactions. Ignition has been studied for an initial 
temperature ranging from 900 K to 1200 K and an initial 
pressure changing from 1 atm to 50 atm. The RCCE 
calculations were carried out using the 16 constraints in Table 
I. Comparison between DKM and RCCE has been performed 
and results are shown in figures 3 and 4 respectively. 
Although 16 equations (constraints) were used in the RCCE 
calculations versus 60 equations in the DKM calculations,  
RCCE predictions were within 5-10% of DKM’s over the 
entire range of initial conditions. . The same level of 
agreements was found for the species profiles. Reference [13] 
can be consulted for more details.  
 
C2H5OH/Air Model 
 
The C2H5OH/air kinetic model includes 68 species and 383 
chemical reactions. The RCCE calculations required only 16 

constraints to model the ignition. These constraints are 
discussed in details in [13]. Ignition was studied over an 
initial temperature ranging from 1000 K to 1300 K and an 
initial pressure varying from 1 atm to 20 atm. Results are 
shown in figures 5 and 6 respectively. The RCCE predictions 
agree favourably well with those of DKM.         
 

 
Fig.3: Temperature profiles for lean CH4/air mixtures at pi = 50 atm 
and varying initial temperatures. 

 
Fig.4: Temperature profiles for CH4/air mixtures at Ti= 900 K and 
varying initial pressures. 

 

 
CONCLUSIONS 

 
RCCE calculations of H2/O2, CH4/air and C2H5OH/air have 

been conducted over a wide range of initial temperatures and 
initial pressures. Sets composed of 6, 16 and 16 constraints 
were used, respectively for each case and the results showed 
good agreements with detailed kinetic model predictions using 
9, 60 and 68 species respectively. The RCCE models 
demonstrate consistent accuracies, within 5-10%, with respect 
to the corresponding detailed kinetic models. 
The RCCE method offers several  advantages among which are:  
1. It is based on the Maximum Entropy or minimum free 
energy Principle of Thermodynamics rather than mathematical 
approximations.  
2. The total number of constraints required to determine the 
non-equilibrium state of a system can be much smaller than 
the number of species in the system. 
3. Every species for which the thermodynamic data is 
available can evolve dynamically based on the constrained-
equilibrium requirement. This feature could be used to 
investigate whether a species, which is not explicitly included 
in the kinetic model, may be kinetically important or not.  
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Fig.5: Temperature profiles for C2H5OH/air mixture at pi=1atm and 
varying initial temperatures. 

 
 

 
Fig.6: Temperature profiles for C2H5OH/air mixtures at Ti=1000 K 
and varying initial pressures. 

 

NOMENCLATURE 

Symbol Quantity SI Unit 
Ci Constraint i Unitless 

aij  Value of constraint i for species j Unitless 
νjk

+ Forward stoichiometric coefficient of 
species j for reaction k 

Unitless 

νjk
- Reverse stoichiometric coefficient 

of species j for reaction k 
Unitless 

rk Net rate of reaction k Mol.m-3.s-1 
Nr Number of reaction Unitless 
Nc Number of constraints Unitless 
Nsp Number of species Unitless 
bik The value of the ith constraint in kth 

reaction 
Unitless 

γi Constraint potential of constraint i Unitless 
µj

0 Non dimensional Gibbs free energy 
of species j 

Unitless 

Ru Gas constant J.mol-1.K-1 

Nj Number of Moles of species j Mol 
V Volume m3 

rk
+ Forward rate of reaction k Mol.m-3.s-1 

rk
- Reverse rate of reaction k Mol.m-3.s-1 

[N j] Concentration of species j Mol.m-3 

Qj Partition function of species j Mole 
T Temperature K 

p0 Atmospheric pressure Pa 
p Pressure Pa 
Ej Specific internal energy of species j J 
E Total energy of the system J 
Cvj Specific heat at constant volume for 

species j 
J.Kg-1.K-1 

t time s 
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Table 1: List of constraints used 
 

Constraints Definition H2 CH4 C2H5OH 

1 EH Total moles of Hydrogen element � � � 
2 EO Total moles of Oxygen element � � � 
3 EC Total moles of Carbon element - � � 
4 EN Total moles of Nitrogen element � � � 
5 M Total number of moles � � � 
6 FV Moles of Free valance � � � 
7 FO Moles of Free Oxygen � � � 
8 OHO Moles of O+OH - � � 
9 DCO Moles of HCO+CO - � � 
10 FU Moles of fuel molecules (CH4 or C2H5OH) - � � 
11 FR Moles of fuel radicals (CH3 or 

CH3CHOH+CH2CH2OH+CH3CH2O) 
- � � 

12 APO Moles of alkyl peroxides (CH3OO+CH3OOH+CH2OOH) - � - 
13 ALCD Moles of alcohols + aldehydes (CH3O+CH3OH+CH2OH+CH2O) - � � 
14 C2H6 Moles of C2H6 - � � 
15 C-C Moles of C-C bond - � � 
16 C2H5+C2H4 Moles of C2H5+C2H4 - � � 
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ABSTRACT

In this abstract, I present a brief overview of model analysis and reduction methods as applied to chemically reacting flows. I

highlight specifically the computational singular perturbation method for analysis of chemical systems, and associated model

reduction strategies. I outline our use of this method for analysis and model reduction in a range of chemically reacting flow

systems. I also touch on challenges and opportunities associated with the use of CSP for analysis and model reduction in both

macroscale and stochastic chemical systems, as well in uncertain chemical systems in general.

INTRODUCTION

Chemically reacting flows exhibit a range of computational

challenges associated with their large range of length and time

scales, as well as underlying chemical model complexity. In

particular, chemical model complexity leads to range of compli-

cations. The large number of chemical species involved in de-

tailed elementary reaction-step mechanisms, for even the sim-

plest hydrocarbon fuels, leads to an associated large number of

partial differential equations that need to be handled in a re-

acting flow computation. Further, the large number of reac-

tions results in complex chemical source terms with a signifi-

cant associated computational cost. Moreover, strong nonlin-

earity and fast time scales, in chemical rate expressions, lead

to the formation of sharp reaction fronts and high spatial gra-

dients of species concentration profiles. The resulting range of

length scales necessitates fine mesh discretizations with associ-

ated computational loads. Similarly, the resulting range of time

scales leads to extreme levels of temporal stiffness, and the need

for specialized stable and accurate time integration strategies.

Given this set of difficulties, it is clear that chemical model

reduction, to say nothing of efficient turbulence modeling re-

quirements, is a necessary step towards enabling the utilization

of chemically reacting flow computations in studies of practi-

cal combustion systems. In the following I will present brief

highlights of existing work in chemical model reduction, with a

more focused discussion of our work, followed by an outline of

interesting challenges and opportunities in the field.

BACKGROUND

There has been extensive development of chemical model re-

duction methods targeting detailed hydrocarbon kinetics over a

number of decades [1,2]. Available techniques include lumping

methods [2], sensitivity and principal component analyis [3],

and elementary reaction flux based methods [4–6]. Given the

strong stiffness and nonlinearity of typical chemical mechan-

sisms for oxidation of hydrocarbon fuels, however, it is impor-

tant that comparisons of sensitivity and reaction fluxes be done

with care. In particular, brief dominance of reaction processes

with fast time scales can obscure the importance of slower re-

actions that can ultimately be of much higher relevance. There-

fore, ideally, chemical model analysis ought to be done with

proper attention to the dynamical landscape of the associated

equation system. Time-scale analysis has been accordingly used

from an early time, starting with the quasi-steady state approx-

imation (QSSA) [2, 7–10]. The partial equilibrium approxima-

tion (PEA) [10–13] has also been used to identify effective alge-

braic constraints relevant in model reduction. A detailed analy-

sis of the conditions under which QSSA and PEA are valid has

been recently presented [14].

The computational singular perturbation (CSP) method [10,

15–17] has also been used successfully for analysis and reduc-

tion of a range of chemical systems [18–25]. The underlying

stiffness and separation of time scales in chemical systems re-

sults in dynamics that are characterized by distinct fast and slow

subspaces. These systems exhibit slow invariant manifolds de-

fined by the equilibration of fast processes. Given an arbitrary

initial state, the system evolves quickly towards a nearby slow

manifold according to the fast time scales, and then evolves

along the manifold according to the slow processes. CSP re-

lies on eigenanalysis of the Jacobian of the equation system to

allow analysis of the dynamics separately in the fast or slow

subspaces, identifying important processes [26–30]. This anal-

ysis has provided means for development of a chemical model

reduction strategy that retains important slow and fast reac-

tions, and associated species. Further, the identification of the

fast and slow directions enabled the development of time in-

tegration strategies that eliminate the fast time scales and en-

able time integration along the slow manifold with large ex-

plicit time steps [31, 32]. Identification of slow invariant man-

ifolds, and their use for efficient time integration of chemical

systems, is also at the core of the intrinsic low dimensional

manifold (ILDM) method [33]. Similarly, the rate-controlled

constrained-equilibrium (RCCE) technique [34, 35], based on

the Second Law of thermodynamics, describes the evolution

of a chemical system along rate-controlled constrained equilib-

rium paths. The invariant constrained equilibrium edge preim-

age curve method (ICE-PIC) [36] is based on RCCE, and makes

use of trajectory-generated low-dimensional manifolds.
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CHALLENGES AND OPPORTUNITIES

We have used dynamical analysis methods, specifically CSP,

for the analysis of laminar flame computational databases and

chemical model reduction for a number of hydrocarbon fuels

including methane, propane, n-heptane, and jet fuel. This in-

cluded both 1D flames as well as edge and jet flames. We iden-

tified and studied the dynamical structure of these flames un-

der different operating conditions, providing information on the

relative importance of specific reaction pathways and transport

processes in the dynamical response of species concentrations

and temperature in specific flame layers. We have used these

results to arrive at an understanding of flame structure and dy-

namics, identifying dominant processes that contribute to either

the time-dynamics or the underlying partial-equilibria. We have

also used them to identify simplified chemical mechanisms un-

der a range of operating conditions, and in different flame lo-

cations. Looking forward, there are a number of challenges in

the utilization of CSP for model reduction in chemical systems,

along with opportunities for further investigation.

To begin with, it is worth noting that the existing CSP-based

model simplification strategy [19,20] is global over the database

of states, and therefore not necessarily optimal at any given

state. Typical means of generation of such data bases have in-

cluded computations of ignition using the detailed mechanism

over a range of initial conditions. Thus, the database covers a

range of behaviors from slow preheat-phase reactions, through

fast ignition, and decay to equilibrium, over a range of ini-

tial states. In principle, tabulation of simplified mechanisms

for ranges of state values would provide a more optimal con-

struction, however one then has to deal with the change in the

size of the state vector in time/space [5]. Similarly, CSP-based

model reduction on the fly, based on the projection of the gov-

erning equations onto the slow manifold, is local and has some

optimality properties, but is computationally prohibitive unless

suitable solution tabulation techniques are employed [25]. An-

other point to note is that CSP-based model reduction does not

explicitly enforce a specific error measure on the state space tra-

jectories. Rather, it attains control on the state error employing

an error threshold on the importance index set, i.e. essentially

on the projected chemical source terms. However, there is no

guarantee that any specific resulting simplified N-species mech-

anism has the smallest state-error, relative to the detailed model,

among all N-species mechanisms. Further, given nonlinearity,

there are no explicit guarantees on the accuracy of computa-

tions using the simplified model outside the range of database

of states, with this or other reduction schemes. Finally, note that

since, by design, the simplified mechanism has both fast and

slow species, this mechanism does retain some stiffness, albeit

typically to a smaller degree than the original detailed mecha-

nism. Clearly, there is significant room for improvement of the

present CSP-based model reduction methodology.

From another perspective, there is a significant need for ex-

tension of dynamical analysis methods, such as CSP, to the

realm of stochastic chemical systems [37]. Stochastic effects

are non-negligible in chemical processes at the microscale, e.g.

in a biological cell or at a catalytic surface nano-scale feature,

where molecular counts are small. Accordingly, depending

on the range of molecule counts, these systems are modeled

using jump Markov processes or stochastic differential equa-

tions [38–42]. In this broad context, there is a need for well-

founded practical definitions of stochastic “slow” manifolds and

fast/slow subspaces. With proper setup of the requisite stochas-

tic dynamical analysis framework, one can then address analy-

sis of stiff stochastic chemical system dynamics and associated

model reduction strategies. While there has been work in this

area [43–51], much more remains to be done.

Finally, the area of model reduction under uncertainty is of

particular interest. Allowing for model error and/or noise in em-

pirical measurements, it is clear that models generally involve

some degree of uncertainty in their parameters. Accordingly,

there is a need to account for this uncertainty in the model re-

duction context. In particular, user-specified error thresholds

on reduced models ought to be informed by the degree of un-

certainty in the starting detailed model predictions. Thus, for

example, it does not seem justifiable to insist on reduced model

errors that are orders of magnitude smaller than the uncertainty

in the detailed model predictions. Rather, it is natural to con-

sider all relevant sources of error and uncertainty in the model-

reduction error budget. On the other hand, there are many chal-

lenges in this area related to the reformulation of dynamical

analysis and model reduction techniques to account for uncer-

tainty. Here again, the underlying dynamical objects, manifolds

and fast/slow subspaces, need to be properly defined and rep-

resented before adequate model reduction strategies can be ar-

rived at. Further, the very notion of error in a reduced model

has to be revised, when both reduced and detailed predictions

are uncertain. There has been some work with relevance in this

context [52–54], but there is need for significantl more develop-

ment.

CLOSURE

I have tried in the above to give a brief overview of methods

for analysis and model reduction in reacting flow. I covered with

some detail our experience with the use of CSP in this context.

I also presented brief highlights of challenges and opportunities

going forward in the context of both continuum and atomistic

chemical systems, and the need for addressing uncertainties in

both analysis and reduction of chemical systems. These chal-

lenges are of relevance in a number of applications, providing

opportunities for advancing the state of the art and impacting

scientific and technical progress.
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ABSTRACT
Spatially homogeneous batch reactor systems are characterized by the simultaneous presence of a wide range of time scales.
When the dynamics of such reactive systems develop very-slow and very-fast time scales separated by a range of active time
scales, with large gaps in the fast/active and slow/active time scales, then it is possible to achieve multi-scale adaptive model
reduction along-with the integration of the governing ordinary differential equations using the G-Scheme framework. The G-
Scheme assumes that the dynamics is decomposed into active, slow, fast, and when applicable, invariant subspaces. We computed
the contribution to entropy production by the four subspaces, with reference to a constant volume, adiabatic reactor. The numer-
ical experiments indicate that the contributions of the fast and slow subspaces are much smaller than that of the active subspace.

INTRODUCTION

The numerical solution of mathematical models for reaction
systems in general, and reacting flows in particular, is a chal-
lenging task because of the simultaneous contribution of a wide
range of time scales to the systems’ dynamics. However, it is
typical that the dynamics can develop very-slow and very-fast
time scales separated by a range of active time scales.

An opportunity to reduce the complexity of the problem
arises when the gaps in the fast/active and slow/active time
scales become large. In [1], we provided an asymptotic analysis
and proposed a numerical technique consisting of an algorith-
mic framework, named the G-Scheme, to achieve multi-scale
adaptive model reduction along-with the integration of ordinary
differential equations (ODEs) using objective criteria. In the
G-Scheme, it is assumed that the dynamics is (locally) decom-
posed into active, slow, fast, and when applicable, invariant sub-
spaces. The method is directly applicable to initial-value ODEs
and (by using the method of lines) to partial differential equa-
tions (PDEs).

For irreversible (non-equilibrium) multi-scale processes,
such as a detailed kinetic model (DKM), one question not ad-
dressed in [1] is how does the entropy production relate to
the decomposition into fast, active, slow, and invariant sub-
spaces. A quick qualitative answer could be obtained by es-
tablishing a correspondence among fast, active, slow, and in-
variant subspaces with near-equilibrium, non-equilibrium, near-
frozen, and isentropic processes. Indeed, near-equilibrium and
near-frozen processes are expected to be nearly isentropic (and
quasi-linear), the algebraic invariants (linear and nonlinear) cor-
respond to isentropic processes, and non-equilibrium processes
are expected to be non-isentropic (and nonlinear). As a con-
sequence, the entropic contributions of the fast and slow sub-
spaces are expected to be small with respect to that of the active
subspace. In this paper, we will analyze this aspect of the G-
Scheme with the help of illustrative examples in the context of
auto-ignition in a spatially homogeneous batch reactor.

Einstein’s treatment [2] of the propagation of small-

∗Corresponding author: mauro.valorani@uniroma1.it

disturbances in a monochromatic reacting gas showed that the
limiting values of frozen and equilibrium sound speeds arise as
the limits for the high and low frequencies of the acoustic ve-
locity of the linearized (about the state of thermodynamic equi-
librium) wave equation with a single relaxation process.

To this regard, our discussion can be considered as an attempt
at generalizing this classic finding to the case of an unlimited
number of nonlinear relaxation processes, where the concepts of
high and low frequencies in oscillatory phenomena are replaced
by those of fast and slow subspaces of dissipative/explosive phe-
nomena.

Theory

We would like to verify empirically the contributions of the
slow, active, and fast subspaces to the overall rate of entropy
production in a system featuring chemical non-equilibrium. To
this end, we resort to the standard model of a constant volume,
adiabatic, batch reactor, where the mixture’s temperature is ini-
tially set above the auto-ignition temperature.

Batch Reactor

The set of ODEs describing the time evolution of the state of
the system is:

dT
dt

=− 1
ρCp

N

∑
j=1

h j(T )Wjω̇ j (T,Yj) ,

dYj

dt
=

Wj ω̇ j (T,Yj)

ρ
, j = 1, . . . ,N

(1)

where T and Yj are the temperature and composition (expressed
in terms of mass fractions) of the mixture, t is time, ρ is the con-
stant mixture density, Cp is the mixture constant pressure spe-
cific heat, N is the number of species, h j is the species enthalpy,
Wj is the species molecular weight, and ω̇ j is the molar rate of
formation/destruction of the j-th species. The set of ODEs is
closed by the thermal equation of state for a mixture of ideal

323



gases

p = ρR(Yj)T, (2)

where p is the pressure, R is the mixture’s gas constant, and the
caloric equation of state

Cp (T,Yj) =
N

∑
j=1

Cp, j(T )Yj, (3)

where Cp, j is the constant pressure specific heat of the j-th
species.

The customary relations between mass fractions Yj, molar
fractions X j, and molar concentrations c j read:

c j = ρ
X j

W
= ρ

Yj

Wj
Yj, (4)

where W is the mean molecular weight of the mixture. The
molar rate of formation/destruction of the j-th species reads:

ω̇ j (T,Yj)=
K

∑
k=1

∆ν j,k rk (T,Yj) (5)

where ννν′k = ν′j,k and ννν
′′
k = ν

′′
j,k are the forward and reverse sto-

ichiometric coefficients of the j-th species in the k-th reaction
out of K total reactions, and ∆νννk =∆ν j,k = ννν

′′
k−ννν′k is the net sto-

ichiometric coefficient. The net rate of the k-th reaction reads:

rk (T,Yj) = rk
f − rk

b = Kk
f

N

∏
j=1

c
ννν′k
j −Kk

b

N

∏
j=1

c
ννν
′′
k

j , (6)

where rk
f and rk

b are the forward and backward reaction rates,
and Kk

f and Kk
b are the forward and backward reaction con-

stants, which depend exponentially on temperature according
to the standard Arrhenius form.

The definition of entropy of a mixture of N ideal gases used
in this paper is:

s(T,X j)=
N

∑
j=1

∆s0
f, j(T )X j−R log

(
p

pref

)
−R

N

∑
j=1

X j log(X j) .

(7)

Entropy production

If the system is spatially homogeneous, the following ODE
describes the time evolution of entropy (per unit mass):

ds
dt

=− 1
ρT

N

∑
j=1

µ j (T,Yj)Wj ω̇ j (T,Yj) (8)

where µ j = h j−T s j is the chemical potential (per mole unit) of
the j-th species.

The net rate of the k-th reaction is usually re-written by tak-
ing advantage of the relation between the equilibrium coeffi-
cient, and the forward and backward reaction coefficients

Kk
c =

Kk
f

Kk
b

(9)

to obtain

rk = Kk
f

(
N

∏
j=1

c
ννν′k
j −

1
Kk

c

N

∏
j=1

c
ννν
′′
k

j

)
. (10)

Finally, introducing the affinity (per unit mass) of the k-th
reaction,

Ak=−
N

∑
j=1

µ j Wj ∆ν j,k, (11)

allows us to cast the time evolution of entropy in the final form:

ds
dt

=
1

ρT

K

∑
k=1

AkKk
f

(
N

∏
j=1

c
ννν′k
j −

1
Kk

c

N

∏
j=1

c
ννν
′′
k

j

)
. (12)

Canonical form

The set of ODEs for the batch reactor is simply a dynamical
system defined by

dx
dt

= f(x), x(0) = x0, with

x ∈ RN+2, t ∈ (0,T )⊂ R, and f : E ⊂ RN+2→ RN+2.

(13)

where the state of the system is defined as x =
{

Yj,T,s
}

and the
vector field is defined by

f(Yj,T,s) =
{

Wj ω̇ j (T,Yj)

ρ
,− 1

ρCp

N

∑
j=1

h j Wj ω̇ j (T,Yj) ,

− 1
ρT

N

∑
j=1

µ j (T,Yj)Wj ω̇ j (T,Yj)

}
.

(14)

Note that for a constant volume system, the entropy equation is
slaved to the other ODEs.

Basic Concepts for the G-Scheme

We have assumed that the dynamics is decomposed into ac-
tive, slow, fast, and when applicable, invariant subspaces. The
G-Scheme introduces a local curvilinear frame of reference, de-
fined by a set of orthonormal basis vectors with corresponding
coordinates, attached to this decomposition. The evolution of
the curvilinear coordinates associated with the active subspace,
∆ξa, is described by non-stiff ODEs, whereas those associated
with the slow, ∆ξh, and fast, ∆ξt , subspaces are accounted for

324



by applying asymptotic approximations of the original problem
to provide ∆ξh

FF , and ∆ξt
SIM , respectively. Adjusting the active

ODEs dynamically during the time integration is the most sig-
nificant feature of the G-Scheme, since the numerical integra-
tion is accomplished by solving a number of ODEs, typically
much smaller than the dimension of the original problem, with
corresponding savings in computational work.

The Adaptive Reduced Model

The G-Scheme involves two main stages:

1. Evolution of the active modes described by NA non-stiff
ODEs;

2. Corrections associated with the slow/fast dynamics.

The active ODEs evolve in subspace A which is freed from
fast scales, i.e., they are non-stiff. They can be solved by resort-
ing to any explicit scheme of integration (e.g., explicit Runge-
Kutta). When compared to a standard BDF implicit scheme
for stiff problems, the G - Scheme requires the solution of NA
explicit ODEs instead of N + 2 implicit ODEs. However, the
scheme requires the identification of the tangent space decom-
position.

Adjusting the active ODEs dynamically is the most signif-
icant feature of the G-Scheme, because the numerical integra-
tion of a state vector x ∈ N +2 is obtained by solving a number
(� N) non-stiff ODEs with the corresponding saving in CPU
work.

Tangent Space Decomposition

Ideal decomposition of the tangent space Tx at any point x
∈ C ⊂ RN+2 involves the identification of N +2 invariant sub-
spaces, a difficult task. The G-Scheme decomposes the tangent
space in four subspaces having time scales of comparable mag-
nitude, Tx= E ⊕ H ⊕ A ⊕ T, where E is the linear subspace
spanned by directions associated with invariants, if any exists
(conservation laws). All scales slower than the active ones are
confined to the slow subspace H(ead) (dormant/near-frozen pro-
cesses). The active subspace A contains all the current interme-
diate dynamic time scales (active/non-equilibrium). All scales
faster than the active ones are confined in the fast subspace
T(ail) (exhausted/near-equilibrium). Thus, the basic concept in
the G-Scheme is to ‘distill’ the Heart, and ‘cut’ the Head and
Tail in a generic multi-scale dynamical system.1

Basis Vectors and Time Scales

The most important decision to be taken in the implemen-
tation of the G-Scheme framework is the choice of a curvilin-
ear frame of reference, i.e., a basis matrix yielding a maximal
degree of slow/fast decoupling. In fact, the basis vectors used
to define the matrix might be found, in principle, by different
means, if they can provide the ideal block-diagonalization of
the eigenvalue matrix in a cost efficient way. The Computa-
tional Singular Perturbation [3] method offers a computational
algorithm to achieve this goal. The CSP refinements converge
to the right/left eigenvectors of J (x(tn)) if nonlinearities are ne-
glected. In this case, we can rank the basis vectors according to

1G stands for Grappa, an Italian liquor produced by distillation.

the magnitude of the corresponding eigenvalues, to obtain

0 = λ1 = · · ·= λE < |λE+1| ≤ · · · ≤ |λH−1| � |λH | ≤
· · · ≤ |λT | � |λT+1| ≤ · · · ≤ |λN+2|,

(15)

where

0 = λ1 = · · ·= λE identify the scales in E,
|λE+1| ≤ · · · ≤ |λH−1| identify the scales in H,

|λH | ≤ · · · ≤ |λT | identify the scales in A,
|λT+1| ≤ · · · ≤ |λN+2| identify the scales in T.

(16)

As estimate of the time scale associated to an eigendirection, we
take the inverse of the magnitude of the corresponding eigen-
value.

Asymptotics of Fast and Slow Time Scales

The G-Scheme exploits the two archetypes for reduction,
slow-invariant-manifold (SIM) and fast-fibers (FF), to define the
adaptive reduction: SIM and FF concepts are invoked to define
the T(ail) and H(ead) subspaces, respectively. The concepts of
SIM and FF are invoked on a local basis. Differently from other
approaches, for the G-Scheme to be applicable it is not required
that a global SIM exist, nor that the SIM dimension be constant
or prescribed in advance. Similar comments apply for the ex-
ploitation of the FF. The contributions of fast and slow scales are
accounted for with SIM and FF algebraic corrections obtained
through asymptotic analysis.

The G-Scheme Step-by-Step

The following section is illustrated in full detail in [1], and
is reported here for the reader convenience. For time interval
t0,and for the state vector x(t0), initialize the integration as:

1. Compute:
T (x(t0)) = N,J (x(t0)) , λi (x(t0)) , A(x(t0)) , B(x(t0))
where J is the Jacobian matrix of the vector field of
Eq. (13), λi is the eigenvalue of the i-th eigenmode of J,
and the matrix A/B collect all the right (row)/left(column)
eigenvectors of J; T is a scalar value denoting the fastest of
the active modes..
For each time interval tn (τ = 0), and for the state vector
x(tn), with n = 0, 1, 2, . . , proceed as follows:

2. Define Time Step as : ∆t = γ/
∣∣λT (x(tn))

∣∣ γ≈ O(1);
3. Update Time : tn+1 = tn +∆t;
4. Identify the Head Subspace dimension, H (x(tn)) on the ba-

sis of a user specified accuracy vector defined as εacc =
rtol|y j|+atol;

5. Solve the set of non-stiff Active ODE’ s:

d∆ξa(τ)

dτ
= Ba (tn) f [x(tn)+Aa (tn)∆ξ

a(τ)] (17)

with ∆ξa(0)≡ 0a a = H,T .
6. Update state vector: xa (tn+1) = x(tn)+Aa (tn)∆ξa(∆t)
7. Apply Head Correction:

xh (tn+1) = xa (tn+1)+Ah (tn)∆ξh
FF(∆t)
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∆ξ
s
FF(∆t)≈ ∆t

[
I +

1
2

Λ
s
s (x(tn) ,0)∆t

]
Bs(0) f (x(tn))

≈ ∆tBs(0) f (x(tn))
(18)

8. Apply First Tail Correction:
xt (tn+1) = xh (tn+1)+At (tn)∆ξt

SIM(tn)
(∆t)

∆ξ
r
SIM (x∗) =−(B(x∗)J(x∗)Ar(x∗))−1B(x∗) f (x∗) (19)

9. Update
J(xt (tn+1)), λi (xt (tn+1)), and A(xt (tn+1)), B(xt (tn+1))

10. Apply Second Tail Correction
x(tn+1) = xt (tn+1)+At (tn+1)∆ξt

SIM(tn+1)
(∆t)

∆ξ
r
SIM (x∗) =−(B(x∗)J(x∗)Ar(x∗))−1B(x∗) f (x∗) (20)

11. Identify the Tail Subspace dimension, T (x(tn+1)) on the
basis of the user specified accuracy vector εacc;

12. Update counter n=n+1
13. If[ tn+1 < t f ]go to Step (1)

The numerical solution generated by the G-Scheme approxi-
mates the trajectory of the original system by patching together
trajectories obtained with reduced order models, each lying on
the corresponding SIM (Fig.1). All the trajectories describing

Activ
e O

DEs

Head Correction

1st Tail Correction

NT(x(tn))-dim Subspace 

based on A(xt(tn))

x(tn)

xa(tn+1)

xh(tn+1)

x(tn+1)

xt(tn+1)

NT(x(tn+1))-dim Subspace 

based on A(xt(tn+2))

2nd Tail Correction

NT(x(tn))-dim Subspace 

based on A(xt(tn+1))

NT(x(tn+1))-dim Subspace 

based on A(xt(tn+1))

Figure 1. Sketch of the G-Scheme algorithm (reprinted from [1]).

the transients between different SIMs in the original system (to-
gether with the associated fast scales) are not represented by the
G-Scheme-generated solution, since their overall contribution
to the system dynamics are accounted for by projection opera-
tions.

Entropy Production and the G-Scheme

We are now ready to analyze qualitatively the contributions
of the slow and fast subspaces to the overall rate of entropy
production in a system featuring chemical non-equilibrium. To

simplify the illustration of the concept, let us consider (i) the
contribution of a single, say the k-th, reaction to the rate of en-
tropy production:

ds
dt

=
Ak

ρT
Kk

f

(
N

∏
j=1

c
ννν′k
j −

1
Kk

c

N

∏
j=1

c
ννν
′′
k

j

)
, (21)

and (ii) that the basis vectors used to define the matrix A returns
a simple identity matrix.

Entropy Production from Head

The contribution to the rate of entropy production of the k-th
reaction evaluated using Eq.(18) reads:

∆ξ
h
FF (∆tr) ≈ ∆t f (x(tn))

≈−
(

Kk
f ∆t
) Ak

ρT

(
N

∏
j=1

c
ννν′k
j −

1
Kk

c

N

∏
j=1

c
ννν”

k
j

)
(22)

The product Kk
f ∆t is small when the k-th reaction is slow, i.e.,

when Kk
f � 1, that is τk

slow=1/Kk
f � 1. Note that the cur-

rently active scale is given by τT ∼ 1/|λT |, and we take ∆t ∼
τT . Subsequently, we have that Kk

f ∆t ∼ O(τT/τslow)� 1 =⇒
∆ξh

FF (∆tr) ∼ O(τT/τslow)� 1, that is the contribution to the
rate of entropy production of the k-th reaction on the slow sub-
space is of the order of the ratio between the currently active
scale and the fastest of the slow scales, and thus:

sh (tn+1) = sa (tn+1)+∆ξ
h
FF(∆t)∼ sa (tn+1)+O(τT/τslow).

Entropy Production from Tail

Suppose that the k-th reaction is in near-equilibrium, so that
the law of mass action is approximately valid to yield:

(
N

∏
j=1

c
ννν′k
j −

1
Kk

c

N

∏
j=1

c
ννν
′′
k

j

)
� 1. (23)

Next, consider the contribution to the rate of entropy production
of the k-th reaction evaluated using Eqs.(19-20) reads.

∆ξ
r
SIM (x∗) =−(B(x∗)J(x∗)Ar(x∗))−1 f (x∗)

∼− 1
|λ(x∗)|

f (x∗)

∼−
Kk

f

|λ(x∗)|
Ak

ρT

(
N

∏
j=1

c
(ν′)k
j − 1

Kk
c

N

∏
j=1

c
(ν")k
j

) (24)

As a consequence, the contribution of the tail to the rate of en-
tropy production becomes

∆ξ
t
SIM (x∗) =−

(
Kk

f ∆t
) Ak

ρT

(
N

∏
j=1

c
ννν′k
j −

1
Kk

c

N

∏
j=1

c
ννν”

k
j

)
, (25)
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that is the contribution to the rate of entropy production of the k-
th reaction on the fast subspace is negligible because of Eq. (23)
even if Kk

f � 1, as is the case for fast reactions, and therefore:

st (tn+1) = sh (tn+1)+∆ξ
t
SIM(tn) ∼ sh (tn+1)

s(tn+1) = st (tn+1)+∆ξ
t
SIM(tn+1)

∼ st (tn+1) .
(26)

RESULTS

The specific test case considered refers to a methane/air sys-
tem, using GRI 3.0 kinetics (53 species). The batch reactor
model is adiabatic and at constant volume. The initial condi-
tions for the test case are defined by prescribing the initial tem-
perature T0 = 1000 K and pressure p0 = 1 atm of a stoichiomet-
ric mixture of reactants. The constant density in Eq. (1) is set
on the basis of the thermal equation of state.

Figure 2 shows the evolution of temperature (solid, black
line) as a function of the number of iteration steps (to avoid
the compression of the plot about the reaction time). On the
same figure, we plot the evolution of the dimension A of the ac-
tive subspace (green solid line) obtained by subtracting H (blue
line) from T (red line), where H and T are the mode numbers
corresponding to |λH | and |λT |, respectively. The dimension of
the active subspace also corresponds to the number of non-stiff
ODEs solved by the G-Scheme. The modes comprised between
5 and H-1 span the slow subspace, those between H and T the
active subspace, and those between T+1 and N+2 the fast sub-
space.
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Figure 2. Time evolution of the dimension of the active (green), slow
(blue), and fast (red) subspaces; temperature (solid black line); rtol =
10−3.

Figure 3 shows the time evolution of the reciprocal of the
modulus of the (complex) eigenvalues of the 55 modes as a
function of the number of iteration steps. On the same figure, we
plot the evolution of the characteristic scales of the G-Scheme,
namely, the reciprocal of |λH−1| (green), |λH | (red), |λT | (cyan),
|λT+1| (blue), and |λN+2| (black). The blue solid line reports the
entropy evolution. The slow/active scale gap is is visually com-
prised between the green and red lines, while the active/fast gap

is between the cyan and blue lines. The black line marks the
fastest time scale at all times. The spectral width of the fast
subspace is between the black and blue lines. The width of the
active subspace is between the cyan and red lines. The width
of the slow subspace is above the red line. The invariant sub-
space is associated with the randomly scattered markers visible
at very large time scales.

Figure 3. Reciprocal of the modulus of the (complex) eigenvalues (light
grey markers); reciprocal of |λH−1| (green), |λH | (red), |λT | (cyan),
|λT+1| (blue), and |λN+2| (black); the red solid line reports the entropy
evolution; rtol = 10−3.

The quantitative assessment of the relative contribution to
the rate of entropy production from the slow, active, and fast
subspaces is carried out by considering that the entropy of the
mixture is a state function of temperature and composition.
Therefore, during the numerical integration of the batch reactor
model, we evaluated the entropy of the mixture before and after
each of the changes of the system state due to the slow (∆sh),
active (∆sa), and fast (∆st ) subspaces. With these definitions,
we introduced the following:

sa(tn) = sa(tn−1)+∆sa(tn)

sh(tn) = sh(tn−1)+∆sh(tn)

st(tn) = st(tn−1)+∆st(tn)

s(tn) = sa(tn)+ sh(tn)+ st(tn)

(27)

where sα(t0) = s(T0, p0,Yj,0),α = a,h, t. Figure 4 shows the
time evolution of the contribution to the entropy of the mixture
from the slow, active, and fast subspaces as obtained using three
different accuracy levels (rtol = 10−3,10−4,10−5), while Fig. 5
shows the entropy contribution of each subspace scaled with re-
spect to the overall contribution (sα(tn)/s(tn) with α= a,h, t). It
is apparent that the active subspace contribution is always very
close to 100%, while the slow contribution is generally larger
than the fast contribution.

The sensitivity to the accuracy level of the contribution to the
entropy of the mixture can be appreciated with the help of Fig 6,
which indicates that the magnitude of the overall entropy con-
tribution, that is, evaluated at large times, of the fast subspace
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Figure 4. Contribution to the entropy of the mixture from the slow
(sh(tn), green), active (sa(tn), red), and fast (st(tn), blue) subspaces,
as obtained using three different accuracy levels (rtol = 10−3 (square
markers), 10−4 (circles), 10−5 (diamonds)).
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(sh(tn)/s(tn), green), active (sa(tn)/s(tn), red), and fast (st(tn)/s(tn),
blue) subspaces scaled with respect to the overall contribution (rtol =
10−3).

is of the same order of the accuracy level specified by the user.
Instead the overall entropy contribution of the slow subspace is
always smaller than the active contribution, but it does not seem
to depend much on the accuracy level specified by the user.

Figure 7 shows that the relative contribution to the rate of
entropy production (∆sα(tn)/∆s(tn)) of the slow and fast sub-
spaces are approximately 10−3 and 10−4, respectively, whereas
that of the active subspace is always of order one. This indicates
that the contribution to the rate of entropy production of the fast
subspace is always negligible with respect to that of the active
subspace, whereas that of the slow subspace can occasionally
becomes comparable to that of the active subspace within the
reaction period of the auto-ignition process.

CONCLUSIONS

Reaction systems are characterized by the simultaneous pres-
ence of a wide range of time scales. When the dynamics of
reactive systems develop very-slow and very-fast time scales
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Figure 6. Overall entropy production per each subspace; slow (sh(t∞),
green), active (sa(t∞), red), and fast (st(t∞), blue) subspaces.
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Figure 7. Contribution to the rate of change of entropy of the mixture
from the slow (∆sh(tn)/∆s(tn), green), active (∆sa(tn)/∆s(tn), red),
and fast (∆st(tn)/∆s(tn), blue) subspaces (rtol = 10−3).

separated by a range of active time scales, with large gaps in
the fast/active and slow/active time scales, then it is possible
to achieve multi-scale adaptive model reduction along-with the
integration of the ODEs using the G-Scheme framework. The
G-Scheme assumes that the dynamics is decomposed into ac-
tive, slow, fast, and invariant subspaces. To calculate the contri-
bution to entropy production related to the four subspaces, we
resorted to a standard model of a constant volume, adiabatic,
batch reactor, where the mixture temperature of the reactants is
initially set above auto-ignition temperature. The specific test
case considered refers to a methane/air system, using GRI 3.0
kinetics. The numerical experiments indicate that the contribu-
tions of the fast and slow subspaces are typically much smaller
(of the order of the user defined accuracy of the numerical in-
tegration) both locally and globally than the contribution of the
active subspace. A preliminary analysis of the relevant theory
is offered to indicate why this conclusion might be of general
validity.
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EXTENDED ABSTRACT 
 

The analysis of complex reaction networks can be performed in two complementary ways: 
 
(a) Insight in the chemistry of the investigated process can be translated into so-called chemical rules. This can be implemented as 

algorithms in computer code, allowing the automatic generation of reaction networks consisting of several thousands of elementary 
steps. Databases, which are based either on experiments or on the quantum chemical calculation of model reactions, then provide the 
corresponding thermodynamic and kinetic parameters. 
 
Numerical integration techniques and kinetic Monte-Carlo simulations finally allow, e.g. via a sensitivity analysis, to assess the 
significance of each elementary reaction family considered, and the effects of the reaction conditions on them. 
 
Recent results by Gorban et al. [1-2] provide the means for a rigorous asymptotic analysis of complex kinetic models for both 
reversible and irreversible mechanisms. This first way can be interpreted as a top-down approach. 
 

(b) Alternatively, under the bottom-up approach, the so-called minimal reaction networks and mechanisms are the starting point. For the 
steady-state kinetics of catalytic reactions a general, a thermodynamically consistent rate equation can be constructed using algebraic 
methods and/or graph theory [3]. For linear reaction mechanisms this rate equation consists of a driving force, which ensures 
thermodynamic consistency, and a resistance, which is the inverse of the total weight of the node-spanning trees of the graph 
corresponding to the reaction mechanism. This resistance can actually be measured as the ratio of the driving force to the reaction rate.  
 
The analysis of the concentration and temperature dependence of the resistance then provides direct information on the nature of the 
elementary steps involved in the reaction mechanism. For nonlinear reaction mechanisms an implicit equation for the reaction rate can 
conveniently be used to obtain insights. This so-called kinetic polynomial is a generalization of the well-known Langmuir-
Hinshelwood-Hougen-Watson (LHHW) rate equation for linear reactions mechanisms. 
 
In the non-steady-state kinetic description, data from pulse-response experiments with insignificant perturbation (data obtained from 
Temporal Analysis of Products) can be used to construct the model in the bottom-up style. In such cases, the model is built using 
decision tree procedures. 

 
A new, additional form of pattern analysis exists that lies beyond the alternative between the top-down and bottom-up approaches: 
 
(c) It is based on the following new kinetic phenomena that were discovered theoretically [4-8] and experimentally confirmed [8]. 

 
(1) Intersections of concentration dependencies, coincidences of such intersections, and the structure of possible orderings of 

concentration and time values defined by intersections.  
 
The intersections under consideration are defined by the concentration dependencies of the system when started from special, 
extreme initial conditions. For instance, the two-step reversible-irreversible mechanism A⇄B→C can be studied for an initial state 
where all substance is A and no B or C occur (the A-trajectory) and from the initial state where all substance is B and no A or C 
occur (the C-trajectory). We then denote by CAA(t) the time evolution of the concentration of A in the A trajectory, by CAB(t) that 
of A in the B trajectory, etc. 
 
As examples of intersections, we can investigate whether CAA(t) and CBA(t) intersect, and whether CBA(t) intersects with CCB(t). 
Given two such intersections, we consider their ordering, either in time or in concentration value: for some choices of the 
parameters the first will come before the second, or vice versa. At the boundary between both parameter domains there occurs a 
coincidence: the two intersections coincide in their time or concentration value. 
 
The various cases are best presented in graphical form, as in Fig. 1, where the black means neither intersection occurs, the dark 
yellow only the first, the dark blue only the second, the blue that the first intersection occurs before the second, and the yellow that 
the first occurs after the second. See [6] for the detailed study of this two-step mechanism. 
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Figure 1: Example parameter domain for intersections. 
 
 
 

(2) Invariances of a special type observed in so-called dual experiments. 
 
When studying these intersections, a remarkable property arises: some of the concentration dependencies are always proportional 
to each other, so that their intersection is either empty (in positive time) or they coincide at all points in time. In our simple 
example A⇄B→C this is the case for CAB(t) and CBA(t): at all t>0, CBA(t)/CAB(t)=k+

1/k-
1, the equilibrium constant of the first 

reaction step. Closer analysis reveals that this property holds in all linear reaction schemes for each pair of substances A and B 
between which a reversible reaction occurs, and that it is a consequence of Onsager reciprocity (see [7]). 

 
 
ACKNOWLEDGMENT 
 

Financial support from the Long Term Structural Methusalem Funding by the Flemish Government is gratefully acknowledged. 
 

 
REFERENCES 
 
[1] A.N. Gorban, and G.S. Yablonsky, Extended Detailed Balance for Systems with Irreversible Reactions, Chem. Eng. Sci., vol. 66, pp. 5388-

5399, 2011. 
[2] A.N. Gorban, E.M. Mirkes, and G.S. Yablonsky, Thermodynamics in the Limit of Irreversible Reactions, Physica A, vol. 392, pp. 1318–

1335, 2013. 
[3] G.B. Marin and G.S. Yablonsky, Kinetics of Chemical Reactions: Decoding Complexity, Wiley-VCH, 2011. 
[4] G.S. Yablonsky, D. Constales, G.B. Marin, Equilibrium relationships for non-equilibrium chemical dependencies. Chem. Eng. Sci., vol. 66, 

pp. 111-114, 2011. 
[5] D. Constales, G.S. Yablonsky, G.B. Marin, Thermodynamic time invariances for dual kinetic experiments: nonlinear single reactions and 

more, Chem. Eng. Sci., vol. 73, pp. 20-29, 2012.  
[6] D. Constales, G.S. Yablonsky, and G.B. Marin, Intersections and coincidences in chemical kinetics: linear two-step reversible-irreversible 

reaction mechanism, accepted by Computers and Mathematics with their Applications, 2013. 
[7] G.S. Yablonsky, A.N. Gorban, D. Constales, V.V. Galvita, G.B. Marin, Reciprocal relations between kinetic curves. EPL - Europhysics 

Letters, vol. 93, 20004, 2011. 
[8] D. Constales, G.S. Yablonsky, V.V. Galvita, G.B. Marin, Thermodynamic time-invariances: theory of TAP pulse-response experiments. 

Chem. Eng. Sci., vol. 66, 4683-4689, 2011. 
 

331



 

332



 
 
 
 
 
 
 
 
 

PANEL K 
 

QUANTUM THERMODYNAMICS:  
WHAT IS IT AND WHAT CAN BE DONE WITH IT 
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INTRODUCTION 
 
Small systems are of interest from various viewpoint in 

contemporary science. In particular, the problems of 
constructing microscopic machines/engines and 
understanding their operating mechanisms are relevant to 
biology (e.g., biomolecular motors), information theory (e.g., 
Maxwell’s demon), nanoscience and so on. 
The subject of the present article is concerned with a 
reversible engine made of a single quantum-mechanical 
particle confined in an variable potential. This system does 
not contain heat baths, and the volume change (i.e., expansion 
and compression) is realized by external control of the 
potential. Accordingly, quantum coherence remains intact. In 
Ref. [1], it has been shown, by considering a cycle of a 
system consisting of a particle in an infinite square-well 
potential with the movable walls, that it is in fact possible to 
construct a reversible cycle and to extract work from it. The 
cycle constructed there is analogous to Carnot’s, and is 
therefore referred to as quantum-mechanical Carnot cycle. 
However, because of the absence of hot and cold heat baths, it 
should not be confused with cycles of genuine quantum heat 
engines discussed in the literature (see, for example, Refs. 
[2-7]). 

 
QUANTUM-MECHANICAL ANALOG OF THE 
CARNOT CYCLE  

 
The cycle is described in Fig. 1.  We discuss a case, which 

is much more general than that in Ref. [1]. 
Initially, the system is in a state, u1(VA ) , at A. After the 

volume expansion, the system reaches B in a higher state, say 
u2 (VB ) . During the expansion process BA → , the system 

is in a superposed state, a1(V ) u1(V ) + a2 (V ) u2 (V )  

a1(V )
2
+ a2 (V )

2
= 1( ) , but the average energy (i.e., an 

analog of the internal energy) EH ! H
H

= En (V ) an (V )
2

n=1,2!  is kept unchanged.  Here,  H = H (V )  
 
 

 
Figure 1. The cycle depicted in the plane of volume V and 

pressure P. 

 

 
is the system Hamiltonian for the stationary Schrödinger 
equation, H (V ) un (V ) = En (V ) un (V ) , which is valid under 
the adiabaticity condition, that is, slow change of V. The time 
scale of change of V is much larger than that of the dynamical 
one, E/~  , with E being a typical value of the energy. Note 
that EH = E1(VA ) = E2 (VB )  and a1(VB ) = a2 (VA ) = 0 . Similar 
is the process C ! D , in which the state changes from 
u2 (VC )  to u1(VD ) , and in-between it is a superposed one, 

 
QUANTUM-MECHANICAL ANALOG OF THE CARNOT CYCLE: GENERAL 

FORMULA FOR EFFICIENCY AND MAXIMUM-POWER OUTPUT 
 
 

Sumiyoshi Abe 

Department of Physical Engineering, Mie University, Mie 514-8507, Japan 

ABSTRACT 
The quantum-mechanical Carnot cycle is an analog of the thermodynamic one and is constructed without heat baths. The 

cycle is realized by controlling quantum states of particles as well as a confining potential. Here, recent developments about 
such a cycle are reported. The general formula for the efficiency is presented for an arbitrary potential. A finite-time process is 
also discussed, and the value of the efficiency under the maximum power condition is derived in the case of a one-dimensional 
infinite square-well potential. 
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b1(V ) u1(V ) + b2 (V ) u2 (V )  b1(V )
2
+ b2 (V )

2
= 1( ) , but the 

average energy EL ! H
L
= En (V ) bn (V )

2
n=1,2"  is kept 

unchanged. We have EL = E2 (VC ) = E1(VD )  and 

b1(VC ) = b2 (VD ) = 0 . These two processes are analogs of the 
isothermal processes in the thermodynamic Carnot cycle. On 
the other hand, B! C  and AD →  are analogs of the 
adiabatic processes. During CB →  ( AD → ), the state 
remains as u2 (V )  u1(V )( ) . These analogies have been 
clarified in Ref. [8] from the viewpoint of a formal similarity 
between quantum mechanics and thermodynamics. An 
explicit example using a one-dimensional infinite square-well 
potential with movable walls shows [1] that it is in fact 
possible to construct a cycle of this kind. 
Work is defined by d 'W = !H (V ) / !V dV " #P dV , where 
P is pressure. The work during each process is given as 

follows: WAB = dV !En (V ) / !V[ ]n=1,2"VA
VB# an (V )

2
, WBC =  

dV !E 2 (V ) / !VVB

VC" , dV !En (V ) / !V[ ]n=1,2"VC
VD# bn (V )

2
and 

WDA = dV !E1(V ) / !VVD
VA" . It can be shown [9] that 

WBC = !WDA holds, in general. Therefore, the work extracted 

after a single cycle is W =WAB +WBC +WCD +WDA  

=WAB +WCD . The efficiency of the cycle is then given by 

! =W /WAB . In Ref. [9], the following general formula for 
the efficiency has been presented:  

  

! = 1!
dV "E(V )

#

#V

EL ! E (V )
"E(V )

$
%&

'
()VD

VC*

dV "E(V )
#

#V

EH ! E (V )
"E(V )

$
%&

'
()VA

VB*

             

(1) 

where 

 E (V ) =
1

2
E1(V ) + E2 (V )[ ] ,         (2) 

 !E(V ) = E2 (V ) " E1(V ) .          (3) 
Eq. (1) shows how the efficiency depends on the structure 

of the energy spectrum. Since a potential is the analog of a 
working material in thermodynamics, this formula exhibits 
how the quantum-mechanical Carnot cycle is nonuniversal. 
This is due to the fact that, in pure-state quantum mechanics, 
the von Neumann entropy identically vanishes and, therefore, 
there does not exist an analog of the second law of 
thermodynamics. 

Closing this section, we would like to mention an 
intriguing point regarding the efficiency in Eq. (1) for a 
certain class of spectra. Suppose the energy eigenvalues to 
have the form 

 
En (V ) =

!n

V "
 ( ...,3,2,1=n )         (4) 

where !  and !n ’s are independent of V, ! > 0  and 

! 1 < ! 2 < ! 3 < ! ! ! . The spectra of this form are refereed to 
here as homogeneous type. In this case, Eq. (1) is calculated to 
have the following simple form: 

 

! = 1!
EL

EH

.           (5) 

A homogeneous-type spectrum will be discussed in the 
next section. 

 
FINITE-TIME PROCESSES AND MAXIMUM POWER 
OUTPUT 

 
So far, we have seen the nonuniversal nature of the 

quantum-mechanical Carnot cycle. Here, we wish to examine 
this point from a different aspect. Specifically, we consider 
finite-time processes and the condition for the maximum 
power output [10]. For this purpose, we employ a simple 
system of a particle confined in a one-dimensional infinite 
square-well potential as in Ref. [1]. The energy eigenvalues 
are given by En (L) = n

2! 2!2 / (2mL2 )  ( n = 1, 2, 3, ... ), 
where L is the width of the potential well and slowly changes 
in time. (Since the system is one-dimensional, L corresponds 
to the volume V in the preceding section.) We note that this 
spectrum is of the homogeneous type. Taking the ground 
( 1=n ) and first excited )2( =n  states and applying Eq. (5), 
we obtain 

 

! = 1! 4
LA
LC

"
#$

%
&'

2

,          (6) 

where LA  and LC  are the values of the potential width at A 
and C, respectively. 

Now, let v (t)  be the speed of the change of the width. The 
total amount of movement of L during a single cycle is given 
by 

 
Ltotal = 2(LC ! LA ) = d t v (t)

0

!

! " v ! ,        (7) 

where !  is the cycle time and v  is the average speed. Eq. (7) 
allows one to express the cycle time as follows: 

 
! =

2

v
(LC ! LA ) .          (8) 

On the other hand, the work extracted after a single cycle is 

W = (! 2!2 / m) 1 / LA
2 ! 4 / LC

2( ) ln 2 . The condition 

 

r !
LC
LA

> 2            (9) 

has to be fulfilled in order for the work extracted to be 
positive. The power output is then expressed as follows [10]: 

 

! "
W

!
=
" 2!2v ln 2

2mLA
3 #

r2 $ 4

r3 $ r2
.         (10) 

Our interest is in maximization of ! . This problem turns out 
to given by the solution of the equation, r3 !12r + 8 = 0 . 
This cubic equation has three real solutions, but 
r = 4cos(2! / 9)  is the one and only solution consistent with 
the condition in Eq. (9). Then, the corresponding value of the 
efficiency is 

 
!* = 1!

1

4cos2 (2" / 9)
= 0.573977952... .        (11) 

This result is universal in the sense that it does not contain 
any of the parameters characterizing the system under 
consideration. 
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CONCLUSION 
 

We have reported recent developments made about the 
quantum-mechanical Carnot cycle. We have discussed the 
general formula derived for the efficiency for an arbitrary 
potential confining a particle. Also, we have mentioned the 
result on the efficiency under the maximum power condition 
by employing a one-dimensional infinite square-well 
potential. 
As stressed in the very beginning of this article, the systems’ 
quantum coherence remains intact, since no heat baths are 
present. This fact leads to the following question: Can the 
principle of superposition plays some role here? The answer 
to this question seems to be affirmative. It is in fact shown in 
Ref. [11] that the efficiency can be enhanced by superposition 
of relevant states. It is also of extreme interest to examine 
roles and effects of quantum entanglement in systems 
consisting of more than one particle. 
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EXTENDED ABSTRACT

Inspired by a recent experimental work of Blickle and Bechinger [Nature, 8, 143 (2011)] on a microscopic realization of the Stirling cycle
through a colloidal particle in an optical trap, we develop a self contained formalism for describing the performance of microscopic Brownian heat
engines like Carnot, Stirling and Otto engines modelled after a quantum harmonic oscillator in contact with a heat bath [quant-ph arXiv:1303.1233].
The appropriate combinations of isobaric, isochoric and isentropic steps involved in the three cycles considered here are achieved by contolling
the ‘spring constant’ of the harmonic potential and the temperature of the heat bath. Our starting point is the master equation for describing
the Brownian motion of a quantum harmonic oscillator obtained by Agarwal [Phys. Rev. A 4, 739 (1971)]. This master equation can be cast
into Langevin equations through the use of Wigner phase space description which in turn permit a convenient thermodynamic interpretation in a
manner similar to that developed by Sekimoto [J. Phys. Soc. Jpn, 66, 123 (1997)] in the classical context. The formalism developed here, besides
reproducing the standard thermodynamics results in the steady state enables us to study the role dissipation plays in determining the efficiency of
Brownian heat engines under actual laboratory conditions. In particular, we analyse in detail the dynamics associated with decoupling a system in
equilibrium with one bath and recoupling it to another bath and obtain exact analytical results which are shown to have significant ramifications
on the efficiencies of engines involving such a step. We also develop a simple yet powerful technique for computing corrections to the steady
state results arising from finite operation time and use it to arrive at the thermodynamic complementarity relations for various operating conditions
and also to compute the efficiencies at maximum power for the three engines cited above. Our principal results include (i) development of a self
contained formalism for computing efficiencies of Brownian engines both in the classical as well as quantum contexts (ii) an exact analysis of the
role of damping in the process of coupling the system to a bath at a higher temperature and its influence on the performance of the Stirling engine
(iii) computation of the irreversible heat in isothermal processes and the derivation of complementarity relations (iv) a detailed analysis of the role
of damping as well as finite time corrections on the efficiency of the Stirling engine at maximum power.
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ABSTRACT

Why do thermodynamical systems reach (more or less universal) final states that no longer exhibit any macroscopically visible

evolution while the underlying microscopic equations of motion do not feature any attractive fixed points? The quantum typicality

approach to thermodynamics is at present intensely debated. If Hilbert space is considered as the quantum analogue of phase

space, any pure state is represented by a point which ventures eternally through this Hilbert space without coming to a halt.

The apparent non-evolving equilibrium state of the macroscopic system is now explained by the following concept: Almost all

states from some accessible region in Hilbert space may exhibit very similar properties such as expectation values of pertinent

observables, probabilities to measure certain values, reduced density matrices corresponding to smaller parts of a larger system,

etc. Thus as long as some concrete pure state ventures through regions in Hilbert space that are entirely filled with such typical

states this motion will never be visible from considering only the above properties. Of course it is inherent to such a theory of

thermalization that it cannot directly predict thermalizing dynamics of specific initial states as generated by specific Hamiltonians,

it primarily addresses relative frequencies.

INTRODUCTION

Despite the fact that some call it a “tired old question” [1]

the search for the origin and the true nature of the second law of

thermodynamics has recently regained considerable impact. Al-

though all researches are utterly used to the second law, the idea

of almost any system always approaching a state (equilibrium)

which is in accord with the concept of the system occupying an

immense multitude of micro states at the same time (ensemble)

is still quite puzzling. How can the system end up in a mul-

titude of states given that there is conservation of phase space

volume? And, even worse, always in the same well defined

multitude? How can this be explained on the basis of an under-

lying theory? The traditional answers are of course well known:

Some are based on the the microstate of the system wandering

rapidly through all accessible phase space (ergodicity), others

are based on the idea of the system occupying an initial multi-

tude of states due to inevitable imperfections of measurements,

that then effectively, in a coarse grained consideration, grows in

time (mixing).

Although not really being new, lately the concept of “typical-

ity” has also attracted some attention . The idea is that there are

different, individual microstates each of which which leads for

a set of observables to the same outcomes as if the system was

in a multitude of states which form the ensemble. Furthermore

these micro states are supposed to fill almost the entire accessi-

ble phase space such that, drawing states at random, they appear

as being “typical”. Or, from a more dynamical point of view,

a generic evolution will likely eventually lead to and proceed

inside a region in phase space which is filled with the above

mentioned typical states if this region is overwhelmingly large.

This concept immediately raises some questions: For what class

of observables can this concept hold at all? How can the over-

whelming relative frequency of the above mentioned states be

proven?

A number of publications [2; 3; 4; 5; 6; 7] aim at show-

ing that the typicality-principle applies to quantum physics in a

quite general sense. Some of these papers consider a quantum

system in contact with some quantum environment. Instead of

considering one or a few observables the authors consider the

reduced density matrix for the system which is tantamount to

considering the set of all observables that may be locally de-

fined for the system. These papers convincingly show that for

a large majority of pure states drawn from an energy interval

E,E −∆E (of the full system) the reduced local density matrix

assumes the same form as the one resulting from a microcanon-

ical ensemble corresponding to the same interval. In the case of

standard environment spectra and weak couplings this accounts

for the typicality of the canonical equilibrium state. Other pa-

pers intend to avoid the system-environment partition as well

as the restriction of the states onto energy intervals. They es-

sentially analyze the (Hilbert space-) variance of a distribution

of expectation values 〈ψ|Â|ψ〉 corresponding to a more general

distribution of states ψ in Hilbert space. This way an upper

bound to this variance based on the difference between the high-

est and the lowest eigenvalue of Â and the purity of the averaged

density matrix is established.

In the paper at hand we consider both, the typicality of ob-

servables and of reduced states. The fashion according to which

we “draw” our states from Hilbert space is neither just given by

a restriction onto a projective subspace as in [2; 4; 3] nor is it

defined by a rather general probability distribution as in [5]. In-

stead we consider a region in Hilbert space which is in accord

with the system, occupying different projective (invariant) sub-

spaces with different probabilities. We define these subspaces

(labeled by α) by projectors

Π̂α =∑
i

|α, i〉〈α, i| , Wα = 〈ψ|Π̂α|ψ〉 (1)

i.e. the probability to find the system in state ψ in some sub-

space α is Wα. The accessible region (AR) we are going to con-
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sider may now be defined by a set of probabilities Wα. If and

only if ψ is in accord with Eq. (1) it belongs to the AR. This

choice of AR has primarily dynamical reasons: If the Π̂α cor-

respond to natural invariants of the system (e.g. particle num-

ber, magnetization, etc.) the (pure) state of the system ψ(t) can

never leave the AR it started in. Of course subspaces that corre-

spond to energy eigenstates are invariants of motion. However,

if there is a small perturbation of strength ε, one can neverthe-

less expect subspaces spanned by the eigenstates of the unper-

turbed system corresponding to an energy interval ∆E > ε to

be approximately invariant. I.e. even the perturbed system will

not substantially leave the AR defined on the basis of such sub-

spaces.

TYPICALITY OF OBSERVABLES

In the following we are interested in the Hilbert Space Av-

erage (HA) of an expectation value of an arbitrary Hermitian

operator Â (an observable) restricted to the above defined AR.

The average is defined as a mean of the expectation value over

all states of AR with respect to the unitary invariant measure

(Haar measure), J〈ψ|Â|ψ〉KAR = J〈Â〉KAR. For details how to

concretely compute such integrals see [6].

According to the partitioning in subspaces α the general op-

erator Â can be decomposed in subspaces defined by the projec-

tion operators Eq. (1) finding

Â = ∑
αβ

Π̂αÂΠ̂β =: ∑
αβ

Âαβ . (2)

Using this decomposition the HA yields

J〈Â〉KAR = Tr{ÂJρ̂ψKAR}, ρ̂ψ ≡ |ψ〉〈ψ|

Jρ̂ψKAR ≡ ω̂ = ∑
α

Wα

Nα
Π̂α (3)

where Nα :=Tr{Π̂α} is the dimension of the corresponding sub-

space. We have skipped some calculations and used some av-

erages which can be found in [6]. Here ω̂ is simply the state

that corresponds to the Boltzmann “a priori principle of equal

weights”, a state for which probability in each subspace Wα is

uniformly distributed onto all states that span the subspace Π̂α.

So far, however, this does not classify an 〈Â〉 in accord with

the Boltzmann ensemble as being typical. To quantify this typ-

icality, i.e., whether or not a concrete the expectation value of

Â is most frequently close to the average, we furthermore intro-

duce the Hilbert space variance (HV)

∆2
H(〈Â〉) := J(〈Â〉)2KAR − J〈Â〉K2

AR . (4)

Using again the decomposition given in Eq. (2), carefully cal-

culating these HV’s using techniques described in [6] yields

∆2
H(〈Â〉)

= ∑
αβ

WαWβ

Nα(Nβ + δαβ)

(

Tr{ÂαβÂ
†
αβ}−

δαβ

Nα
Tr{Âαα}

2
)

. (5)

This is a rigid result and my in principle be evaluated for any

given AR, Â. Whenever it is small, the average result (3) can

be considered as being typical. For what scenarios can such

typicality be expected? Specializing without substantial loss of

generality to observables with Tr{Â} = 0 the variance of the

spectrum of Â reads:

∆2
S(Â) =

1

N
∑
αβ

Tr{ÂαβÂ
†
αβ} N ≡ ∑

α
Nα (6)

where N is simply the total dimension of the system. A HV is

by construction positive, so are both terms that appear in the dif-

ference in (5) thus omitting the second of those will only make

the outcome larger. Hence an upper bound to the HV written in

a suggestive way reads:

∆2
H(〈Â〉)≤

1

N2 ∑
αβ

(WαWβ

nαnβ

)

Tr{ÂαβÂ
†
αβ} (7)

with nα(β)≡Nα(β)/N. Thus, whenever the system occupies with

significant probability only subspaces that are large enough to

represent a substantial fraction of the full dimension of the sys-

tem the HV is roughly by a factor N smaller than the variance

of the spectrum. Thus, a result for 〈Â〉 as calculated from ω̂
classifies as typical for a wide range of accessible regions if Â

has a bounded spectrum and is defined on a large-dimensional

Hilbert space. This essentially reflects results by Reimann [5]

In which cases can this be expected? Consider as an instruc-

tive example the case of no restriction, i.e., the AR being all

Hilbert space. One may be interested in a “local” variable Â

which should really be written as Â⊗ 1̂E , where 1̂E denotes the

unit operator acting on the (for this inquiry irrelevant) rest of

the system. If this rest of the system is enlarged N increases

drastically while ∆2
S(Â) remains constant. Thus the correspond-

ing HV will decrease according to Eq. (7). This means when-

ever a bounded local variable of interest is embedded in a large

surrounding featuring a high dimensionality, typicality can be

expected. Such a scenario is naturally implemented if a consid-

ered system is coupled to a large environmental system. One

may then even observe a set of local variables which determine

the reduced (local) state of the considered system completely,

finding that they all relax to equilibrium due to all their HV’s

being small. Such a scenario will be considered in more de-

tail below. However, since the above reasoning does not re-

quire weak coupling, it also applies in principle to scenarios in

which the system-environment partition in the traditional sense

is absent. If one ,e.g, considers a many particle system of some

solid state type, one may be interested in the number of parti-

cles that can be expected in some spatial region of the system.

The variance of the corresponding number operator surely re-

mains unchanged if the whole system is increased (at constant

particle density) but the dimension on which the number oper-

ator is defined increases exponentially. Thus a strongly typical

occupation number will result from this scenario.

The same overall picture can be considered more or less ap-

propriate even if there are restrictions to different subspaces Π̂α.

Thus, in very many scenarios and for many observables one

finds small HV’s and in all those cases the typicality argument

applies.

TYPICALITY OF STATES

Thus, measuring only one (or a few) observable(s) Â one is

most likely not able to distinguish some ψ from the AR from ω̂.
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However, measuring more and more observables on will eventu-

ally be able to determine the full, true quantum state of the sys-

tem ( ψ). Thus one may ask the question whether a true quantum

state from the AR is typically close to the state that represents

the ensemble, i.e., ω̂? To quantify this question we use as a

measure for the “size” of an operator D2(Ô) ≡ Tr{ÔÔ†
} thus

the distance between, two operators Â, B̂ is simply D2(Â− B̂).
As the HV of 〈Â〉 is simply the HA over the squared distance

between 〈Â〉 and Tr{Âω̂}, we define

∆2
H(ρ̂ψ)≡ JD2(ρ̂ψ − ω̂)KAR = JD2(ρ̂ψ)KAR −D2(ω̂) (8)

For the situation discussed above this HV is easy to calculate

since D2(ρ̂ψ) is simply the purity of ρ̂ψ. Since in this example

the purity of ρ̂ψ is always one, regardless of the actual ψ, we

find: ∆2
H(ρ̂ψ) = 1−D2(ω̂). If the purity of ω̂ is low, which will

be the case for most realistic scenarios, the HV will be close

to one and thus not small at all. This means that regardless of

Tr{Âρ̂ψ} ≈ Tr{Âω̂} for very many Â the states ρ̂ψ from the HA

are not close to ω̂, i.e., there is no typical state in the HA. This

also obviously includes the purities or entropies (e.g. Von Neu-

mann entropy) of states ρ̂ψ from the HA being very different

from the purity or entropy of ω̂.

In the following we analyze whether or not there is a typical

state for a considered system which is in contact with some en-

vironment E . Here we require the pure state of the full system

to be confined to some HA which is also defined in the full sys-

tem. The considered state however is now a reduced state, i.e.,

ρ̂ψ ≡ TrE{|ψ〉〈ψ|}. Its possibly typical outcome, i.e., its HA is

Jρ̂ψK = TrE{J|ψ〉〈ψ|K}= TrE{ω̂} (9)

To analyze typicality in this case it is more convenient to write

∆2
H(ρ̂ψ) in terms of matrix elements of ρ̂ψ, i.e., ρlm

ψ := 〈l|ρ̂ψ|n〉,
where |l〉, |n〉 are energy eigenstates of the local system. Defin-

ing Xlm ≡ Re(ρlm
ψ ) and Ylm ≡ Im(ρlm

ψ ), we straightforwardly find

∆2
H(ρ̂ψ) = ∑

lm

∆2
H(Xlm)+∆2

H(Ylm) (10)

The quantities Xlm,Ylm may be expressed as expectation values

of the corresponding (local) operators X̂lm,Ŷlm with

X̂lm :=
1

2

(

|l〉〈m|+ |m〉〈l|
)

⊗ 1̂ , (11)

Ŷlm :=
i

2

(

|l〉〈m|− |m〉〈l|
)

⊗ 1̂ (12)

Writing it this way we can use Eq. (7) to compute an upper

bound to the HV as given by Eq. (10). Concentrating for sim-

plicity on the case of the HA consisting of a restriction onto just

one projective subspace, we may write, ∆2
H(Xlm)≤ ∆2

S(X̂lm)/Nα
and the corresponding for Ylm. Since ∆2

S(X̂lm,∆2
S(Ŷlm ≤ 1/NS

(NS being the dimension of the considered system) for all l,m
we find plugging all this into Eq. (10)

∆2
H(ρ̂ψ)≤

2NS

Nα
(13)

for this situation. Hence, whenever the dimension of the sub-

space onto which the full system is confined is much larger than

the dimension of the Hilbert space of the considered system, ω̂
will be the most likely, typical reduced state of the considered

system for almost all pure states from the AR. In this case also

the local entropies and purities of the ρ̂ψ’s are close to those of

ω̂. In short: in this case there is a typical state. This essentially

reflects the results by Popescu et. al. [7]

EIGENSTATE THERMALIZATION HYPOTHESIS AND

TYPICALITY

So far everything stated above referred to the relative fre-

quency of states featuring certain typical properties in Hilbert

space. However, this does not imply directly anything rigorous

on the dynamics, especially not on whether they may be clas-

sified as equilibrating, thermalizing, etc. Even though almost

all of Hilbert space may be filled with typical states, concrete

evolutions may never reach this giant region of typical states.

Or depending on the initial state, some evolutions may do so

while others may not. It is thus instructive to consider the link

between typicality and concrete quantum dynamics. Let us start

by considering a generic evolution of a quantum expectation

value (QEV):

〈ψ(t)|Â|ψ(t)〉= ∑
mn

ψ∗

mψn〈m|Â|n〉exp(−i(En −Em)t) (14)

with |m〉, |n〉 being energy eigenstates of the system correspond-

ing to eigenvalues Em,En and ψm,ψn being amplitudes of the

initial wave function |ψ(0)〉 with respect to the energy eigenba-

sis. If the QEV reaches a more or less constant value at all after

a (possibly very long) time, this value can only be the time aver-

age over an even longer time. Denoting this average (somewhat

vaguely) as 〈ψ(t)|Â|ψ(t)〉 and specializing to cases without de-

generacy yields:

〈ψ(t)|Â|ψ(t)〉= ∑
n

|ψn|
2
〈n|Â|n〉 (15)

For a thermodynamical system one would expect the expecta-

tion value of a relevant variable to reach an equilibrium value

that is independent of the details of the initial state, even though

it may depend e.g., on the overall energy, etc. This equilibrium

value would be given by the r.h.s. of Eq. (15) This, however,

can only be independent of the initial state if 〈n|Â|n〉 does not

(strongly) depend on n, at least not for energy eigenstates within

a given energy region of a pertinent width. Such an indepen-

dence has become popular under the name of “eigenstate ther-

malization hypothesis” [8; 9; 10]. But it may also be rephrased

from the perspective of typicality: This approximate indepen-

dence results if the energy eigenstates belong to the typical set.

This in turn is to be expected in an unbiased guess. Simply

because if the energy region is high-dimensional and the spec-

trum of Â is bounded, there are much more typical states than

there are non-typical ones. This, however is only an unbiased

guess. Whether or not it holds for a concrete Hamiltonian and a

concrete observable within a concrete energy regime cannot be

answered on the basis of typicality arguments.

DYNAMICAL TYPICALITY

So far we have been concerned with the question whether or

not certain QEV’s (or reduced states) will reach constant values
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that are independent of the details of the initial states, possibly

after a very long time. The experiences with non-equilibrium

thermodynamics are, however, even more far reaching. Ther-

modynamical observables do not only reach final equilibrium

values that are independent of the details of the initial states, but

starting from the same non-equilibrium values, all evolutions, at

any point in time, will be more or less the same irrespective of

the details of the initial state. In the following we turn towards

the question how this can be understood on the basis of typi-

cality. More specifically we demonstrate that pure states from

a set {|φ〉} featuring a common QEV of some observable Â at

some time t, i.e. 〈φ|Â(t)|φ〉 = a, most likely yield very similar

QEV’s at any later time, i.e. 〈φ|Â(t + τ)|φ〉 ≈ 〈φ′|Â(t + τ)|φ′〉
(with |φ〉, |φ〉′ both being states from the above set). We present

some analytical derivations based on the above considerations,

in particular on Eqs. (3 and 7) and we additionally support the

results with numerical calculations. Finally, we discuss what

consequences arise for the validity of projection operator meth-

ods (Nakajima-Zwanzig (NZ), etc. [12; 13; 14]) w.r.t. initial

states and the corresponding inhomogeneities. Furthermore, we

comment on the irreversibility of QEV’s corresponding to indi-

vidual pure states.

We specify our considered observable Â only by the mo-

ments, ci of its spectrum (ci := Tr{Âi
}/n, with n being the di-

mension of the relevant Hilbert space), and specialize without

substantial loss of generality to observables which are trace-

free, c1 = 0, and normalized to c2 = 1. Furthermore we require

the ci with i = 2, ...,8 to be of the order 1. Next, we introduce

an ensemble of pure states |φ〉 which is characterized as fol-

lows: All its states must feature the same QEV of the observable

Â, 〈φ|Â|φ〉 = a, must be normalized (〈φ|φ〉 = 1), and uniformly

distributed otherwise. That means the ensemble has to stay in-

variant under all unitary transformations in Hilbert space that

leave the expectation value of Â unchanged, i.e. those transfor-

mations that commute with Â, or, concretely, transformations of

the form eiB̂, with [B̂, Â] = 0. This specifies the most general

ensemble consistent with the restriction that all its state should

yield a given a.

For the following calculations we further introduce some

kind of “substitute” ensemble {|ω〉}, which is much easier to

handle. As will be shown below, this ensemble approximates

the exact ensemble {|φ〉} described above very well for large

Hilbert spaces.

The ensemble {|ω〉} is generated by

|ω〉= (1/
√

1+ d2)(1+ dÂ)|ψ〉 , (16)

where |ψ〉 are pure states drawn from a uniform distribution of

normalized states without further restriction as described above

Eq. (3). d is some small parameter which describes the devia-

tion from the “equilibrium” ensemble {|ψ〉}. Since it is essen-

tially the operator Â itself that generates {|ω〉} from the entirely

uniform distribution, {|ω〉} is invariant under the above uniform

transformations that leave a invariant.

The construction (16) allows for an evaluation of moments of

the distribution of 〈ω|Ĉ|ω〉 based on results on moments of the

distribution of 〈ψ|D̂|ψ〉, or concretely (for simplicity of notation

we denote in the remainder of this paper Hilbert space averages

as HA[· · · ] and Hilbert space variances as HV[· · · ]):

HA[〈ω|Ĉ|ω〉i] = HA[〈ψ|D̂|ψ〉i]

with D̂ =
1

1+ d2
(1+ dÂ)Ĉ(1+ dÂ) . (17)

(Of course the average on the l.h.s. corresponds to the substitute

ensemble {|ω〉} while the average on the r.h.s is based on the

completely uniform ensemble {|ψ〉}). Exploiting this, average

and variance of 〈ω|Ĉ|ω〉 may be evaluated with the help of Eqs.

(3,7).

To assure that the ensemble {|ω〉} indeed approximates the

ensemble {|φ〉}, in the limit of large n, we evaluate the following

four quantities

HA[〈ω|ω〉], HA[〈ω|Â|ω〉] ,
HV[〈ω|ω〉], HV[〈ω|Â(t)|ω〉] , (18)

where Â(t) denotes the time dependence according to the

Heisenberg picture. (For clarity: the results are given in

Eqs. (19), (20), (21) and (23).)

The states |ω〉 are not exactly normalized which would ren-

der them unphysical, of course. However, one finds from Eqs.

(3) and (17) (by implementing Ĉ = 1̂) that

HA[〈ω|ω〉] = 1 . (19)

By exploiting Eq. (7) and Eq. (17) one finds analogously for

the variance

HV[〈ω|ω〉] =
1

n+ 1
·

4d2 + 4d3c3 + d4(c4 − 1)

(1+ d2)2
. (20)

As defined above, the ci are of the order 1, i.e. the HV of

the norms scales with 1/n and becomes small for large Hilbert

spaces. Therefore, the vast majority of the states |ω〉 are ap-

proximately normalized for large n.

The average of the QEV’s of Â w.r.t. the ensemble {|ω〉}
(which is meant to correspond to the above a) is calculated by

exploiting Eq. (3) and Eq. (17) (by implementing Ĉ = Â)

HA[〈ω|Â|ω〉] =
2d+ d2c3

1+ d2
. (21)

That is, the mean QEV can be adjusted through the choice of the

parameter d. However, the replacement ensemble is restricted

on expectation values not too far away from zero (i.e. the av-

erage expectation value of the “equilibrium” ensemble {|ψ〉})

because by sweeping through all possible d not all possible ex-

pectation values up to the maximum eigenvalue of Â are reach-

able.

The evaluation of HV[〈ω|Â(t)|ω〉] turns out to be somewhat

more complicated, since we, in general, cannot fully diagonal-

ize the Hamiltonian and thus do not know Â(t) in detail. How-

ever, we are able to perform an estimation for an upper bound.

For this purpose we make use of the Hilbert Schmidt scalar

product for complex matrices defined as (X̂ ,Ŷ ) := Tr{X̂†Ŷ}.
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Thus, one can formulate a Cauchy-Schwarz inequality of the

form

Tr{X̂†Ŷ} ≤

√

Tr{X̂†X̂}Tr{Ŷ †Ŷ} . (22)

Particularly, one obtains Tr{Â(t)Â} ≤ Tr{Â2
}. Evaluating

HV[〈ω|Â(t)|ω〉] based on Eq. (7) and Eq. (17) (by imple-

menting Ĉ = Â(t)), realizing that Tr{D̂}
2 is always positive and

repeatedly applying the Cauchy-Schwarz inequality Eq. (22)

yields the inequality

HV[〈ω|Â(t)|ω〉]≤
1

n+ 1
·

1+ 4d
√

c4 + 6d2c4 + 4d3√c4
4
√

c4c8 + d4√c4c8

(1+ d2)2
. (23)

Again, since the ci are of the order 1, the upper bound decreases

as 1/n. Thus, the variance Eq. (23) becomes small for large

Hilbert spaces, just like the variance of the norms Eq. (20).

This result yields two major direct implications.

First, if one evaluates (23) at t = 0, one finds that the majority

of the states |ω〉 feature approximately the same QEV of the

observable Â for large n. From this property together with the

result that the states |ω〉 are nearly normalized one concludes

that the replacement ensemble {|ω〉} indeed approximates the

exact ensemble {|φ〉} very well for large Hilbert spaces (with

a = HA[〈ω|Â|ω〉] as given in Eq. (21)).

Second, the upper bound from Eq. (23) is valid for any time

t. Thus, for large enough systems, the dynamical curves for

aω(t) := 〈ω|Â(t)|ω〉 of the vast majority of pure states from the

initial ensemble {|ω〉} are very close to each other and thus to

the evolving ensemble average at any time t. Due to the similar-

ity of {|ω〉} and {|φ〉} this should also hold true for the “exact”

ensemble {|φ〉}. Thus, there is a typical evolution for the expec-

tation values 〈φ|Â(t)|φ〉 or, to rephrase, there is “dynamical typ-

icality”. This statement represents the main result of this paper.

Particularly, this typicality is independent of the concrete form

of the dynamics, which may be a standard exponential decay

into equilibrium or something completely different. For more

details on and a numerical demonstration of dynamical typical-

ity see [11]

The mean QEV, i.e., essentially a, can alternatively be refor-

mulated using the notion of a density matrix as usually done in

the framework of projection operator formalisms

a = HA[〈ω|Â|ω〉] = HA[Tr{Â|ω〉〈ω|}] = Tr{Â HA[|ω〉〈ω|]} .
(24)

The HA[|ω〉〈ω|] takes the role of the density matrix. Further

evaluation gives (using the “substitute” ensemble {|ω〉}) (see

[6])

HA[|ω〉〈ω|] =
1+ 2dÂ+ d2Â2

n(1+ d2)
. (25)

For ensembles close to equilibrium, i.e., small d, which is ful-

filled in the examples presented here, one can neglect the terms

which grow quadratically in d. In this case, the density matrix

takes approximately the same form as the initial state which is

often used in projection operator calculations which aim at de-

termining the dynamics of expectation values like a(t) ([15]).

There, for reasons given below, the (mixed) initial state is sim-

ply taken to be ρ(0) = 1/n+cÂ such that c = a(0). That means,

correct dynamical results from the projection operator methods

based on the above initial state describe the dynamics of the

ensemble average of {|ω〉}.

From this point of view some consequences on the applica-

bility of projection operator theories (NZ, time-convolutionless,

Mori formalism etc.), which are standard tools for the descrip-

tion of reduced dynamics, arise. These methods have in com-

mon the occurrence of an inhomogeneity in the central equa-

tions of motion that typically has to be neglected in order to

solve them. Generally, the inhomogeneity depends on the true

initial state, it, however, vanishes if the true initial state indeed

is of some specific form determined by the pertinent projector

[13; 16; 14]. For the above mentioned case the above ρ̂(0) is ex-

actly of that form, which means the dynamics of the ensemble

are equal to the dynamics generated by the pertinent projected

equation of motion without the inhomogeneity. However, the

evolution of the ensemble is typical, this implies that the inho-

mogeneity, as generated by most of the true initial states, should

be negligible.

On the other hand, there are investigations in the field of open

quantum systems, e.g., [17] and [18], suggesting that the true

initial states may have an utterly crucial influence on the dy-

namics, such that, e.g., some correlated initial states may yield

projected dynamics which are entirely different from the ones

obtained by corresponding product states.

Nevertheless, to rephrase, the results of this paper indicate

that in the limit of large (high dimensional) systems the inho-

mogeneity should become more and more irrelevant in the sense

that the statistical weight of initial states, which yield an inho-

mogeneity that substantially changes the solution of the pro-

jected equation of motion, should decrease to zero. Note that

this does not contradict the concrete results of [17] and [18].

The above results also shed some light on the relation of

the apparently irreversible dynamics of QEV’s to the, in some

sense, reversible dynamics of the underlying Schrödinger equa-

tion. If a mean QEV as generated by some initial non-

equilibrium ensemble (pertinent density matrix) relaxes to equi-

librium (which can often be reliably shown [13]) , then for the

majority of the individual states that form the ensemble, the cor-

responding individual QEV’s will relax to equilibrium in the

same way. Thus, for the relaxation of the QEV’s, the question

whether or not the initial ensemble truly exists is largely irrel-

evant. Of course, there may be individual initial states giving

rise to QEV evolutions that do not (directly) relax to equilib-

rium, but, to repeat, for high dimensional systems, their statisti-

cal weight is low.
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ABSTRACT
Quantum thermodynamics addresses the emergence of thermodynamical laws from quantum mechanics. The III-law of thermo-
dynamics has been mostly ignored. There are seemingly two independent formulation of the third law of thermodynamics, both
originally stated by Nernst. The first is known as Nernst heat theorem, which is purely static, and implies that the entropy flow
from any substance at the absolute zero is zero. And the second formulation known as the unattainability principle practically
state that no refrigerator can cool a system to absolute zero at finite time. We explore the dynamic version which is the vanishing
of rate of temperature decrease of a cooled quantum bath when T → 0. The III-law is then quantified dynamically by evaluating
the characteristic exponent ξ of the cooling process:

dT (t)
dt

∝−T ξ

when approaching absolute zero, T → 0. A generic continuous model of a quantum refrigerator is presented. The refrigerator
is a nonlinear device merging three currents from three heat baths: a cold bath to be cooled, a hot bath as an entropy sink,
and a driving bath which is the source of cooling power. A heat-driven refrigerator (absorption refrigerator) is compared to a
power-driven refrigerator. Similar results are obtained from reciprocating Otto refrigerators. When optimized, all cases lead to
the same exponent ξ, showing a lack of dependence on the form of the working medium and the characteristics of the drivers.
The characteristic exponent is therefore determined by the properties of the cold reservoir and its interaction with the system.
Two generic heat bath models are considered: a bath composed of harmonic oscillators and a bath composed of ideal Bose/Fermi
gas. The restrictions on the interaction Hamiltonian imposed by the third law which are discussed.

INTRODUCTION

Quantum thermodynamics is the study of thermodynamical
processes within the context of quantum dynamics. Thermo-
dynamics preceded quantum mechanics, consistence with ther-
modynamics led to Planck’s law, the dawn of quantum theory.
Incorporating the ideas of Planck on black body radiation, Ein-
stein (1905), quantised the electromagnetic field [1]. Quantum
thermodynamics is devoted to unraveling the intimate connec-
tion between the laws of thermodynamics and their quantum
origin requiring consistency. For many decades the two theo-
ries developed separately. Scovil [2; 3; 4] pioneered the study
of quantum engines and quantum ref refrigerators showing the
equivalence of the Carnot engine [5] with the three level Maser.

With the establishment of quantum theory the emergence of
thermodynamics from quantum mechanics becomes a key issue.
The two theories address the same subject from different view-
points. This requires a consistent view of the state and dynamics
of matter. Despite its name, dynamics is absent from most ther-
modynamic descriptions. The standard theory concentrates on
systems close to equilibrium. We advocate a dynamical per-
spective on quantum thermodynamics [6] and in particular its
implication on the III-law of thermodynamics. I will emphasis
learning by example analyzing quantum refrigerators to unravel
the III-law.

Quantum mechanics has been used to reintroduce dynami-
cal processes into thermodynamics. In particular, the theory
of quantum open systems supplies the framework to separate
the system from its environment. The Markovian master equa-
tion pioneered by Lindblad and Gorini-Kossakowski-Sudarshan

(LGKS generator) [7; 8] is one of the key elements of the the-
ory of quantum thermodynamics [9; 10]. The dynamical frame-
work allows to reinterpret and justify the theory of finite time
thermodynamics [11; 12; 13] which addresses thermodynami-
cal processes taking place in finite time.

Two major classes of refrigerators will serve to illustrate the
III-law, continuous and reciprocating. These classes can be ex-
amined up to the level of a single quantum device. The prime
example of a continuous quantum refrigerator is laser cooling.
In this case light is used to power the refrigerator. The device
can be understood as reversing the operation of a 3-level laser
[4; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27]. An
important addition is a quantum absorption refrigerator which is
a refrigerator with heat as its power source [28; 29; 19; 30]. An
example could be a refrigerator driven by sunlight [31]. Amaz-
ingly, in all these examples a thermodynamical description is
appropriate up to the level of a single open quantum system [10;
32; 33; 34].

The minimum requirement for constructing a continuous re-
frigerator is a system connected simultaneously to three reser-
voirs [12]. These baths are termed hot, cold and work reservoir
as described in Fig. 1.

This framework has to be translated to a quantum descrip-
tion of its components which include the Hamiltonian of the
system Ĥs and the implicit description of the reservoirs. Differ-
ent designs of refrigerators are reflected in the Hamiltonian of
the working medium.

Reciprocating refrigerators operate by a working medium
shuttling heat from the cold to the hot reservoir. The task is
carried out by a controlled dynamical system. A change in the
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Figure 1. A quantum heat pump designated by the Hamiltonian Ĥs
coupled to a work reservoir with temperature Tw, a hot reservoir with
temperature Th and a cold reservoir with temperature Tc. The heat and
work currents are indicated. In steady state Jh + Jc +P = 0 and the
entropy production Jh

Th
+ Jc

Tc
+ Jw

Tw
≥ 0 .

Hamiltonian of the system is accompanied by a change in the in-
ternal temperature. Upon contact with the cold side the temper-
ature of the working medium is forced to be lower than Tc-the
cold bath temperature. In a quantum reciprocating refrigerator
the control of temperature is governed by manipulating the en-
ergy levels of the system through external perturbation [35; 36;
37].

The adiabatic condition is an important idealisation in ther-
modynamics. In quantum thermodynamics their is a close con-
nection to the quantum adiabatic condition. When the adiabatic
conditions are not fulfilled, additional work is required to reach
the final control value. For an isolated system this work is re-
coverable since the dynamics are unitary and can be reversed.
The coherences stored in the off-diagonal elements of the den-
sity operator carry the required information to recover the extra
energy cost and reverse the dynamics. Typically, this energy is
not recoverable due to interaction with a bath that causes energy
dephasing. This lost energy is the quantum version of friction
[38; 39; 40].

There are several strategies to minimise the effect of quan-
tum friction. One possibility, termed quantum lubrication, is to
force the state of the system to commute with the instantaneous
Hamiltonian [ρ̂(t), Ĥ(t)] = 0. This can be achieved by adding an
external source of phase noise [41]. In the case of quantum re-
frigerators this noise was always harmful leading to a minimum
temperature the refrigerator can reach [37; 42].

Is it possible to find non-adiabatic control solutions with
an initial and final state diagonal in the energy representation
[ρ̂i, Ĥ(0)] = 0, [ρ̂ f , Ĥ(t f )] = 0 ? This possibility, which relies
on special dynamical symmetries, has been termed shortcut to
adiabaticity [43; 44; 45; 46; 36; 47; 48]. The idea is to optimise
the scheduling function f (t) of the control ĤC(t) = V̂C f (t) in
such a way that in the shortest time the frictionless transforma-
tion from an initial value of the control function to a final value
is achieved. Refrigerators which are able to approach Tc → 0
are frictionless.

Eventually all refrigerators converge to a universal behaviour
where the heat conductivity with the cold bath and the heat ca-
pacity of the cold bath determine the III-law characteristics.

THE QUANTUM TRICYCLE

A quantum description enables to incorporate dynamics into
thermodynamics. The tricycle model is the template for almost
all continuous engines and refrigerators. The tricycle engine has
a generic structure displayed in Fig. 1.

The basic model consists of three thermal baths: a hot bath
with temperature Th, a cold bath with temperature Tc and a
work bath with temperature Tw.
Each bath is connected to the engine via a frequency filter
which we will model by three oscillators:

ĤF = h̄ωhâ†â+ h̄ωcb̂
†
b̂+ h̄ωwĉ†ĉ , (1)

where ωh, ωc and ωw are the filter frequencies on resonance
ωw = ωh−ωc.
The device operates as an engine by removing an excitation
from the hot bath and generating excitations on the cold and
work reservoirs. In second quantization the hamiltonian
describing such an interaction becomes:

ĤI = ε

(
âb̂

†
ĉ† + â†b̂ĉ

)
, (2)

where ε is the coupling strength.
The device operates as a refrigerator by removing an ex-
citation from the cold bath and from the work bath and
generating an excitation in the hot bath. The r.h.s of the
Hamiltonian of Eq. (2) describes this action.

The frequency filters select from the continuous spectrum of
the bath the working component to be employed in the tricycle.
These frequency filters can be constructed also from two-level-
systems (TLS) or formulated as qubits [32]. Finally, the interac-
tion term is strictly non-linear incorporating three heat currents
simultaneously. This crucial fact has important consequences.
A linear device cannot operate as a heat engine or refrigerator
[49].

The I-law of thermodynamics is the energy balance of heat
currents originating from the three baths and collimating on the
system [50; 9],:

dEs

dt
= Jh + Jc + Jw . (3)

At steady state no heat is accumulated in the tricycle thus dEs
dt =

0. In addition entropy is only generated in the baths leading to
the II-law of thermodynamics:

d
dt

∆Su =
Jh

Th
+

Jc

Tc
+

Jw

Tw
≥ 0 . (4)

When the temperature Tw → ∞ no entropy is generated in the
power bath. An energy current with no accompanying en-
tropy production is equivalent to producing pure power: P = Jw
where P is the output power.

A reduced description for the dynamical equations of motion
of tricycle are set within the formalism of quantum open system:

d
dt

ρ̂s = L ρ̂s (5)
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where ρ̂s is the density operator of the tricycle L is the Liouville
superoperaor. Under Markovian conditions L takes the form
of the Gorini-Kossakowski-Sudarshan-Lindlad (GKS-L) gener-
ator [7; 8]. We chose to present the generator in Heisenberg
form for the system operator Ô

d
dt

Ô = L∗(Ô) =
i
h̄
[Ĥs, Ô]+∑

k
V̂kÔV̂†

k−
1
2
{V̂kV̂†

k , Ô} (6)

Where the operators V̂k are system operators still to be deter-
mined. The task of evaluating the modified system Hamiltonian
Ĥs and the operators V̂k is made extremely difficult due to the
nonlinear interaction in Eq. (2). Any progress from this point
requires a specific description of the heat baths and approxima-
tions to deal with the nonlinear terms.

The noise driven absorption refrigerator

The absorption refrigerator is the most simple example of a
device able to cool up to the absolute zero. Other devices such
as power driven refrigerators lead to very similar results. In the
absorption refrigerator the noise is the source of power driving
the refrigerator replacing Eq. (2) with:

ĤI = f (t)
(

â†b̂+ âb̂
†
)
= f (t)X̂ , (7)

where f (t) is the noise field. X̂ = (â†b̂+ âb̂
†
) is the generator

of a swap operation between the two oscillators. In addition X̂
is part of a closed set of SU(2) operators , Ŷ = i(â†b̂− âb̂

†
),

Ẑ =
(

â†â− b̂
†
b̂
)

and the Casimir N̂ =
(

â†â+ b̂
†
b̂
)

.

The Heisenberg equation for tricycle operators Ô reduced to:

d
dt

Ô = i[Ĥs, Ô]+Ln(Ô)+Lh(Ô)+Lc(Ô) , (8)

where Ĥs = h̄ωhâ†â+ h̄ωcb̂
†
b̂. For a Gaussian source of white

noise characterised by zero mean 〈 f (t)〉= 0 and delta time cor-
relation 〈 f (t) f (t ′)〉= 2ηδ(t−t ′). The noise dissipator becomes
Ln(Ô) =−η[X̂, [X̂, Ô]] [51].

The generators Lh and Lc become the standard energy relax-
ation terms driving oscillator ωhâ†â to thermal equilibrium with
temperature Th and Lc drives oscillator h̄ωbb̂

†
b̂ to equilibrium

Tc [52].

Lh(Ô) = Γh(Nh +1)
(
â†Ôâ− 1

2

{
â†â, Ô

})
+ ΓhNh

(
âÔâ†− 1

2

{
ââ†, Ô

})
Lc(Ô) = Γc(Nc +1)

(
b̂

†
Ôb̂− 1

2

{
b̂

†
b̂, Ô

})
+ ΓcNc

(
b̂Ôb̂

†− 1
2

{
b̂b̂

†
, Ô
}) . (9)

In the absence of the stochastic driving field these equations
drive oscillator a and b separately to thermal equilibrium pro-
vided that Nh = (exp( h̄ωh

kTh
)− 1)−1 and Nc = (exp( h̄ωc

kTc
)− 1)−1.

The kinetic coefficients Γh/c are determined from the system
bath coupling and the spectral function [14].

The absorption refrigerator can also be powered by a high
temperature source. At the high temperature limit of the work

bath Tw→ ∞ the nonlinearity of Eq. (2) can be simplified. The
generator of dissipation of the work bath becomes:

Lw(Ô) = Γw(Nw +1)
(

â†b̂Ôb̂
†
â− 1

2

{
â†âb̂b̂

†
, Ô
})

+ ΓwNw

(
âb̂

†
Ôâ†b̂− 1

2

{
ââ†b̂

†
b̂, Ô

}) . (10)

where Nw = (exp( h̄ωw
kTh

)− 1)−1. At finite temperature Lw(Ô)
does not lead to a close set of equations. But in the limit of
Tw→ ∞ it becomes equivalent to the Gaussian noise generator:
Lw(Ô) =−η/2

(
[X̂, [X̂, Ô]]+ [Ŷ, [Ŷ, Ô]]

)
, where η = ΓwNw.

The equations of motion in both case are closed to the SU(2)
set of operators. The cooling current Jc = 〈Lc(h̄ωcb̂

†
b̂)〉, is

solved for stationary conditions for N̂ and Ẑ.
Optimal cooling power is obtained for balanced heat conduc-

tivity Γh = Γc ≡ Γ, then:

Jc = h̄ωc
2ηΓ(Nc−Nh)

Γ+4η
. (11)

Cooling occurs for Nc >Nh⇒ ωh
Th

> ωc
Tc

which is the Carnot con-
dition. The coefficient of performance (COP) for the absorption
chiller is defined by the relation COP = Jc

Jn
, with the help of Eq.

(11) we obtain the Otto cycle COP [53]:

COP =
ωc

ωh−ωc
≤ Tc

Th−Tc
. (12)

Optimizing the cooling current Jc Eq. (11) first with respect to
the gain G = Nh−Nc leads to ωc ∝ Tc. Then optimizing the
power input leads to Jc ∝ h̄ωcΓ. This means that the cooling
rate as Tc→ 0 depends on the characteristics of the heat conduc-
tivity as the filter frequency ωc → 0. Other continuous driven
refrigerators show the same phenomena [20].

RECIPROCATING REFRIGERATORS

The quantum reciprocating refrigerator employes a working
medium to shuttly heat from the cold to the hot reservoir. This
requires a Hamiltonian that can be controlled externally chang-
ing the energy level structure. Typically the external control
influences only part of the Hamiltonian operator::

Ĥ = Ĥint + Ĥext(ω) (13)

where ω = ω(t) is the time dependent external control field.
Generically, the internal and external parts do not commute
[Ĥint , Ĥext ] 6= 0. This has a profound effect on the adiabatic seg-
ments of the refrigerator since then [Ĥ(t), Ĥ(t ′)] 6= 0. A state
which was initially prepared to be diagonal in the temporary
energy eigenstates, cannot follow adiabatically the changes in
energy levels induced by the control. The result is an addi-
tional power required to execute the adiabatic segment termed
quantum friction [38]. This friction has been found to limit
the performance of the heat engines [39; 54; 41; 40]. In
quantum refrigerators the frictional heating in the expansion-
demagnetization segment limits the minimal temperature of the
working medium. This in turn puts a restriction on the minimum
temperature that can be achieved. This means that a refrigerator
that can reach the absolute zero has to be frictionless.
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One obvious solution to a frictionless operation is perfect
adiabatic following i.e. at each time the system is diagonal in
the temporary energy eigenstates. The drawback of such an ap-
proach is that it requires ever increasing time to execute this
move when the temperature approaches Tc = 0. The question
then arises what is the minimum time required to execute an
adiabatic move.

Demanding that only at the initial and final time the system is
diagonal in the energy representation leads to additional oppor-
tunities for frictionless solutions. For a working medium con-
sisting of harmonic oscillators such solutions have been found
[46; 36; 48] which are characterized by a fast finite expansion
time. If negative frequencies are permissible this time can be
reduced further [43]. For these models where the energy gap
can be controlled to follow the cold bath temperature Tc, the
absolute zero seems attainable.

THE QUANTUM OTTO HEAT PUMP

The Otto model is a solvable example of a reciprocating re-
frigerator. The objective is to optimize the cooling rate in the
limit when the temperature Tc of the cold bath approaches abso-
lute zero. A necessary condition for operation is that upon con-
tact with the cold bath the temperature of the working medium
be lower than the bath temperature Tint ≤ Tc [55]. The opposite
condition exists on the hot bath. To fulfil these requirements
the external controls modify the internal temperature by chang-
ing the energy level spacings of the working fluid. The control
field varies between two extreme values ωc and ωh, where ω

is a working medium frequency induced by the external field.
The working medium consists of an ensemble of non interact-
ing particles in a harmonic potential. The Hamiltonian of this
system, Ĥ = 1

2m P̂2
+ K(t)

2 Q̂2, is controlled by changing the cur-
vature K = mω2 of the confining potential.

The cooling cycle consists of two heat exchange branches
alternating with two adiabatic branches. The heat exchange
branches (the isochores) take place with ω =constant, while the
adiabatic branches take place with the working medium decou-
pled from the baths. This is reminiscent of the Otto cycle in
which heat is transferd to the working medium from the hot and
cold baths under constant volume conditions.

The heat carrying capacity of the working medium limits
the amount of heat Qc which can be extracted from the cold
bath. Under the quantum adiabatic condition. This means also
nD ≥ neq

h , leading to Qc ≤ h̄ωc
(
neq

c − neq
h

)
. Maximum Qc is

obtained for high frequency h̄ωh� kBTh, leading to neq
h = 0 and

EA = 1
2 h̄ωh being the ground state energy. Then for Tc→ 0:

Q ∗c = h̄ωcneq
c = h̄ωce−

h̄ωc
kBTc ≤ kBTc (14)

where we have substituted the value of neq
c obtained from the

partition function and the last inequality is obtained by optimiz-
ing with respect to ωc leading to h̄ω∗c = kBTc. The general result
is that as Tc→ 0, Q ∗c and ω∗c become linear in Tc.

Only a finite cycle period τ leads to a non vanishing cooling
power Rc = Qc/τ. This cycle time τ = τhc + τc + τch + τh is the
sum of the times allocated to each branch. An upper bound on
the cooling rate Rc is required to limit the exponent as Tc→ 0.
The optimal cooling rate R opt

c depends on the time allocation
on the different branches.

Optimization of the cooling rate

For sufficiently low Tc, the rate limiting branch of the cycle
is cooling the working medium to a temperature below Tc along
the expansion adiabat). As Tc → 0, the total cycle time τ is of
the order of the time of this cooling adiabat, τhc, which tends to
infinity.

Quantum friction is completely eliminated if the adiabat
proceeds quasistatically with µ � 1. This leads to a scal-
ing law Rc ∝ T δ with δ ≥ 3. It turns out however that it is
not the only frictionless way to reach the final state at energy
ED = (ωc/ωh)EA. Other possibilities which require less time
and result in improved scaling, δ = 2 and δ = 3/2 δ ∼ 1 have
been worked out.

All frictionless solutions lead to an upper bound on the opti-
mal cooling rate of the form:

Rc ≤ Aω
νneq

c (15)

where A is a constant and the exponent ν is either ν = 2 for the
µ = const solution or ν = 3

2 for the three-jump solution of at-
tractive potentials [36] and ν ∼ 1 for repulsive potentials [47].
Optimizing Rc with respect to ωc leads to a linear relation be-
tween ωc and Tc,

At high compression ratio ωh�ωc and if in addition ωc�Γ

we obtain:

R ∗c ≈ h̄ω
2
cneq

c (16)

for the µ = const frictionless solution. For the three-jump fric-
tionless solution if one restricts to attractive traps:

R ∗c ≈
1
2

h̄ω
3
2
c
√

ωhneq
c , (17)

and for repulsive traps [47]:

R ∗c ≈
1
2

h̄ωc logωc
√

ωhneq
c , (18)

Due to the linear relation between ωc and Tc, Eq. (16) and
(17) the exponent δ where δ = 3 for the quasistatic scheduling,
δ = 2 for the constant µ frictionless scheduling and δ = 3

2 , δ∼ 1
for the three-jump frictionless scheduling.

Once optimising the time allocated for the adiabatic expan-
sion it becomes clear that the heat transport branch will become
eventually the time limiting step. This means that as Tc → 0
the reciprocating and the continuous refrigerator will both be
limited by the heat transport rate Γc.

THE III-LAW

The third law of thermodynamics was initiated by Nernst
[56; 57; 58]. Nernst formulated two independent statements.
The first is a purely static (equilibrium) one, also known as the
”Nernst heat theorem”: phrased:

The entropy of any pure substance in thermodynamic equi-
librium approaches zero as the temperature approaches
zero.
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The second formulation is dynamical, known as the unattain-
ability principle:

It is impossible by any procedure, no matter how idealised,
to reduce any assembly to absolute zero temperature in a
finite number of operations [59; 58].

There is an ongoing debate on the relations between the two
formulations and their relation to the II-law regarding which and
if at all, one of these formulations implies the other [60; 61; 62;
63]. Quantum considerations can illuminate these issues.

At steady state the second law implies that the total entropy
production is non-negative, cf. Eq. (4). When the cold bath ap-
proaches the absolute zero temperature, it is necessary to elim-
inate the entropy production divergence at the cold side. When
Tc→ 0 the entropy production scales as

Ṡc ∼−T α
c , α≥ 0 . (19)

For the case when α = 0 the fulfilment of the second law
depends on the entropy production of the other baths, which
should compensate for the negative entropy production of the
cold bath. The first formulation of the III-law modifies this re-
striction. Instead of α≥ 0 the III-law imposes α > 0 guarantee-
ing that at absolute zero the entropy production at the cold bath
is zero: Ṡc = 0. This requirement leads to the scaling condition
of the heat current Jc ∼ T α+1

c .
The second formulation is a dynamical one, known as the

unattainability principle; No refrigerator can cool a system to
absolute zero temperature at finite time. This formulation is
more restrictive, imposing limitations on the system bath inter-
action and the cold bath properties when Tc→ 0 [20]. The rate
of temperature decrease of the cooling process should vanish
according to the characteristic exponent ζ:

dTc(t)
dt

∼−T ζ
c , Tc→ 0 . (20)

Solving Eq. (20), leads to;

Tc(t)1−ζ = Tc(0)1−ζ − ct , f or ζ < 1 , (21)

where c is a positive constant. From Eq. (21) the cold bath is
cooled to zero temperature at finite time for ζ < 1. The III-law
requires therefore ζ ≥ 1. In order to evaluate Eq.(20) the heat
current can be related to the temperature change:

Jc(Tc(t)) =−cV (Tc(t))
dTc(t)

dt
. (22)

This formulation takes into account the heat capacity cV (Tc) of
the cold bath. cV (Tc) is determined by the behaviour of the
degrees of freedom of the cold bath at low temperature. There-
fore the scaling exponents can be related ζ = 1+α−η where
cV ∼ T η

c when Tc→ 0.
To get additional insight specific cases are examined. The

quantum refrigerator models differ in their operational mode
being either continuous or reciprocating. When Tc → 0 the re-
frigerators have to be optimised adjusting to the decreasing tem-
perature. The receiving mode of the refrigerator has to become

occupied to transfer energy. The rate of this process is propor-
tional to a Boltzmann term ω

γ
c exp[− h̄ωc

kBTc
]. When optimised for

maximum cooling rate the energy difference of the receiving
mode should scale linearly with temperature ωc ∼ Tc [15; 28;
36; 19; 20]. Once optimised the cooling power of all refriger-
ators studied have the same dependence on the coupling to the
cold bath. This means that the III-law depends on the scaling
properties of the heat conductivity γc(Tc) and the heat capacity
cV (Tc) as Tc→ 0.

Harmonic oscillator cold heat bath

The harmonic heat bath is a generic type of a quantum bath.
It includes the electromagnetic field: A photon bath, or a macro-
scopic piece of solid; a phonon bath, or Bogliyubov excitations
in a Bose-Einstein condensate. The model assumes linear cou-
pling of the refrigerator to the bath. The standard form of the
bath’s Hamiltonian is:

Ĥint = (b̂+ b̂
†
)

(
∑
k
(g(k)â(k)+ ḡ(k)â†(k))

)
,

ĤB = ∑
k

ω(k)â†(k)â(k) , (23)

where â(k), â†(k) are annihilation and creation operators for a
mode k. For this model the weak coupling limit procedure leads
to the LGKS generator with the cold bath relaxation rate given
by [20]

γc ≡ γc(ωc) = π(∑
k
|g(k)|2δ(ω(k)−ωc)

[
1− e−

h̄ω(k)
kBTc

]−1

.

(24)
For the Bosonic field in d-dimensional space, and with the linear
low-frequency dispersion law (ω(k)∼ |k|) the following scaling
properties for the cooling rate at low frequencies are obtained

γc ∼ ω
κ
c ω

d−1
c

[
1− e−h̄ωc/kBTc

]−1
(25)

where ωκ
c represents the scaling of the coupling strength |g(ω)|2

and ωd−1
c the scaling of the density of modes. It implies the

following scaling relation for the cold current

Jc ∼ T d+κ
c

[
ωc

Tc

]d+κ 1
eh̄ωc/kBTc −1

(26)

Optimization of Eq. (26) with respect to ωc leads to the fre-
quency tuning ωc ∼ Tc and the final current scaling

J opt
c ∼ T d+κ

c . (27)

Taking into account that for low temperatures the heat capacity
of the bosonic systems scales like

cV (Tc)∼ T d
c (28)
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which produces the scaling of the dynamical equation, Eq. (20):

dTc(t)
dt

∼−(Tc)
κ. (29)

Similarly, the same scaling Eq. (29) is achieved for the period-
ically driven refrigerator, with the optimization tuning ωc,λ ∝

Tc.
The III-law implies a constraint on the form of interaction with
a bosonic bath

κ≥ 1. (30)

For standard systems like electromagnetic fields or acoustic
phonons with linear dispersion law ω(k) = v|k| and the form-
factor g(k) ∼ |k|/

√
ω(k) the parameter κ = 1 as for low ω,

|g(ω)|2 ∼ |k|. However, the condition (30) excludes exotic dis-
persion laws ω(k) ∼ |k|α with α < 1 which anyway produce
the infinite group velocity forbidden by the relativity theory.
Moreover, the popular choice of Ohmic coupling is excluded
for systems in dimension d > 1. The condition (30) can be also
compared with the condition

κ > 2−d , (31)

which is necessary to assure the existence of the ground state
for the bosonic field interacting by means of the Hamiltonian
(23). The third law loses its validity if the cold bath does not
have a ground state. For a harmonic bath this could happen if
even one of the effective oscillators has an inverted potential.

The existence of a ground state

A natural physical stability condition which should be satis-
fied by any model of an open quantum system is that its total
Hamiltonian should be bounded from below and should pos-
sess a ground state. In the quantum degenerate regime even a
mixture of isotopes will segregate and lead to a unique ground
state. In the case of systems coupled linearly to bosonic heat
baths it implies the existence of the ground state for the follow-
ing bosonic Hamiltonian (compare with (23)):

Hbos = ∑
k

{
ω(k)a†(k)a(k)+(g(k)a(k)+ ḡ(k)a†(k))

}
. (32)

Introducing a formal transformation to a new set of bosonic op-
erators

a(k) 7→ b(k) = a(k)+
ḡ(k)
ω(k)

. (33)

we can write

Hbos = ∑
k

ω(k)b†(k)b(k)−E0, E0 = ∑
k

|g(k)|2

ω(k)
(34)

with the formal ground state |0〉 satisfying

b(k)|0〉= 0, for all k. (35)

For the interesting case of an infinite set of modes {k}, labeled
by the d-dimensional wave vectors, two problems can appear:

1) The ground state energy E0 can be infinite, i.e. does not
satisfy

∑
k

|g(k)|2

ω(k)
< ∞. (36)

2) The transformation (33) can be implemented by a unitary
one, i.e. b(k) =Ua(k)U† if and only if

∑
k

|g(k)|2

ω(k)2 < ∞. (37)

Non-existence of such a unitary implies non-existence of the
ground state (35) (in the Fock space of the bosonic field) and is
called van Hove phenomenon [64].

While the divergence of the sums (36), (37) (or integrals for
infinite volume case) for large |k| can be avoided by putting an
ultra-violet cutoff, the stronger condition (37) imposes restric-
tions on the form of g(k) at low frequencies. Assuming, that
ω(k) = v|k| and g(k) ≡ g(ω) the condition Eq. (37) is satisfied
for the following low-frequency scaling in the d-dimensional
case

|g(ω)|2 ∼ ω
κ, κ > 2−d. (38)

These conditions on the dispersion relation of the cold bath re-
quired for a ground state are identical to the conditions for the
III-law Eq. (31). The consistency with the III-law ensures the
existence of the ground state.

Ideal Bose/Fermi gas cold heat bath

An important generic cold bath consists of a degenerate
quantum gas composed of ideal Bose or Fermi gas. The model
refrigerator consists of the working medium of (infinitely)
heavy particles with the internal structure approximated (at least
at low temperatures) by a two-level-system (TLS) immersed in
the low density gas at the temperature Tc. Insight into the III-law
comes from realising that the degenerate gas is in equilibrium
with a normal part. The external refrigerator only couples to the
normal part. Once the temperature approaches zero the fraction
of the normal part decreases, eventually nulling the cooling cur-
rent. Another source of excitations are collective excitations of
Bogoliubov type [65]. The low energy tail can be described as
a phonon bath with linear dispersion thus the previous section
covered the III-law for these excitations.

The Markovian dynamics of such systems was derived by
Dumcke [66] in the low density limit and N-level internal struc-
ture. For the case of the TLS there is one receiving Bohr fre-
quency ωc. Cooling occurs due to the non-elastic scattering
leading to energy exchange with this frequency [20]:

γc = 2πn
∫

d3~p
∫

d3~p′δ(E(~p′)−E(~p)− h̄ωc) fTc(~pg)|T (~p′,~p)|2

(39)
with n the particles density, fTc(~pg) the probability distribution
of the gas momentum strictly given by Maxwell’s distribution,
~p and ~p′ are the incoming and outgoing gas particle momentum.
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E(~p) = p2/2m denotes the kinetic energy of gas particle.
At low-energies (low-temperature), scattering of neutral gas at
3-d can be characterized by s-wave scattering length as, having
a constant transition matrix, |T |2 = ( 4πas

m )2. For this model the
integral (39) is calculated

γc = (4π)4(2πmTc)
− 1

2 a2
s nωcK1(

h̄ωc

2kBTc
)e

h̄ωc
2kBTc , (40)

where Kp(x) is the modified Bessel function of the second kind.
Notice that formula (40) is also valid for an harmonic oscillator
instead of TLS, assuming only linear terms in the interaction
and using the Born approximation for the scattering matrix.

Optimizing formula (22) with respect to ωc leads to ωc ∼ Tc.
Then the scaling of the heat current becomes:

J opt
c ∼ n(Tc)

3
2 . (41)

When the Bose gas is above the critical temperature for the
Bose-Einstein condensation the heat capacity cV and the den-
sity n are constants. Below the critical temperature the density
n in formula (39) should be replaced with the density nex of the
exited states, having both cV ,nex scale as ∼ (Tc)

3
2 which finally

implies

dTc(t)
dt

∼−(Tc)
3
2 . (42)

In the case of Fermi gas at low temperatures only the small frac-
tion n∼ Tc of fermions participate in the scattering process and
contribute to the heat capacity, the rest is ”frozen” in the ”Dirac
sea” below the Fermi surface. Again, this effect modifies in the
same way both sides of (20) and therefore (42) is consistent with
the III-law. Similarly, a possible formation of Cooper pairs be-
low the critical temperature does not influence the scaling (42).

Figure 2 demonstrates the III-law showing the vanishing of
the cooling current Jc and the temperature decrease rate dTc

dt as
a function of Tc for the cases of the harmonic bath and Bose gas
bath.

The dynamical version of the III-law is up for critical analy-
sis [20]. The examples of quantum refrigerators show that the
cooling exponents are independent of the type of refrigerator
model used. The III-law exponents depend on the cold bath
characteristics, the ratio between the heat conductivity and the
heat capacity for a specific bath. This ratio should scale as∼ T ζ

c ,
ζ> 1 for the III-law to hold cf, Eq. (20). There has been a recent
challenge to the III-law claiming that zero temperature can be
reached [30; 67]. In our view this discrepancy is caused by an
uncontrolled approximation leading to the particular dispersion
used.

CONCLUSIONS

Quantum thermodynamics is applicable up to the level of a
single particle [6]. Very simple models have the same ther-
modynamical characteristics of macroscopic devices. For ex-
ample efficiency at maximum power related to finite-time-
thermodynamics. Also the quantum and thermodynamical adi-
abatic behaviour are closely linked. Deviations lead to friction
resulting in reduced efficiency.

Figure 2. A demonstration of the III-law. The vanishing of the cooling
current and the rate of temperature decrease as Tc→ 0. The harmonic
bath in 3-d indicated in blue and Bose gas in three dimensions indicated
in red. The Bose gas cools faster when Tc→ 0 but its rate of tempera-
ture decrease is slower than the harmonic bath.

After analysing many types of continuous and reciprocating
refrigerators universal conclusions can be drawn. When Tc→ 0
the colling current is the product of three terms:

Jc ∼−h̄ωcΓcG

where h̄ωc is the energy quantum to be extracted from the cold
bath. Γc is the rate of extraction or the heat conductivity. G =
Nh−Nc is the gain, the population difference between the hot
and cold side. Optimizing the gain leads to ωc ∼ Tc. This means
that fulfilment of the III-law requires the ratio Γc/cV to vanish
as Tc → 0, otherwise the cold bath can be cooled to its ground
state in finite time.

The III-law can be thought of as an attempt to isolate com-
pletely a subsystem. Once a system is cooled to the absolute
zero temperature it reaches a pure ground state and therefore
becomes disentangled from the rest of the universe. The III-law
is a statement that obtaining an isolated pure state is an ideali-
sation impossible at finite time.
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INTRODUCTION 

Wave nature of particles modifies the probability density at 
thermodynamic equilibrium from a constant quantity to a 
space and momentum dependent quantity and also particle’s 
momentum spectrum from continues quantity to a discrete 
one. These modifications cause quantum size effects (QSE) 
which change the thermodynamic behaviors of nano systems. 
Therefore the following questions emerge: how 
thermodynamic behaviors change at nanoscale, how it can be 
modeled, how one can make use of these different behaviors, 
how new devices and technologies can be developed based on 
the effects appearing at this scale. The subject of QSE on 
thermodynamics of nano systems is a relatively new research 
topic [1-13] and it has many potential applications for nano 
technology. New effects caused by the wave nature of 
particles can be used to design and produce completely new 
nano devices and even new thermodynamic cycles [14-19]. 

 
QSE become important when thermal de Broglie 

wavelength of particles is not negligible in comparison with 

the system’s characteristic size ( AVLg  , V is volume and A 

is surface area of the domain). Therefore, they are mainly the 
nanoscale effects. Due to QSE, thermodynamic state functions 
become dependent on size and shape of the system and some 
new and interesting behaviors appear at nano scale [1-13]. It 
has been shown that due to wave character of particles, 
density distribution of a gas in a finite domain is not 
homogenous even at thermodynamic equilibrium. There is a 
layer near to the boundaries of the domain and gas density 
goes to zero within this layer, which has been called as 
quantum boundary layer (QBL) since it disappears when the 
Planck’s constant goes to zero [8, 9, 11]. Another unusual 
behavior appearing at nano scale is the anisotropic pressure of 
a gas confined in an anisometric domain. 

The aim of this study is to give a brief review of some 
recent published results besides some very recent and 

unpublished ones yet. After the brief introduction of QSE and 
the methodology used for the calculation of thermodynamic 
properties under QSE, some novel results are summarized and 
discussed. These are quantum surface energy, loss of 
additivity rule for extensive quantities, anisotropic gas 
pressure, diffusion driven by size and shape differences, 
thermosize effects (similar to thermoelectric effects), quantum 
boundary layer, quantum forces as a macroscopic 
manifestation of quantum boundary layer, discrete nature of 
thermodynamic properties of a Fermi gas and multi-step Bose-
Einstein condensation. 

 

QUANTUM SIZE EFFECTS ON THERMODYNAMIC 

QUANTITIES 

In general, size effects are the changes in material 
behaviors due to change in material sizes. They appear when 
the characteristic size of a material is not sufficiently larger 
than the characteristic lengths of physical processes. 
Characteristic size of a material (a domain) can simply be 

represented by AVLg  . On the other hand, there are many 

characteristic lengths for physical processes and they are 
classified into two groups, namely classical and quantum. 
Classical ones are mean free path, mean distance between 
particles, characteristic length for a driving force, like 

TTLT 


, etc. Quantum characteristic lengths are thermal 

de Broglie wave length th , quantum coherence length, etc. 

Quantum size effects appear if th  is not negligible in 

comparison with gL , ( thgL  ). In that case, wave nature 

of particles become important and causes some fundamental 
assumptions and approximations to change: Momentum 
values of a particle become a discrete set although it is 
assumed to be a continuous quantity during the classical 
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treatments of macro systems. Besides the discrete nature of 
momentum, its minimum value is not zero in a finite-size 
system and this value is inversely proportional with the system 
size. Another quantity which has to be modified is the 
probability density. When the wave nature of particles is 
negligible, it is a homogenous quantity and equal to the 
classical probability density given by 1/V for a system of 
volume V. On the other hand, when the wave nature of 
particles becomes important, it is equal to the quantum 

probability density  2
px,  where   is the wave function 

obtained by the solution of the Schrödinger equation. The 
classical probability density predicts a homogenous density 
distribution at thermodynamic equilibrium whereas quantum 
one predicts a non-homogenous density distribution [8]. 

An ideal Maxwell gas confined in a rectangular finite 

domain: the simplest case 

To understand the appearance of QSE on thermodynamic 
quantities, the simplest way is to consider an ideal Maxwell 
gas of mono particles (like monatomic gas, free electron gas 
etc.) confined in a non-penetrable rectangular domain with 
sizes of L1, L2 and L3. Free energy expression of gas is 

 

 TkNF b   (1) 

 
where kb is the Boltzmann’s constant, T is temperature, N is 
number of particles in the domain and   is chemical potential 

determined by 
 

 









N
Tkb


 ln  (2) 

 
where   is the single particle partition function defined by 

 

   
r

br Tk exp . (3) 

 

Here the summation is over the quantum states r, r  is the 

energy eigenvalue of particles corresponding to quantum state 
r. Energy eigenvalues of a single particle confined in a 
rectangular box are well known and they are given as follows, 
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where m is the particle mass, h is the Planck’s constant, i1,i2 
and i3 are quantum state variables which are integer numbers 
running from one to infinity. By using Eq.(4), Eq.(3) can be 
expressed as 
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where 11 LLc , 22 LLc , 33 LLc  and the length 

28 thbc TmkhL   is one half of the most probable 

de Broglie wavelength of the particles. 

In macro system;   cLLLL 321 ,,  and   1,, 321  . 

In that case; discrete nature of momentum values of particles 
(and so the energy values) is negligible and they are assumed 
to be continuous quantities. Therefore, infinite summations 
can be replaced by infinite integrals and the trivial 

thermodynamic expressions, which are independent of the 
system size and shape, are obtained. In nano systems, 
however, at least one of the domain sizes is near to the order 

of cL . Therefore wave nature of particles becomes important. 

In this case, discrete nature of momentum values is noticeable 
and their discrete values are running from a non-zero value to 
infinity. Therefore, integral representations of summations 
give the incorrect results and more precise methods, like 
Poisson, Abel-Plana or Euler-Mac Lauren summation formula, 
should be used for the calculations of summations. Poisson 

summation formula is given for an even function  if  as 
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The first term on the right hand side is the dominant and 
conventional integral term. The second one is the zero 
correction term, which excludes the false contribution of the 
zero value of i to the integral term. The third one is the 
discreteness correction due to discrete values of i instead of 
continuous ones. It is possible to show numerically that the 
contribution of discreteness correction is much smaller than 
that of the zero correction as long as the system size is bigger 

than Lc ( 1 ). As an example, the ratio of the discreteness 

correction to the zero correction for the summation in Eq.(5) 
is less than 10

-4
 even for α=1. Therefore, the main correction 

to the integral approximation comes from the second term in 

Eq.(6) for 1 . 

By using the first two terms of Eq.(6), partition function in 
Eq.(5) is determined as 
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If the values of alphas are smaller than unity but greater 
enough than zero, then the second and third order terms in 
alphas can be neglected. In that case, Eq.(7) is simplified as 
[5] 
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where 31 thqn   is the quantum density and 321 LLLV   is 

the domain volume. Thus free energy expression is obtained 
by using Eq.(8) in Eqs.(2) and (1) as follows  
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The first term in Eq.(9) is the classical bulk free energy while 
the second term is the quantum surface energy [5, 6, 8, 9, 11]. 
It is seen that free energy is proportional to both volume and 
surface area of the domain. This means that free energy of a 
simple system does not depend on only two variables like 
temperature and density but also depend on surface over 
volume ratio which is the quantity sensitive to size and shape 
of the domain. In other words, thermodynamic state functions 
of nano systems are size and shape dependent. It should be 
noted that quantum surface energy disappears when the system 

size becomes macroscopic since VAth  goes to zero. 
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Furthermore, it also disappears when the Planck’s constant 
goes to zero. Therefore, the second term is a pure quantum 
term which is noticeable only in nano systems. 
 Instead of using the summations over quantum states, it is 
also possible to use summations over energy states by 
considering the density of states. In that case, the same free 
energy expression can be obtained by using the Weyl’s 
conjecture, which gives a precise formula for density of states 
depending on not only the domain volume but also the surface 
area, periphery and even the corners or end points of the 
domain [2-4, 7]. The advantage of using the Weyl’s 
conjecture is that there is no need to solve the Schrödinger 
equation for each different domain shape. It is the general 
expression for any domain shape. In other words, in addition 
to the rectangular domain, Eq.(9) is valid also for cylindrical, 
spherical or other shapes of domain [6, 11]. 

COROLLARIES OF QSE ON THERMODYNAMICS 

By using Eq.(9), internal energy, pressures in each 
direction, entropy and chemical potential are obtained as 
follows respectively, 
 

V

A
TNkTNkU th

bb
82

3 
  (10) 













1
1

2
1

L
Tnkp th

b


 (11a) 













2
2

2
1

L
Tnkp th

b


 (11b) 
















3
3

2
1

L
Tnkp th

b


 (11c) 

V

A
Nk

n

n
NkS th

b
q

b
82

5
ln





























  (12) 

V

A
Tk

n

n
Tk th

b
q

b
4

ln


 












  (13) 

 
 Non-extensivity: Due to the second terms of Eqs.(9), (10), 
(12) and (13), additivity rule of extensive quantities is not 
valid in nano systems [5]. 
 Pressure anisotropy: Eqs.(11a-11c) shows that pressure 
becomes an anisotropic quantity in an anisometric nano 
domain since it is different in each directions. In other words, 
pressure of even an ideal gas is not a scalar quantity and it 
becomes a tensorial quantity generally in nano systems [5, 6]. 
 Size and shape difference driven diffusion: As a result of 
the second term in Eq.(13), a chemical potential difference 
can be created by size or shape differences even if density and 
temperature are kept constant. This causes a diffusion driven 
by size and shape differences [5]. 

Thermosize effects: Another interesting behaviour 
appearing due to QSE is thermosize effects. They are very 
similar to thermoelectric effects which arise when two 
different conductors or semi-conductors are under the same 
temperature gradient. The temperature gradient induces an 
electrochemical potential gradient in each conductor and it is 
known as Seebeck effect. As long as the conductors are made 
by the different materials, the same temperature gradient 
causes different electrochemical potential gradients in each 
conductor. Therefore, a net electrochemical potential 
difference is obtained at hot or cold side when the conductors 

are connected to each other at the other side. This potential 
difference can drive an electrical current on an external load. 
During the isothermal flow of electrical current from one 
material to the other, a heat exchange between the charge 
carriers and their environment at interface is observed which 
is known as Peltier effect. Therefore, two different types of 
conductors having different electrical properties should be 
used to observe the thermoelectric effects. Consequently, 
differences in both temperature and electrical properties are 
necessary to get the thermoelectric effects. If the conductors 
are made by the same material, then the thermoelectric effects 
disappear. On the other hand, since the size itself becomes a 
control variable on thermodynamic state functions at nano 
scale, instead of using two different materials, it becomes 
possible to get a net potential difference by using the two 
different sized (macro and nano) structures made by the same 
material under the same temperature gradient. In that case, 
differences in both temperature and size cause some new 
effects so called “thermosize effects” [5, 13]. After the 
proposition of thermosize effects, some recent works have 
been done to analyze the thermodynamic cycles based on 
thermosize effects [14-19]. 

Quantum boundary layer: For an ideal Maxwellian gas 
confined in a domain with finite size, the local density is given 
by [8] 
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where cln  is the classical density defined by VNncl  , N is 

the total number of particles in the whole confinement volume 

V and  xr  is the eigenfunction corresponding to quantum 

state r. For an ideal Maxwell gas confined in a rectangular 
box, dimensionless density distribution in one direction is  
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where   clnxnn ~~  , *
~ Lxx   and *L  is the size of the 

domain in chosen direction [8]. Figure 1 shows the density 

distribution for 2.0 . It is seen that density distribution is 

not homogenous and there is a boundary layer where the 
density goes to zero. As a result of the wave character of 
particles, particles tend to accumulate in the inner parts of the 
domain and this tendency causes higher local gas density than 

the classical one, 1~ n , for the interior region. Thickness of 

quantum boudary layer is given as [8] 
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Figure 1: Dimensionless density distribution in a box. 
 

Since the thickness of boundary layer depends on thermal de 
Broglie wavelength of particles, it has been called as quantum 
boundary layer, QBL.  

Effective volume and effective density: By using the 
concept of QBL, it is possible to define an effective volume 
and effective density respectively as 
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Therefore, if the effective density is used instead of classical 
density in trivial free energy expression of an ideal Maxwell 
gas, Eq.(9) is directly obtained without following its relatively 
complicated calculation procedure. Application of effective 
density in trivial free energy expression gives 
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In case of A V  , by use of the approximation 

 ln 1 x x   for x<<1 and considering 4th  , Eq.(19) 

is expressed as 
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Eq.(20) is exactly equal to Eq.(9). Thus the concepts of 
effective volume and density give an opportunity to derive the 
thermodynamic quantities under QSE in a simple way. 
Furthermore, the second term can physically be explained as a 
compression work against the normal gas pressure to push the 
gas particles into the inner parts of the domain from the 

boundaries for a distance of 4th  , [8]. This work simply 

results from the wave nature of particles. Collisions between 
particles and the boundary are switched on when the distance 

is less than 2 2th   as it can be seen from Figure 1. 

 
 Density distributions in quantum gases: For ideal Fermi 
and Bose gases, dimensionless density distribution is 
expressed as [10] 
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where   is dimensionless chemical potential defined as 

bk T  . Density distributions are shown in comparison 

with that of a Maxwell gas in Figure 2.   is chosen as 

0.2   while the values of   are 10   and 0.05    for 

Fermi and Bose gases respectively. 
 

 
Figure 2: Dimensionless density distributions of ideal 
monatomic Maxwell, Fermi and Bose gases in one 
direction.  

 
It is seen that in a degenerate Fermi gas, there is also 

density oscillation, which is called Friedel oscillation in 
literature for the electron gas. In a degenerate Bose gas, 
inhomogeneous region expands and covers the whole domain. 

 
Quantum surface tension and quantum forces: A 

hypothetical experimental setup is shown in figure 1. A 
rectangular box is filled by a Maxwellian gas and separated 
into two parts by a movable and infinitesimally thin wall.  

 

 
Figure 3: A schematic view of a quantum force, F , acting 
on a moving wall. 

 
The change in total surface area of the domain is only due 

to the change in lateral area of the interior part of the moving 
wall (Aw=2LyLs). By making use of Eq.(20), quantum surface 
tension of a Maxwellian gas can be determined as [12], 
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Surface tension is an unexpected behavior for an ideal gas in a 
classical manner. On the other hand, even an ideal gas has 
surface tension due to the existence of QBL. Since the 

thickness of QBL goes to zero in classical limit ( 0 ), it 

has been called as quantum surface tension (QST) [12]. QST 
is approximately 10

-6
 Nm

-1
 for He-4 gas under the standard 

conditions (300 K and 10
5 

Pa). As shown in Figure 3, surface 
tension of a gas causes an outward quantum force on the 
moving wall to minimize the quantum surface energy. 
Derivative of free energy with respect to Ls gives the quantum 
force as, 
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The effective thickness of the wall is 2  because of the QBL 

around infinitesimally thin moving wall. Thus, quantum force 

F  acting on the wall in outward direction can easily be 
expressed by means of the normal component of stress tensor 
(pressure) or surface tension as in equation (23). In other 
words, quantum force can be explained by a normal force due 
to gas pressure acting on the effective area of the movable 

wall ( 2 yL ). If quantum forces of gases are experimentally 

verified, this can be one of the macroscopic manifestations of 
quantum boundary layer and quantum surface energy. 

 
Discrete nature of thermodynamic quantities: If the 

confinement is strong enough, then alpha values are greater 
than unity. In that case, the discrete nature of momentum 
states becomes very dominant and makes the thermodynamic 
quantities of an ideal Fermi gas discrete. In figure 4, the 
relation between number of particles and dimensionless 
chemical potential is shown just to give an idea. It is clearly 
seen that only some certain values of chemical potential are 
available since the number of particles has an integer value. 
The similar behavior can be observed in internal energy. The 
most interesting results is obtained for the specific heat at 
constant volume. There are lots of peaks in the relation 
between specific heat and number of particles, see Figure 5. 

 

 
 
Figure 4: Number of Fermi particles strongly confined in 
an anisometric rectangular domain versus dimensionless 

chemical potential, bk T  . 

 

 
Figure 5: Dimensionless specific heat at constant volume, 

v vc c k , of a Fermi gas strongly confined in a cubic 

domain versus to number of Fermi particles. 
 
Multiple Bose-Einstein Condensation: Bose-Einstein 

condensation phenomenon is the accumulation of particles in 
ground state. It is a well-known effect observed in Bose gases. 
This phenomenon causes very interesting and known 
behaviors like superconductivity and super fluidity. It appears 
if the temperature is below the Bose-Einstein condensation 
(BEC) temperature. In the problems considered in literature, 
there is only one BEC temperature. Due to QSE, however, it is 
possible to show that there are seven different BEC 
temperatures in a Bose gas confined in an anisometric 
rectangular domain. In an ongoing study, it is shown that BEC 
does not occurs directly on ground state but instead, gas 
particles condense first on surface modes of momentum space. 
In each surface mode, one momentum component takes its 
ground state value. Therefore there are three different surface 
modes for an anisometric rectangular confinement domain. 
After the condensations on surface modes are completed, 
particles start to condense on line modes. Similarly, there are 
three different line modes where two momentum components 
take their ground state values. After condensations on the line 
modes are also completed, particles finally condense on 
ground state in which three momentum components take their 
ground state values. This subject is an ongoing research 
project and some new results will be published very soon. 

 
All the results summarized above show that 

thermodynamics in nano scale is completely different than that 
in macro scale. QSE on thermodynamics cause entirely new 
behaviors and effects that can be experimentally verified for 
the exploration of nano world as well as used to design some 
new nano devices. 
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INTRODUCTION 

New experimental evidence (e.g., [1-8]) over the last three 

decades has seen the emergence at atomistic scales of the 

phenomenon of “spontaneous decoherence”, which in turn has 

led to a revival of interest in matters related to the unitary 

foundations of quantum mechanics (QM) and what if anything 

non-equilibrium thermodynamics (NET) may have to say 

about this.  This renewed interest is fuelled to a large extent by 

the impact that this phenomenon has on a large number of 

applications. Thus, understanding and predicting modern 

physics phenomena such as decoherence, entanglement and 

coherence structure, and dynamics in applications involving 

nanometric devices, fast switching times, clock 

synchronization, super-dense coding, quantum computation, 

teleportation, quantum cryptography, etc. [9-27] is of great 

importance. Since “spontaneous decoherence” at these scales 

suggests the presence of non-linearities not envisioned by the 

unitary dynamics of QM, a number of recent publications 

[28-33] have proposed possible fundamental tests of standard 

unitary QM, emphasizing on the basis of the fairly general 

ansatz developed in [28-32] “that if the pure states happen to be 

attractors of a nonlinear evolution, then testing the unitary 

propagation of pure states alone cannot rule out a nonlinear 

propagation of mixtures” [33].   

This last statement is illustrated in the context of recent 

work on nonlinear Lie-Poisson dynamics [29-32]. However, 

testing these particular dynamics experimentally is necessarily 

a matter of guesswork since the physicality of these theories is 

quite obscure. In contrast, a physically meaningful nonlinear 

dynamics emerges when the postulates of QM are 

supplemented by both the 1
st
  and 2

nd
  laws of thermodynamics. 

In such an approach, the evolution of state of a quantum system 

is no longer unitarily constrained but can, in fact, occur 

non-unitarily in time. Thus, at the expense of only violating the 

unitary constraint, an approach such as intrinsic quantum 

thermodynamics (IQT) [34-56] (not to be confused with 

quantum thermodynamics (QT), i.e., dissipative quantum 

dynamics [27,57])  provides an overall physical framework for 

such non-unitary evolutions. Central to IQT is the fact that the 

dynamics of any change in state is at all times consistent with 

the laws of physics and thermodynamics [34-40].  To satisfy 

both the requirements of thermodynamics, particularly that of 

the 2
nd

 law, as well as those of QM, IQT relies on two 

fundamental insights.  The first is that the ontological entity 

representing any state of a quantum system
1
 is not the density 

operator (i.e., wave function projector) of QM, i.e., a projector 

onto a wave function,
2
 but instead a density or “state” operator 

based on an ensemble consisting of an infinite number of 

identical systems identically prepared [34].  The second is that 

the Schrödinger equation of motion of QM, though correct, is 

incomplete since it is unable to describe the dynamics of a 

system with entropies greater than zero [34,37-40]. IQT 

completes this equation on the basis of the 

steepest-entropy-ascent (SEA) principle or today better known 

as the locally-maximal entropy generation (LMEG) dynamical 

law, which encompasses the Hatsopoulos-Keenan statement of 

the 2
nd

 law via the Hatsopoulos-Gyftopoulos ansatz [34] as a 

theorem about the dynamical (Lyapunov) stability of 

equilibrium states [53]. This equation is able to describe the 

irreversible (i.e., non-linear and non-unitary) relaxation of 

system state to one of stable equilibrium based solely on 

changes occurring intrinsic to the system. 

In contrast, QT, which presents an alternative framework, is 

based on the so-called “open-system model” in which the 

dynamics of relaxation to stable equilibrium result from 

assumed “weak-interactions”, i.e., statistical perturbations (the 

so-called Born-Markov approximation), with an environment 

or heat bath. However, the “dissipative” state evolutions, 

                                                           
1 All systems are in the end quantum systems; but as the size of a system increases, the 

importance of quantum effects decreases, since the dispersions representing observables 

approach delta functions. 
2 The density operator of QM only represents a limited class of states and is, thus, a special 

case of the density operator of IQT. 
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which this approach predicts, are still linear in nature and, thus, 

can at best only mimic the non-linear dynamics that may be in 

play. Despite this weakness, QT has engendered a great deal of 

work over the last few decades [27,57-71]. Even so, whatever 

the reality of the assumed “weak interactions”, Nakatani and 

Ogawa [60] have shown that the Born-Markov approximation 

for obtaining evolution equations, i.e., quantum master 

equations (QMEs), cannot be used for composite systems in 

the strong-coupling regime, no matter how short the reservoir 

correlation time. Indeed, the assumption of very short 

correlation times is problematic even in the weak-coupling 

regime, since it comes at the expense of introducing the 

so-called Loschmidt paradox [72]. In other words, because the 

overall linear dynamics of the closed and isolated 

system-plus-environment composite is reversible and unitary, 

the assumption of weak coupling is equivalent to assuming that 

system and environment are effectively maintained 

decorrelated, which in turn gives rise to an irreversible and 

non-unitary linear dynamics of the system alone. This paradox 

as well as the inherent weaknesses outlined in [52] limit the 

applicability of these QMEs. 

Other more traditional approaches to the modelling at the 

atomistic level of phenomena typically viewed as irreversible 

(e.g., heat transfer) are the so-called “closed quantum systems” 

(CQS) approach [73] and the two heat reservoirs mediated by a 

quantum system (HRQS) approach [74-95]. Results shown to 

date with the former [73] indicate that as long as a “persistent 

coherence” is maintained between the amplitudes of the 

different energy eigenlevels, the heat flux remains constant. 

This observation may indeed have important implications for 

other “irreversible” phenomena such as the decoherence of 

qubits, which is a major obstacle to the construction of 

quantum computers [18]. Thus, if a qubit were placed, for 

example, in contact with a non-equilibrium environment so 

that a persistent energy flux through the qubit could be 

induced, would it protect the qubit from complete 

decoherence? This question requires an answer, which needs 

further investigation to see if it can be answered generally in 

the affirmative and if so, how such a system and interaction 

could be set up. Note that an early candidate for the role of 

qubit, i.e., a trapped ion, can be described to some extent by the 

model of a particle confined to a harmonic potential well 

exposed to statistical perturbations due to electromagnetic 

noise [96–99]. It is also interesting to note that it can be 

described quite well by IQT [56], which is able to describe its 

behaviour in terms of a relaxation from a state of 

non-equilibrium to that of stable equilibrium.  

As to the HRQS approach, results to date (e.g., [74]) show 

that certain quantities (i.e., a non-equilibrium temperature Tp 

equal to the kinetic energy of the quantum system (mediator) 

and another, Tx, to its potential energy) have proven useful in 

quantifying the strengths of the couplings between the 

mediator (quantum particle or system) and the heat reservoirs 

[91]. When the so-called friction kernel, which is a measure of 

the interaction between mediator and reservoirs, is non-zero, 

the difference between these two temperatures as well as 

between Tx and the average of the two reservoir temperatures is 

also non-zero; and, therefore, these temperatures and 

differences can be used as a measure of the quantum 

entanglement, i.e., the degree of coherence, between the 

mediator and reservoirs [91]. As a criterion for quantifying the 

coupling strength, these quantities are equally applicable to 

steady as well as unsteady state. Nonetheless, it is doubtful that 

the HRQS model even if modified could be used to determine 

the rate of decoherence, which takes place as the composite 

system relaxes to stable equilibrium. In contrast, IQT is not 

limited in this way.  

THE IQT APPROACH 

At the heart of IQT is the concept that irreversible 

relaxations of state occur due to the intrinsic characteristics, 

i.e., endogenous (as opposed to exogenous) statistics, of the 

system itself. Thus, the framework of IQT suggests that 

“spontaneous decoherence” is a consequence of intrinsic 

system irreversibilities and that thermodynamics and in 

particular NET do indeed have a great deal to say about it. 

Beyond the theoretical work, which has laid the foundations 

for IQT, this assertion has found a number of verifications via 

experimental comparisons found in [41,44,56,100,101] and is 

reasonable in the context of a quantum system (even a 

one-particle system) in a non-equilibrium state spontaneously
3
 

relaxing to stable equilibrium.  

The foundations of IQT were developed by Hatsopoulos 

and Gyftopoulos [34] with important preliminary work by Park 

[35]. In 1981, Beretta contributed a fundamental dynamical 

postulate embodied in a non-linear equation of motion [37] 

consistent with the proof by Simmons and Park [36] that the 

evolution in state of a closed thermodynamic system to stable 

equilibrium is necessarily non-linear. Important subsequent 

work includes [38-56,100,101,106,107].  IQT asserts that the 

2
nd

 law of thermodynamics, with its implications of intrinsic 

irreversibility, applies at all physical levels of description from 

the macroscopic and classical to the atomistic and quantum 

[34].  Central to the foundations of IQT is the recovery of the 

concept of “state of a system”, a bedrock of physical thought 

and a concept lost in quantum statistical mechanics (QSM) 

where the state necessarily refers only to the state of an 

ensemble, which consists of an infinite number of identical 

systems not identically prepared [34,35].  Also central to IQT 

is the fact that the dynamics of any change in state is at all 

times consistent with the laws of physics and thermodynamics 

[34-40].   

The rationale behind the concept that the density operator 

is synonymous with the state of a system is based on the idea 

that in QM the density operator contains all the information 

necessary to characterize the state (i.e., the so-called pure state) 

of a quantum system at any given instant of time.  Thus, for 

example, the expectation value S  for the entropy, as defined 

by von Neumann, can be written in terms of the density or 

“state” operator   via  

)(kS B lnTr  (1) 

Here kB is Boltzmann’s constant.  In QM, the value of S  is 

necessarily zero for all pure states.  For states whose entropy is 

greater than zero, the density operator of QM can be replaced 

with the von Neumann statistical operator of QSM.  However, 

the problem which arises with using QSM to describe non-zero 

entropy states is that not only does this introduce the difficulty 

mentioned above about the loss of the concept of “state of the 

system” but as well leads to an entropy, which is not the 

entropy of thermodynamics [45].  In fact, QSM leads to the 

so-called ‘irreversibility paradox”, the resolution of which 

requires a simultaneous consideration of questions that 

specifically go to the heart of issues surrounding the 2
nd

 law of 

thermodynamics, namely, i) what the physical roots of 

                                                           
3 A physical mechanism for such relaxations may, for example, be spontaneous emissions 

resulting from vacuum fluctuations and/or self-radiation reactions [102-105]. 
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“entropy” and “irreversibility” are, ii) whether or not “entropy 

generation” due to irreversibility is merely a statistical 

illusion
4
, and iii) what a general description of non-equilibrium 

is [54].  Such a general description is not possible with QSM 

without the addition of a non-thermodynamic principle 

(microscopic reversibility), assumption (e.g., small 

perturbations to ensure linear behaviour), or approximation 

(e.g., sufficiently small deviations from stable equilibrium) 

[54].  In contrast, IQT and its density operator exhibit none of 

these drawbacks and instead lead to an entropy that is physical 

and exists for all zero-entropy and non-zero entropy states and 

all systems regardless of size.  Moreover, the entropy at a 

fundamental level of description is seen as a measure of how 

the system energy E  is distributed amongst the system’s 

available degrees of freedom, i.e., its energy eigenlevels, while 

the entropy generation is a measure of how the energy E  is 

redistributed in a change of state [54]. 

The second insight mentioned above that the Schrödinger 

equation of motion is incomplete has prompted the search for 

an equation able to describe irreversible processes.  In QT, this 

has led to master equations of various types [27,57].  These 

equations have been developed to model the “open quantum 

systems” introduced by Lindblad and Kossakowski and others 

[62-65] where the increase in the entropy of a system is 

brought about through interactions with an external reservoir. 

In IQT, the generalization to irreversible or “dissipative” 

processes is provided by an equation of motion originally 

developed by Beretta [37,39,40], which assumes a priori a 

tendency for an intrinsic increase in system entropy, i.e., the 

entropy of thermodynamics, along the direction of steepest 

entropy ascent compatible with the system’s constraints.  

Unlike the master equations of QT, which are often second 

order approximations [108], the Beretta equation represents the 

full nonlinear dynamics, which describes the irreversible 

evolutions in state of systems that are arbitrarily far from stable 

equilibrium. 

Thus, the outlook provided by IQT avoids the 

inconsistencies pointed out by Loschmidt [72], which arise 

when trying to force the emergence of irreversible, non-unitary 

behaviour from dynamics that is intrinsically reversible and 

unitary. Avoided as well is the need for the exogenous statistics 

found in QSM that destroy the concept of state of a system by 

requiring that a system possessing entropy be described with 

heterogeneous ensembles of identical systems in “pure” states. 

Statistical mixtures of pure states have the additional 

inconsistency which arises when work can be extracted from 

subsets of the ensemble even though none can be extracted 

from the ensemble as a whole.  Clearly, this violates the 2
nd

 law 

[54]. 

IQT also avoids the violations of the 2
nd

 law that are 

inherent with the QT approach.  In contrast to QSM, QT is not 

based on statistical mixtures of pure states and, thus, the 

definition of “state of the system” is preserved.  However, 

because the entropy for the “overall closed system” (i.e., open 

system plus reservoir) cannot increase, the potential for 

extracting energy to do work remains unchanged (i.e., is not 

degraded) regardless of whether gradients of thermodynamic 

potentials between the open system and reservoir exist and 

change over time.  This cannot be since it suggests that 

regardless at what point in time energy is extracted that the 

                                                           
4 In fact, this is the conclusion drawn from statistical mechanics that entropy generation 

due to irreversibility does not result from the endogenous dynamics but instead from 

temporal changes of some exogenous statistical description. 

potential to do work remains unchanged even when all 

thermodynamic potentials have ceased to exist.  This is 

inconsistent with what is observed in nature and, thus, violates 

the 2
nd

 law.  IQT obviates such difficulties because the increase 

in entropy is a process that is intrinsic to the closed (isolated) 

system, leading to a degradation in the potential to do work. 

THE IQT EQUATION OF MOTION 

The equation of motion of IQT governs how the diagonal 

and off-diagonal elements of the thermodynamic state or 

density operator (or matrix)  5
 evolve in time. The 

formulation is based on the hypothesis that physical systems 

naturally seek the path of local steepest entropy increase on 

their way to stable equilibrium [4,46,53,109].  For an isolated 

or non-isolated, single elementary constituent (i.e., a single 

particle, a single assembly of indistinguishable particles, or a 

single field) closed (i.e., not experiencing a non-work 

interaction) system, this equation is given by 

   





,M
k

,H
i

dt

d

B2

1



 (2)

 

where H is the Hamiltonian operator and   a scalar time 

constant or functional
6

. Both the 1
st
 and 2

nd
 laws of 

thermodynamics are implied by this equation and its other 

forms given below
7
. The first term on the right of this equation 

is the Schrödinger term, which governs the reversible (linear) 

dynamics for the system, and it along with the time-derivative 

term on the left are equivalent to the temporal part of the 

Schrödinger equation.  This term governs the relative phases 

between system energy eigenlevels and quantum interference 

effects. The second term on the right,    Bk/,M 2 , the 

so-called dissipation term, depends on  , ln , and H  and 

pulls the state operator in the direction of the projection of the 

gradient of the entropy functional S  onto the hyper-plane of 

constant system energy E . This term governs the dissipation 

of a system’s adiabatic availability [111] as its state relaxes to 

one of maximal entropy and is written as 

   MM,M    (3) 

where  HHSM   (4) 

   HSHHH    (5) 

Here M is a non-equilibirum Massieu function and H  and 

S are the deviation operators of H and S defined as 

HIHH   (6)  (105)  

SISS   (7)  (106)  

The S operator is expressed as  

   lnln BkPkS BoB   (8)  (107)  

with oP  and B, respectively, the projection operators onto the 

range and the kernel of  . 

For a closed composite system composed of two 

distinguishable particles, assemblies of particles, fields, or a 

                                                           
5 The state operator is a linear, self-adjoint, non-negative definite, unit-trace operator (i.e., 

an operator whose diagonal elements sum to one) on Hilbert space H. 
6 Note, that a lower bound for  and, thus, an upper bound on   Bk/,M 2  may be 

suggested by the time-energy Heisenberg uncertainty relation [53].  
7 This equation implies the 1st law because as is proven in Beretta et al. [39], each of the 

generators (e.g., the identity and Hamiltonian operators) of the motion (i.e., the evolution 

or change in state of the system) is also a constant of the motion of the system. Thus, 

)( HTrE  is conserved and the E in any adiabatic process is uniquely related to the 

amount of work involved in the process.  This equation also implies the 2nd law since as 

proven in Beretta et al. [39], a system admits of one and only one stable equilibrium state 

for given finite mean values of the generators of the motion. This, of course, is simply a 

generalization of the Hatsopoulos-Keenan statement of the second law [34,110].  
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combination of these, Eq. (2) is replaced by the following 

equation [40,52,53]: 

     BA
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i

dt
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1
 (9) 

where         H
JJJ

HSM   (10) 

     HρITrH
JJJ

J
   (11) 

     SρITrS
JJJ

J
   (12) 

and B,AJ  , while A,BJ  . Equation (9) is easily 

generalized to three or more distinguishable constituents. 

Finally, for a system experiencing a non-work interaction 

(i.e., a heat or mass interaction), the IQT equation of motion in 

the form of Eq. (2) may be extended to the following [56,112]:   
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where the last term on the right accounts for either a heat or 

mass interaction. If the latter, G
~

is a non-equilibrium, 

Massieu-like, mass-interaction operator as described in detail 

in [112]. If the former, G
~

is a non-equilibrium Massieu heat 

interaction operator expressed as 
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where H

~
  is a non-equilibrium temperature defined as 
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~
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and the S
~

and H
~

operators result from a rotation of the 

original S and H operators, i.e., 

.
H

S

TTH
~
S
~

** 






















 


















10

01

cossin

sincos

0

01




 (16) 

The angle of rotation  is a function of the slope of the heat 

interaction trajectory and is expressed as 

  .TT *
Q

1tan  (17) 

The quantity 
*T is a constant with units of temperature and a 

value of one, while QT  is yet another non-equilibrium 

temperature that corresponds to the slope of the line in the 

energy versus entropy operator plane, which connects the 

current state of the system and a state in mutual stable 

equilibrium with the heat reservoir.  

We now turn to a brief discussion of the application of 

each one of these equations of motion and a comparison of the 

results generated with experimental data found in the literature. 

The results presented and discussed are taken from 

[56,100,101]. Equation (2) is used to predict the reaction rate 

constant of the chemically reactive systems in [101] based on 

the IQT framework laid out by Beretta and von Spakovsky in 

[107], while Eq. (9) is employed to predict the rate of 

decoherence of a composite atom-field system [100]. Finally, 

Eq. (13) is utilized to predict the relaxation to stable 

equilibrium of a single ion in a cat state contained in a Paul trap 

as it interacts with a heat reservoir [56]. 

CHEMICALLY REACTIVE SYSTEM RESULTS 

Since the IQT equation of motion implements the 

principle of SEA, its application to chemical kinetics is 

consistent with the idea put forward by Ziegler [113] 

concerning the thermodynamic consistency of the standard 

model of chemical kinetics. In [107], Beretta and von 

Spakovsky develop a general modeling framework for 

applying IQT to chemically reactive systems at very small 

scales, i.e., to an isolated, chemically reactive mixture with one 

or moreactive reaction mechanisms. In modeling the 

non-equilibrium time evolution of state of these systems, both 

the system energy and particle number eigenvalue problems as 

well as the non-linear IQT equation of motion must be solved, 

i.e., in this case Eq. (2). The former establish the so-called 

energy and particle number eigenstructure of the system, i.e., 

the landscape of quantum eigenstates available for the system, 

while the latter determines the unique non-equilibrium 

thermodynamic path, i.e., unique cloud of trajectories, taken by 

the system, showing how the density operator, which 

represents the thermodynamic state of the system at every 

instant of time, evolves from a given initial non-equilibrium 

state to the corresponding stable chemical equilibrium state. 

Once this path is established, the time dependences of all the 

non-equilibrium thermodynamic properties (e.g., composition, 

chemical potentials, chemical affinities, reaction coordinates, 

reaction rates), including, of course, the entropy, are known. In 

fact, the reaction rate in the literature is typically reported at a 

given temperature in terms of the so-called reaction rate 

constant (i.e., the forward reaction rate constant), which is 

determined both experimentally as well as numerically via a 

phletora of classical (e.g., [114]), quasi-classical (e.g., 

[115-121]), and time-independent (e.g., [122,123]) and 

time-dependent quantum methods (e.g., [123,124]). The IQT 

results presented here and the more extensive ones in [101] are 

reported in terms of this parameter. It should be noted that no a 

priori limiting assumption of stable equilibrium via a specific 

choice of temperature nor of pseudo-equilibrium between 

reactant and activated complex, both of which are common to 

the other methods in the literature, is made. In addition,  the 

reaction rate constants found via the IQT formulation are in 

reality not constants but instead instantaneous values found at 

each instant of time along the non-equilibrium path determined 

by the IQT equation of motion.  

The IQT kinematic model for the chemically reactive 

system, which establishes the energy and particle number 

eigenstructure of the system, is not repeated here due to its 

complexity and, thus, the reader is referred to [101,107] for 

details. This model includes vibrational, rotational, and 

translational degrees of freedom consistent with the number 

and types of degrees of freedom used by other models found in 

the literature. The dynamic model is that of Eq. (2).  

For purposes of the comparisons given below, the system 

considered here initially consists of 1 particle of F and 1 of H2 

and is governed by the following reaction mechanism:  

HFHHF  2  (18) 

An initial non-equilibrium state is established by finding a 

metastable equilibrium state far from equilibrium, which is 

then perturbed into the initial non-equilibrium state used by the 

equation of motion, Eq. (2). This equation evolves the system 

density or state operator  for the reacting mixture in time at 

constant system energy until a state of stable equilibrium is 

reached. The temperature at this final state is found to be 298 

K.  The degrees of freedom for each of the molecules and 

atoms in the IQT model are given in Table 1. Results for the 

non-equilibrium compositional changes of the reacting mixture 

are shown in Figure 1, while Figure 2 provides the 

instantaneous values of the forward and backward reaction rate 
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constants kf(T,t) and kb(T,t), respectively, at every instant of 

time t. Included as well is the equilibrium constant K(T), which 

is the ratio between kf and kb. The time evolutions of the net, 

forward and backward reaction rates (i.e., r, rf, and rb) 

corresponding to these rate constants are shown in Figure 3. 

Similar time-evolutions for other non-equilibrium thermody-  
 

Table 1. Degrees of freedom for each of the molecules and atoms in 

the IQT model [101]. 

Species 
Translational 

quantum #’s
a
 

Vibrational 

quantum #’s 

Rotational 

quantum #’s 

F 1,...,400   

H2 1,...,400 0 0,1 

FH 1,...,400 0,1,2,3 0,1,...,7 

H 1,...,400   
a Although the translational principal quantum number k varies here from 1 to 

400 for each species, only a sampling (30) of these quantum numbers across 

this range is used for each species in the IQT model. 

 
Figure 1. IQT time evolution of the non-equilibrium compositions of 

the reacting mixture reported as the number of particles for each 

species for a system expectation energy, which at stable equilibrium 

corresponds to a temperature of 298 K [101]. 

 
Figure 2. IQT time evolution of the forward and backward reaction 

rate constants and the equilibrium constant for a system expectation 

energy, which at stable equilibrium corresponds to a temperature of 

298 K [101]. 

 

namic properties such as the reaction coordinate, reaction 

coordinate rate, entropy, entropy generation, species energies, 

non-equilibrium temperature, etc. can be generated. The 

relaxation time  for the time evolutions presented in the 

previous figures is 3.8 x 10
-15

 sec and is based on a fit of the 

IQT results to the value of kf at 298 K reported in the fourth 

column of Table 2 [101, 124]. This table also includes the 

values of kf from a number of other researchers. Note that the 

computational time to complete a single evolution, which 

provides a complete picture of the non-equilibrium quantum 

and thermodynamic evolution in time of the system is on the 

order of seconds for this size system on a conventional PC with 

a dual-core processor. Much larger systems have already been 

simulated.  

 
Figure 3. The forward, reverse and net reaction rates for a system 

expectation energy, which at stable equilibrium corresponds to a 

temperature of 298 K [101]. 

 

Table 2. Values of the forward reaction rate constant reported in the 

literature for the reaction mechanism of Eq. (18) [101,124]. 

kf(T)/10-11 (cm3/molecule-sec) 

T (K) WHa SBAb HBGMc RHPBd WTMe 

298 2.33 2.48 2.93 2.81 2.26 
a Wurzberg and Houston;  b Stevens, Brune, and Anderson; c Heidner, 

Bott, Gardner, and Melzer;  d Rosenman, Hochman-Kowal, Persky, 

and Baer; e Wang, Thompson and Miller. 

 

Finally, additional validation of the IQT predictions is 

needed via a comparison of the forward reaction rate constants 

predicted with IQT to those given in Table 2 based on a , 

which is a functional of the density operator and which 

reflects the physics of the problem. This validation has not yet 

been done. The present author and his co-authors in [101] are 

currently working on identifying a unique functional    

capable of capturing the dynamics of the reaction without the 

use of adjustable parameters.   

COMPOSITE ATOM-FIELD SYSTEM RESULTS 

In [100], the modeling of the non-linear dynamic change in 

state of a composite system formed by an atom and an 

electromagnetic field mode is accomplished using IQT (Eq. 

(9)). The state of the composite (closed and adiabatic) 

microscopic system evolves in time towards stable 

equilibrium, resulting in the loss of correlations between its 

constituents. The IQT description assumes the composite 

system to be isolated and the time evolution of its state to be 

intrinsically both Hamiltonian and non-Hamiltonian. In so 

doing, a loss of quantum entanglement or coherence is fully 

predicted. 

The IQT model of the composite system considered here is 

that given in [100] and for sake of brevity is not repeated here. 

A description of the Cavity Quantum Electrodynamic (CQED) 

experimental system upon which the IQT theoretical model is 

based is given in [125-131,100]. A very brief description is 

provided here beginning with the experimental configuration 

depicted in Figure 4. Rb atoms are contained in oven B from 

which one atom in an excited state eB   is selected and 

subsequently subjected to a classical resonant microwave 
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2/  pulse in 1R  supplied by source 'S . This creates a state 

in a superposition of circular Rydberg levels e  and g  

(ground level) for the atom, corresponding to principal 

quantum numbers 51 and 50, respectively. The atom is then 

allowed to enter the high-Q quantum cavity C that contains an 

electromagnetic field mode in a Fock state   previously 

injected into the cavity by an external source S . The 

atom-field interaction lasts for a time it  and since the atom 

and cavity are off-resonant, absorption of photons is not 

exhibited during the interaction; and the atom only shifts the 

phase of the field mode by an amount  . This dephasing 

provokes the coupling of the excited level of the atom to the 

field mode state with phase 
 ie  and the coupling of the 

ground state of the atom to the field mode state with phase 
 ie . In this maner, an entanglement between the states of 

the constituents is created. After leaving the cavity, the atom is  

 
Figure 4. Schematic representation of an atom-field Cavity QED 

experiment [126,100]. 

subjected again to a resonant microwave pulse in 2R  equal to 

that at 1R , mixing the atom energy levels and creating a 

“blurred” state for the composite, 
2R , which preserves the 

quantum ambiguity of the field phase. The excited level state 

of the Rb atom is then observed and recorder at D. 

To measure the decay of coherence left on the field mode 

state by the Rb atom, a second atom of identical characteristics 

to the first is sent along the same path after a delay time of dt . 

The state of the second atom recorded at D reveals the effects 

left by the first atom on the state of the field mode. A 

theoretical description of the experimental observations in 

[127] provides a functional for the correlation signal which is 

plotted in Figure 5 relative to the measured data found in [128]. 

The red triangles with error bars correspond to the 

experimental values, while the blue line corresponds to the 

theoretical prediction made using the correlation functional of 

[127]. The initial point of the correlation has been moved con 

sistent with [128] from a value of 0.5 to 0.18 on the vertical 

axis to account for experimental imperfections. As can be seen 

the fit is good for the initial points but deviates at the end and 

even becomes negative, which is inconsistent with what is 

observed. 

The IQT prediction is given by the green line, which is the 

norm C  of the commutator operator (  ,HiC  ). It is used 

as a direct indicator of how the coherence of the 

electromagnetic field mode is dissipated in time since the 

detection of the atom in the excited level state projects the state 

of the field in a maximally coherent local state. The green line 

corresponds to a value for the internal relaxation times of 

 BA  0.26 for the atom and field in Eq. (9). This value is 

comparable to that reported in [132]. As in the case of the 

correlation functional, the maximum value for C  is moved to 

0.18 on the vertical axis. As seen in this figure, IQT predicts 

the experimental data well. A very slight deviation from the 

 
Figure 5. Comparison of the loss of coherence predicted by IQT and 

by the correlation function of [127] with the CQED experimental 

results of the group at Paris [128]. 

 

experimental values is observed with the fourth and fifth points 

but is well within the experimental error bars. The deviation 

may correspond to normal imperfections in the experimental 

equipment (e.g., the quality of mirror reflections which allows 

a leak of photons from the cavity [130, 133]); or it may be that 

the value chosen for A  and B do not completely take into 

acount the physical characteristics of the contituents. For 

example, it may be that slightly differing values for each 

realaxation time are needed or that these times are instead 

functionals of the state operator as described in [37, 134].  

SINGLE TRAPPED ION SYSTEM RESULTS 

In [56], the modeling of the non-linear dynamic change in 

state of a single ion system in an excited cat state interacting 

with a heat reservoir is accomplished using IQT and Eq. (13). 

In this case, the system is not isolated and experiences a heat 

interaction. The time evolution of its state is intrinsically 

governed by the dissipation term and extrinsically by the heat 

interaction term in Eq. (13).  

The IQT model for this system is that given in [56] and for 

sake of brevity is not repeated here. A description of the 

experimental system upon which the theoretical model is based 

is given in [96,97,56] and involves a single trapped ion 

contained in a Paul trap put into various quantum superposition 

states. A very brief description is provided here beginning with 

the experimental configuration depicted in Figure 6. The decay 

of the initial state is observed and measured after the ion trap is  

 

Figure 6. Schematic of the Paul trap used in the experiment of 

Turchette et al. [97]. 
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put into contact with a range of engineered external 

electromagnetic sources. Radio frequency fields are produced 

to trap an ion, while noise signals serve as an external 

electromagnetic source.  The strength of the fields is quadratic 

so the particle behaves as a quantum harmonic oscillator within 

the trap.  The harmonic superposition or “cat” or “motional” 

states that are produced in the experiments are also known as 

Fock states, and density matrices describing these states 

contain only diagonal elements [96]. The amount of 

decoherence over time is measured using interferometry 

techniques. Nuclear spin states in the ion are excited and 

combined by means of optical pumping and laser cooling 

methods with the superpositions of the motional eigenstates of 

interest.  The spins constitute a “carrier” signal that enables the 

degree of decoherence of the cat states to be readily measured.  

Because the spin states are correlated with the energy 

eigenstates of the harmonic oscillator, any changes or 

degradation of the cat state result in proportional changes 

between the phases of the spin eigenstates. During the 

experimental procedure, a state is created and immediately 

coupled to the electromagnetic source.  After a given delay, a 

measurement is made.  The phase shift between the spin 

components is seen as a loss of signal contrast from which the 

magnitude of decoherence of the cat state is calculated.  The 

electromagnetic source consists of a noise spectrum of a given 

mean frequency and power that is applied to the fields 

containing the ion in the Paul trap.  Numerous measurements 

are conducted to produce ensemble average values that make 

up each experimental data point. 

Both Turchette et al. [96] using QT and Smith and von 

Spakovsky using IQT [56] have successfully modelled the 

decay (i.e. decoherence) observed in this first experiment.  

Levin et al. have studied this problem minus the external 

source using CQS [73]. The IQT simulations use 100 equally 

spaced energy eigenlevels to represent the lowest eigenlevels 

of the trap.  Results are presented here for one of the 

superposition eigenstates experimentally studied in [97], i.e., 

cat state 3  which is the state associated with the energy 

eigenlevel three levels above the ground energy level.  In the 

experiments, the power applied to the heat source 2V  is used 

to represent the relaxation time. 

Results for the IQT simulations are compared with the 

experimental probability distribution versus time data in Figure 

7 as well as with experimental data plotted on the energy- 

entropy diagram in Figure 8 [56].  The temperatures of the heat 

reservoirs of the experiment are estimated by noting the 

tightness of the probability distribution for the data as stable 

equilibrium is approached.  In Figure 7, comparisons between 

the IQT results and the experimental data for the lowest 5 

energy eigenlevels of the cat state are shown.  The 

experimental data is indicated by the symbols.  The solid lines 

are the probabilities predicted by IQT using Eq. (13).  The time 

constants used for the IQT simulation are  =20.0 and G
=25.0 for the dissipation term and heat interaction term, 

respectively.  The scaled reservoir temperature in each figure 

for a Boltzmann constant set to 1.0 is estimated to be 0.15.  As 

can be seen, the IQT simulation matches the data quite well.  

Comparisons with the experimental data shown in Figure 

8 include predictions from the QT quantum master equation 

used in [97] and from the IQT equation of motion, Eq. (13). 

Comparisons are made for the 5 lowest eigenlevels with the 

experimental data given in dark blue, those for QT in light blue  

 
Figure 7. Comparison of the experimentally measured dissipative 

decay of cat state 3
 
with IQT predictions [56]. 

 
Figure 8. Non-equilibrium evolutions in thermodynamic state for the 

lowest 5 energy eigenlevels as well as for the lowest 100 [56]. 

 

and those for IQT in magenta.  Note that the fact that the 

experimental data as well as the QT and IQT trajectories curve 

back on themselves is, of course, physically impossible, i.e., 

violates the 2
nd

 law.  However, this occurs here solely due to 

the fact that these trajectories are only based on the lowest 5 

energy eigenlevels.  When 100 eigenlevels are considered, the 

result for the IQT equation of motion is the magenta curve, 

which shows the evolution in state predicted by IQT from the 

initial state designated by the cross in magenta to a state of 

mutual stable equilibrium with the heat reservoir. Clearly, the 

IQT simulations do a good job of matching the experimental 

data, providing an alternative, comprehensive, and reasonable 

explanation to that provided by QT. 

CONCLUSIONS 

This paper has provided a brief summary of what IQT is and 

what can be done with it. The power of this rather unique 

approach has been illustrated via a number of applications of 

the IQT framework to non-reactive and reactive systems. 

Validations of this theory via comparisons of predicted results 

to experimental and numerical data found in the literature 

demonstrate the power of this approach and support the claim 

that IQT provides an alternative, comprehensive, and 

reasonable explanation of irreversible phenomena at an 

atomistic level. 

REFERENCES 

[1] Bollinger, J. J.,  et al., 1989, Phys. Rev. Lett. 63, 1031. 

[2] Walsworth, R. L., Silvera, F.,Mattison, E. M.,  Vessot, R. 

F. C., 1990, Phys. Rev. Lett. 64, 2599. 

[3] Chupp  T. E., Hoare, R. J., 1990, Phys. Rev. Lett. 64, 

2261. 

5-level QSM 

simulation

100-level QT 
simulation

5-level experi-
mental data

5-level QT 
simulation

curve of stable 
equilibrium states

state of mutual 
stable equilibrium 

with the heat 
reservoir

slope is 

temperature TR

of the heat 
reservoir

5-level IQT 

simulation

100-level IQT 

simulation
5-level QT 

simulation

365



 

[4] P .K. Majumder, P. K., et al., 1990, Phys. Rev. Lett. 65, 

2931. 

[5] Benatti, F., Floreanini, R., 1996, Phys. Lett. B 389, 100 

and 1999, Phys. Lett. B 451, 422. 

[6] Lisi, E., Marrone, A., Montanino, D., 2000, Phys. Rev. 

Lett. 85, 1166. 

[7] Klapdor-Kleingrothaus, H. V., Päs, H., Sarkar, U., 2000, 

Eur. Phys. J. A 8, 577. 

[8] D. Hooper, D., Morgan, D., E. Winstanley, E., 2005, 

Phys. Lett. B 609, 206.  

[9] Weinberg, S., 1989,  Phys. Rev. Lett. 62, 485. 

[10] Stern, A.,  Aharonov, Y.,  Imry, Y., 1990, Phys. Rev. A 

41, 3436. 

[11] Ekert, A. K., 1991,  Phys. Rev. Lett. 67, 661. 

[12] Holyst, J, A., Turski, L. A., 1992, Phys. Rev. A 45, 6180. 

[13] Vidal, G., Werner, R. F., 1993, Phys. Rev. A 65, 032314. 

[14] Unruh, W. G., Wald, R. M., 1995, Phys. Rev. D 52, 2176. 

[15] Bennett, C. H.,  Brassard, G., Popescu, S. Schumacher, 

B., Smolin, J. A., Wootters, W. K., 1996, Phys. Rev. Lett. 

76, 722. 

[16] Grigorescu, M., 1998, Physica A 256, 149. 

[17] Miranowicz, A., Matsueda, H., Wahiddin, M. R. B., 

2000, J. Phys. A: Math. Gen. 33, 5159.  

[18] Nielsen, M. A., Chung. I. L., 2002, Quantum 

Computation and Quantum Information. Cambridge 

Univ. Pres., Cambridge. 

[19] Bergmann, G., 1984, Phys. Rep. 107, 1. 

[20] Pierre, F., Gougam, A. B., Anthore, A., Pothier, H., 

Estève, D., Birge, N., 2003, Phys. Rev. B. 68, 085413. 

[21] Washburn, S., Webb, R., 1986, Adv. Phys. 35, 375. 

[22] Pierre, F., Birge, N., 2002, Phys. Rev. Lett. 89, 206804. 

[23] Sigwarth, O., Labeyrie, G., Jonckheere T., Delande, D., 

Kaiser, R., Miniatura, C., 2004, Phys. Rev. Lett. 93, 

143906. 

[24] Buchleitner, A., Viviescas, C., Tiersch, M. (eds.), 2009, 

Entanglement and Decoherence: Foundations and 

Modern Trends, Lect. Notes in Phys. 768, Springer. 

[25] Kleinekathöfer, U., 2009, Time-local quantum master 

equations and their applications to dissipative dynamics 

and molecular wires, energy transfer dynamics in 

biomaterial systems, Springer Series in Chemical Physics 

93, 339, DOI 10.1007/978-3-642-02306-4_10.  

[26] Rand, S. C., 2010, Lectures on Light: Nonlinear and 

Quantum Optics using the Density Matrix. Oxford Univ. 

Press, Oxford, UK 

[27] Weiss, U., 2008, Quantum Dissipative Systems. World 

Scientific, series in Modern Condensed Matter Physics – 

vol. 13, Singapore-London 

[28] Domokos, G.,  Kovesi-Domokos, S., 1999, J. Phys. A: 

Math. Gen. 32, 4105.  

[29] Czachor, M., 1998, Phys. Rev. A 57, 4122 

[30] Czachor, M., Kuna, M., 1998, Phys. Rev. A 58, 128 

[31] Czachor, M., Naudts, J., 1999,, Phys. Rev. E 59, R2497 

[32] Jordan, T. F., 1993, Ann. Phys. (N.Y.), 225, 83 .  

[33] S. Gheorghiu-Svirschevski, S., 2001, Phys. Rev. A 63, 

022105 and the Addendum, Phys. Rev. A 63, 054102.  

[34] Hatsopoulos, G. N., Gyftopoulos, E. P., 1976, Found. 

Phys. 6, 15-31, 127-141, 439-455, 561-570. 

[35] Park, J. L., 1968, Am. J. Phys. 36, 211. 

[36] Simmons Jr., R. F., Park, J. L., 1981, Found. Phys. 11, 

297. 

[37] Beretta. G. P., 1981, On the general equation of motion of 

Quantum Thermodynamics and the distinction between 

quantal and nonquantal uncertainties,  Sc.D. 

dissertation, (advisor: E. P. Gyftopoulos, MIT, 

Cambridge, MA). arXiv:quant-ph/0509116 

[38] Park, J. L., Simmons Jr., R. F., 1983,  “The knots of 

thermodynamics: Old and New Questions in Physics,” 

Cosmology, Philosophy, and Theoretical Biology, ed. A. 

van der Merwe (New York: Plenum). 

[39] Beretta, G. P., Gyftopoulos, E. P., Park, J. L., 

Hatsopoulos, G. N., 1984, Il Nuovo Cimento B, 82, 169. 

[40] Beretta, G. P., Gyftopoulos, E. P., Park, J. L., 1985, 

Nuovo Cimento B, 87, 77. 

[41] Beretta, G. P., 1985, Int. J. Theor. Phys. 24(12), 1233. 

[42] Beretta, G. P., 1986, Frontiers of Nonequilibrium 

Statistical Physics: Proc. of the NATO Advanced Study 

Institute (Santa Fe, 1984) Series B: Physics 135, ed. G. T. 

Moore, M.O. Scully (N.Y.: Plenum) p.193 and p.205. 

[43] Beretta, G. P., 1987, Found. Phys. 17, 365. 

[44] Çubukçu, E., 1993, Thermodynamics as a nonstatistical 

theory, Sc.D. dissertation, M.I.T. 

[45] Gyftopoulos, E. P., Cubukçu, E.,  1997, Phys. Rev. E 55, 

3851-3858. 

[46] Beretta, G. P., 1986, Lecture Notes in Physics, 278, 441. 

[47] Gyftopoulos, E. P., von Spakovsky, M. R., 2003, J. of En. 

Res. Tech. ASME transactions, 125, 1, 1-8. 

[48] Beretta, G. P., Gyftopoulos, E. P., 2004, J. Chem. Phys. 

121, 2718. 

[49] Beretta, G. P., 2005, Mod. Phys. Letters A. 20, 977. 

[50] Beretta, G. P., 2006, Phys. Rev. E. 73, 026113. 

[51] Beretta, G. P., 2008, Entropy. 10, 160. 

[52] Beretta, G. P., 2009, Reports on Math. Phys. 64, 139. 

[53] Beretta, G. P., 2010, J. Phys.: Conf. Ser. 237, 012004. 

[54] von Spakovsky, M. R., 2008, Am. Inst. Phys. CP Series 

1033, 1, 302. 

[55] Smith, C. E., Sciacovelli, A., von Spakovsky, M. R., 

Verda, V., 2010, J. of Phys.: Conf. Series. 237, 012022. 

[56] Smith, C. E., von Spakovsky, M. R., 2012, J. of Phys.: 

Conf. Series, 380, 012015. 

[57] Blum,, K., 1996, Density Matrix Theory and 

Applications, 2
nd

 ed., Physics of Atoms and Molecules 

Series, Plenum Press, NY. 

[58] Coffey, W. T., Kalmykov, Y. P., Titov, S. V., Mulligan, 

B. P., 2007, A Lett. J. Explor. Front. Phys., EPL, 77, 

20011. 

[59] Yu, T., Diosi, L., Gisin, N., Strunz, W. T., 2000, Phys. 

Lett. A. 265, 331–336.  

[60] Nakatani, M., Ogawa, T., 2010, J. Phys. Soc. Jpn. 79, 

084401. 

[61] Pomyalov, A., Tannor, D. J., 2005, J. of Chem. Phys. 

123, 20, 204111. 

[62] Kossakowski, A., 1972, Bull. Acad. Sci. and Math. 20, 

1021. 

[63] Kossakowski, A., 1972, Rep. on Math. Phys. 3, 247. 

[64] Ingarden, R. S., Kossakowski, A., 1975, Annals of Phys. 

89, 451. 

[65] Lindblad, G., 1976, Comm. in Math. Phys. 48, 2, 119. 

[66] Giddings, S. B., Strominger, A., 1988, Nucl. Phys. B. 

307, 854. 

[67] Ellis, J., Mavromatos, N. E., Nanopoulos, D., 1992, Phys. 

Lett. B. 293, 142. 

[68] Huet, P., Peskin, M. E., 1995, Nucl. Phys. B. 434, 3. 

[69] Ellis, J., Lopez, J. L., Mavromatos, N. E., Nanopoulos, 

D., 1996, Phys. Rev. D. 53, 3846. 

[70] Chang, C.-H., Dong, H.-S., Feng, X.-C., Li, X.-Q., Ma, 

F.-C., Tao, Z.-J., 1997, arxiv.org:hep-ph/9711310. 

[71] Benatti, F., Floreanini, R., 2000, J. High Energy Phys. 2, 

366



 

32. 

[72] Loschmidt,  J., 1876,  Sitzungsber. Kais. Akad. Wiss.  

Wien, Math. Naturwiss. Classe 73, 128–142. 

[73] Levin, G. A., Jones, W. A., Walzcak, K., Yerkes, K. L., 

2012, Phys. Rev. E. 85, 031109 

[74] Panysyuk G. Y., Levin, G. A., Yerkes, K. L., 2012, Phys. 

Rev. E., 86, 021116. 

[75] Landauer, R., 1970, Philos. Mag. 21, 83. 

[76] Anderson, P. W., Thouless, D. J., Abrahams, E., Fisher, 

D. S., 1980, Phys. Rev. B. 22, 3519. 

[77] Imry, Y., Landauer, R., 1999, Rev. Mod. Phys. 71, S306. 

[78] Lepri, S., Livi, R., Politi, A., 2003, Phys. Rep. 377, 1. 

[79] Dhar, A., 2008, Advances in Phys. 57, 457. 

[80] Dubi, Y., Di Ventra, M., 2011, Rev. of Modern Phys. 83, 

131. 

[81] Jortner, J., Ratner, M. (eds.), 1997, Molecular 

Electronics, Blackwell Science, Oxford. 

[82] Hanggi, P., Ratner, M., Yalikari, S., 2002, Chem. Phys. 

281, 111. 

[83] Boneto, F., Lebowitz, J. L., Rey-Bellet, L., 2000, Fourier 

law: A challenge to theorists, in Mathematical Physics 

2000, Imperial College Press, London. 

[84] Senitzky, I. R., 1960, Phys. Rev. 119, 670. 

[85] Mori, H., 1965, Prog. Theor. Phys. 33, 423. 

[86] Ford, G.W., Cac, M., Mazur, P., 1965, J. Math. Phys. 6, 

504. 

[87] Haken, H., 1975, Rev. Mod. Phys. 47, 67. 

[88] Klimontovich, Y. L., 1997, Statistical Theory of Open 

Systems, Kluwer, Amsterdam. 

[89] Caldeira, A. O., Leggett, A. J., 1983, Physica A 121, 587. 

[90] Allahverdyan, A. E., Nieuwenhuizen, Th. M., 2000, 

Phys. Rev. Lett. 85, 1799. 

[91] Nieuwenhuizen, Th. M., Allahverdyan, A. E., 2002, 

Phys. Rev. E.  66, 036102. 

[92] Zürcher, U., Talkner, P., 1990, Phys. Rev. A 42, 3278. 

[93] Saito, K., Takesue, S., Miyashita, S., 2000, Phys. Rev. E 

61, 2397. 

[94] Dhar, A., Shastry, B. S., 2003, Phys. Rev. B 67, 195405. 

[95] Segal, D., Nitzan, A., Hanggi, P., 2003,  J. Chem. Phys. 

119, 6840 

[96] Turchette, Q. A.,  Kielpinski, D., King, B. E.,  Leibfreid, 

D., Meekhof, D. M., Myatt, Rowe, M. A., C. J., Sackett, 

C. A., Wood, C. S., Itano, W. M., Monroe, C., Wineland, 

D. J., 2000, Phys. Rev. A 61, 063418. 

[97] Turchette, Q. A., Myatt, C. J., King, B. E., Sackett, C. A., 

Kielpinski, D., Itano, W. M., Monroe, C., Wineland, D. 

J., 2000, Phys. Rev. A 62, 053807. 

[98] Myatt, C. J., King, B. E., Turchette, Q. A., Sackett, C. A., 

Kielpinski, D., Itano, W. M., Monroe, C., Wineland, D. 

J., 2000, Nature (London) 403, 269. 

[99] Leibfreid, D., Blatt, R., Monroe, C., Wineland, D., 2003, 

Rev. Mod. Phys. 75, 281. 

[100] Cano-Andrade, S., Beretta, G. P., von Spakovsky, M. R., 

2013, 12th Joint European Thermodynamics Conference, 

Brescia, Italy, July 1-5. 

[101] Al-Abbasi, O., von Spakovsky, M. R., Beretta, G. P., 

2013, 12th Joint European Thermodynamics Conference, 

Brescia, Italy, July 1-5. 

[102] Milonni, P. W., 1984, Am. J. of Phys. 52(4), 340. 

[103] Milonni, P. W., 1982, Phys. Rev. A. 25(3), 1315. 

[104] Armijo, J., 2012, Phys. Rev. Lett. 108, 225306 

[105] Monroe, D., 2012, Phys. 5, 62. 

[106] Cano-Andrade, S., Beretta, G. P., von Spakovsky, M. R., 

2013, ASME IMECE, paper no. IMECE2013–63596, 

Nov. 15-21, San Diego, CA. 

[107] Beretta, G. P., von Spakovsky, M. R., 2013, in 

preparation. 

[108] Zhu, W., Rabitz, H., 2005, J. of Math. Phys. 46, 022105. 

[109] Beretta, G. P., 2008, Am. Inst. of Phys. CP Series, 

1033, 180. 

[110] Hatsopoulos, G. N., Keenan, J. H., 1965, Principles of 

General Thermodynamics (New York:  Wiley). 

[111] Gyftopoulos, E. P., Beretta, G. P., 2005, 

Thermodynamics: Foundations and Applications (2
nd

 ed., 

New York:  Dover). 

[112] Smith, C. E., 2012, Intrinsic Quantum Thermodynamics: 

Application to hydrogen storage on a carbon nanotube 

and theoretical consideration of non-work interactions, 

Ph.D. dissertation (advisor: M. R. von Spakovsky, 

Virginia Tech, Blacksburg). 

[113] Ziegler H., 1983 J of Applied Math. and Phys. (ZAMP) 

34 832-844. 

[114] Wilkins, R. L., 1972, J. of Chem. Phys., 57(2), pp. 

912-917. 

[115] Karplus, M., Porter, R. N., Sharma, R. D., 1965, Journal 

of Chemical Physics, 43(9), pp. 3259-3287. 

[116] Fernandez-Ramos, A., Ellingson, B. A., Garrett, B. C.  et 

al., 2007, Rev. in Compu.l Chem., pp. 125-232: Wiley. 

[117] Simons, J. An introduction to theoretical chemistry, 

Cambridge; N. Y.: Cambridge University Press, 2003. 

[118] Manthe, U., Miller, W. H., Journal of chemical physics, 

99, pp. 3411, 1993. 

[119] Garrett, B. C., Truhlar, D. G., Grev, R. S.  et al., 1980, J. 

of Phys. Chem., 84(13), 1730-1748, 1980/06/01. 

[120] Marcus, R. A., Coltrin, M. E., 1977, Journal of Chemical 

Physics, 67(6), pp. 2609-2613. 

[121] Yang, X. and Liu, K., 2004, Modern Trends in Chemical 

Reaction Dynamics: Experiment and Theory: World 

Scientific Publishing Company Incorporated. 

[122] Schatz, G. C., 1996, Journal of Physical Chemistry, 

100(31), pp. 12839-12847, 1996/01/01. 

[123] Neuhauser, D., Baer, M., Judson, R. S.  et al., 1991, 

Computer Physics Communications, 63(1), pp. 460-481. 

[124] Wang, H., Thompson, W. H., and Miller, W. H., 1998, J. 

of Physical Chemistry A, 102(47), pp. 9372-9379. 

[125] Zhou, X., Dotsenko, I., Peaudecerf, B., Rybarczyk, T., 

Sayrin, C., Gleyzes, S., Raimond, J. M.,  Brune, M. and 

Haroche, S., 2012, Phys. Rev. Lett., 108, p. 243602. 

[126] Haroche, S., Brune, M, Raimond, J. M., 2013, Physics 

Today, 66, 1, 27.. 

[127] Raimond, J. M., Brune, M., Haroche, S., 1997, Phys. Rev. 

Lett., 79. 

[128] Brune, M., Hagley, E., Dreyer, J., Maıtre, X.,  Maali, A., 

Wunderlich, C.,  Raimond, J. M., Haroche, S., 1996, 

Phys. Rev. Lett., 77, 4887–4890. 

[129] Deleglise, S., Dotsenko, I., Sayrin, C., Bernu, J., Brune, 

M., Raimond, J. M. and Haroche, S., 2008, Nature 

Letters, 455, 510-514. 

[130] Haroche, S., Raimond, J. M., Exploring the quantum. 

Oxford, UK: Oxford University Press, 2006. 

[131] Raimond J. M., Haroche, S., 2007, Quantum 

Decoherence. 48, ed: Birkhäuser Verlag Basel, p. 33-83. 

[132] Brune, M.,  Schmidt-Kaler, F.,  Maali, A.,  Dreyer, J.,  

Hagley, E.,  Raimond, J. M., Haroche, S., 1996, Phys. 

Rev. Lett., 76, 1800–1803. 

[133] Raimond, J. M., Brune, M., Haroche, S., 2001, Reviews 

of Modern Physics, 73, 565-582. 

[134] Beretta, G. P., 2006, Int. J. of Thermodynamics, 9,  117.

367



 

368



 
 
 
 
 
 
 
 
 

PANEL L 
 

COMPUTATION OF THERMODYNAMIC 
PROPERTIES, PHASE EQUILIBRIA, AND MIXING 
AND SEPARATION DYNAMICS OF INDUSTRIAL 

BLENDS AND NANOSTRUCTURED FLUIDS 
 
 
 

369



 
12th Joint European Thermodynamics Conference 

Brescia, July 1-5, 2013 

 

 
 

 

INTRODUCTION 

Current state of the art property prediction techniques rely 
on the use of databases which contain molecular structure 
related information and the corresponding physical property 
data for deriving property prediction models. These models 
are consequently used for predicting properties of "target" 
compounds for which only molecular structure related 
information is available. For example, the QSPR 
(Quantitative Structure Property Relationship) methods use 
molecular descriptors for representation of the molecular 
structure. Prediction models, in terms of molecular 
descriptors, are derived using stepwise linear or nonlinear 
regressions, artificial neural networks, particle swarm 
algorithms etc. The accuracy of the QSPR predictions is often 
limited because the "training set" used for deriving the QSPR 
may not adequately represent the structure and properties of 
some of the target compounds.   

In contrast to the QSPRs, the "Group Contribution"(GC) 
methods use training sets "similar" to the target compound in 
order to derive models which represent the property variation 
in terms of the functional groups of the target compound. The 
compounds included in the training set (i.e., "predictive 
compounds") are supposed to represent the functional groups 
of the target compound. State of the art GC methods also 
discriminate between properties that change linearly with the 
molecular mass (MW), such as liquid molar volume, enthalpy 
and entropy of formation, and properties that change 
nonlinearly with MW (e.g., critical temperature and pressure 
and normal boiling point). Nonlinear change of some 
properties requires derivation of nonlinear prediction models, 
which are less reliable in extrapolation and involve the use of 
less rigorous nonlinear regression techniques. Independent 
studies (Poling et. al., [1]) have shown that the presently used 
GC methods yield predictions of satisfactory accuracy for  

 

 
 
 

 
several properties and various groups of compounds. 
However, there are groups of compounds (e.g. low MW or very 
high MW) and certain properties (such as solid properties) for 
which the prediction accuracies are unsatisfactory. By 
satisfactory accuracy we mean that the prediction error is 
within the experimental uncertainty level of the pertaining 
property data of the training set members. 

Brauner et. al.,[2] have developed the so called Targeted 
QSPR (TQSPR) method. Using this method a unique linear 
QSPR is derived for a particular property of a selected target 
compound. The training set that is used for the derivation of 
the TQSPR is automatically selected by the TQSPR 
algorithm, and essentially includes compounds that contain 
the functional groups present in the target compound. The 
selection of descriptors to the QSPR model is performed by 
applying a step wise regression algorithm, which considers 
also the noise in the data. Since the functional groups are 
included in the descriptor database, the TQSPR method 
actually represents a generalization of the GC method. The 
availability of additional large number of descriptors that are 
related to the chemical structures of the compounds included 
in the training set enables the representation of the property 
variation within the selected training set by a linear model 
(rather than a nonlinear model which is often required in the 
GC method). The larger the training set size is, larger number 
of descriptors required to adequately represent the property 
variation. The number of descriptors that can be selected to 
the TQSPR model is limited only by the noise level in the 
data due to experiemtnal errors in the property values of the 
training set members [2]. However, larger training sets and 
more descriptors in the TQSPR model cause diffculties in 
estimating the prediction errors for the target compound and 
for the other  (structurally similar) compounds which are not  
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members  the training set.  
To reach the goal of minimizing the error associated with 

the predicted property value of the target compound (to the 
data uncertainly level)  Shacham et al.,[3,4] suggested to 
tailor a tight training set to the target compound, which 
includes a limited number of compounds with high structural 
similarity to the target compound. Such a tight training set 
enables derivation of a linear TQSPR model in terms of a 
single descriptor (TQSPR1 model). The use of a single 
descriptor TQSPR1 model enabled development of several 
statistical indicators associated with the information 
pertaining only to the training set that enable reliable 
estimation of the prediction error for the desired property 
value of the target compound. 

We have employed the TQSPR1 method (Shacham et al., 
[3]) for predicting 15 constant properties for 80 groups of 
compounds in order to discriminate between the property-
compound combinations for which predictions of satisfactory 
accuracy are obtained and those associated with excessive 
prediction errors. Causes of excessive prediction errors that 
were identified, which are common to all QSPR methods, will 
be discussed below. These types of errors can be easily 
prevented by a careful selection of the training-set compounds 
and/or the descriptor for the TQSPR1 model.    

There are however certain compound/property 
combinations for which neither the TQSPR/TQSPR1 methods 
(nor the GC methods) can provide predictions of satisfactory 
accuracy. One such combination involves the prediction of 
properties that change nonlinearly with MW for long chain 
substances by extrapolation. Another combination involves 
prediction of solid properties (normal melting point and heat 
of fusion) in the region where differentiation between odd and 
even nC compounds is required. In the following the three 
methods that we have developed: TQSPR1 (Shacham and 
Brauner[4]), long chain extrapolation (Paster et al.[5]) and 
reference series (Shacham et al.[6], Brauner and Shacham[7]) 
will be briefly reviewed and their combination for extending 
the range of a satisfactory prediction accuracy will be 
described.  

RECENTLY DEVEOPED PROPERTY PREDICTION 
TECHNIQUES 

The Dominant Descriptor Targeted QSPR Method 
(TQSPR1) 

The Dominant Descriptor Targeted QSPR (TQSPR1) 
method was introduced by Shacham and Brauner [4].  The 
first stage of the method involves identification of the 
similarity group and a training set that is structurally related to 
the target compound.  The similarity between the target 
compound (the compound for which the property needs to be 
predicted) and a potential predictive compound is measured 
by the partial correlation coefficient between their molecular-
descriptor vectors. The training set is established by selecting 
from the similarity group the p predictive compounds (usually 
p = 10) with the highest correlation with the target compound 
for which experimental property values yi are available.  

The selected training set is used for the development of a 
TQSPR1 model for a particular property of the target 
compound. A linear structure-property relation is assumed of 
the form: 

 

0 1 Dβ β= + +y ζ ε                                (1) 
 
In this equation y is a p-dimensional vector of the 

respective property values, ζD is a p-dimensional vector of the 
(dominant) molecular descriptor (to be selected via a stepwise 
regression algorithm), β0 and β1 are the corresponding model 
parameters to be estimated, and ε is a p-dimensional vector of 
random errors. 

To identify the dominant descriptor (DD), we examine the 
partial correlation coefficient between the vector of the 
particular property values of the compounds included in the 
training set (i.e., y) and the vector of descriptor values for 
these compounds, for all descriptors available in the database. 
These correlation coefficients will be referred to as the 
descriptor-property (D-P) correlation for the particular 
property. The DD, ξD, is the descriptor that is associated with 
the highest value of the D-P correlation. 

The so-obtained TQSPR1 can be subsequently employed 
for estimating the property value for the target compound, ŷt 

in terms of the (known) dominant-descriptor value , ζDt:  
 

0 1t Dty β β ζ= +%
                         (2)  

                                     
Equation (2) is applicable, also, to additional compounds in 
the similarity group for which no property data are available.  

There may be circumstances where there is a need to 
replace one or more members of the training set in order to 
improve the accuracy of the prediction. In such cases the next 
predictive compound to enter the training set is the one with 
the highest correlation with the target compound that also 
fulfills some additional requirements (like being in the same 
phase condition as the target compound at standard state). 
Similarly, the DD need to be occasionally replaced. In such 
cases the new DD is the one  with the highest D-P correlation 
coefficient which also fulfills some additional requirements 
(e.g., preferring a non- 3D descriptor). 

 
Considering the property value at nC → ∞ in derivation of 
the TQSPR1 model 

Experimental property data are available, most often, for 
low nC compounds as many of the properties of high nC 
compounds cannot be measured due to thermal instability. 
Thus, property prediction of high nC compounds often 
involves extrapolation (to higher nC). Since the selection of 
the DD is carried out using only the available experimental 
data, extrapolation to higher nC may yield inaccurate 
predictions. Recently, Paster et al. [5] presented a technique 
where the property value at nC → ∞ (y∞) is also considered 
when selecting the DD, whereby the asymptotic behaviour of 
the DD should match the asymptotic behaviour of the 
property considered. For example, for properties that 
converge to a constant y∞ value (such as normal boiling and 
melting temperatures), a DD is sought which also converges 
to a constant value for nC → ∞ (��

�). If the use of this 
descriptor in Eq.(1) enables accurate representation of the 
training set property data (y), as well as convergence to a 
generally accepted y∞ value, the linear structure-property 
relationship is used. Otherwise, if Eq.(1) converges to a 
different y∞ value, Eq. (1) is modified by including an 
additional non-linear correction term (with an additional 
regression parameter, β2 ):  
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 ( )0 1 0 1 2[1 exp( )]D D Cy nβ β β β β∞= + − + − − − +y ζ ζ ε
   

 
and 

( )0 1 0 1 2[1 exp( )]t Dt Dt Cy y nβ β ζ β β ζ β∞= + − + − − −
 (3) 

 
   For properties which are additive in nature (like molar 
volume, enthalpy and entropy), in the limit of large nC , each 
additional carbon unit contributes a fixed increment to the 
property value. For representation of such properties it is 
preferable to use nC as a DD for extrapolation to high nC 

compounds. 
 

The reference series method 

Shacham et al. [6] and Brauner and Shacham [7] 
introduced the "reference series" method for improving the 
prediction accuracy in homologous series of properties for 
which insufficient data are available.  A two-stage procedure 
is used, whereby a linear (or nonlinear) Quantitative 
Structure-Property Relationship (QSPR) is fitted to a 
"reference" series, for which an adequate amount of precise 
data is available. This QSPR should represent correctly both 
the available data and the asymptotic behavior of the property. 
In the second stage a Quantitative Property-Property 
Relationship (QPPR) is derived to represent the predicted 
property values of a "target" series in terms of the property 
values of the reference series. 

It has been shown that properties of compounds in two 
homologous series can be represented (at least locally) by a 
linear QPPR: 

 
yt = Β0 + Β1yr        nC ≥ nC,min                              (4)                
 

where yr is the property value of a compound in the reference 
series, yt is the property of a compound (related to the 
reference compounds in terms of nC) in the target series, and 
Β0 and Β1 are parameters obtained by regression of the 
experimental data. The n-alkane series, for which the largest 
amount and highest precision property data are available, is 
most often used as the reference series. This method does not 
require computation of molecular descriptors, which can be 
considered as an advantage if no molecular structure files 
and/or descriptor computational programs are available. For 
predicting properties for long chain substances, a nonlinear 
version of Eq. (4) (similar to Eq. 3) can be used. 

METHODOLOGY 

The TQSPR1 method was evaluated by predicting 15 
constant properties for a set of 471 compounds (Shacham et 
al.[3]).  The database used in that study contains physical 
property data for 1798 compounds. Included in this data base 
are numerical values and data uncertainties (Ui) for 34 
properties (e.g., critical properties, normal melting and boiling 
temperatures, heat of formation, flammability limits etc.). All 
the property data is from the DIPPR database (Rowley et al., 
[8]). The DIPPR database often contains a large number of 
experimental, predicted or smoothened values for a particular 
compound-property combination, while one particular value 
is designated as the "recommended" value. For the evaluation 
of the TQSPR1 method usually the recommended values were 
used.  

Our database contains also 3224 molecular descriptors 
generated by the Dragon, version 5.5 software (DRAGON is 
copyrighted by TALETE srl, http://www.talete.mi.it) from 
minimized 3D molecular structures that were obtained from 
Rowley[9].  

A Visual Basic program that uses the TQSPR1 method was 
developed. The program can operate in batch mode and 
attempts to predict all the properties for all the compounds in 
the data base. Most of the computations reported were carried 
out using this program.  For the examples presented here, 
some additional details were computed with a special version 
of the SROV (MATLAB) program of Shacham and Brauner 
[10], which was revised in order to fit the needs of the 
TQSPR1 algorithm. 

The identification of the similarity group and the training 
set is performed by using a subset of 294 selected descriptors, 
mostly 1-D descriptors from the "atom centred fragment" and 
"functional group count" categories. This subset was selected 
based on its ability to identify compounds belonging to the 
target compound's homologous series (if available), and to 
discriminate between compounds according to the number 
and location of branches and double bonds (Paster [11]). 
Some of the results were compared with predictions obtained 
by various GC methods. To this aim, the implementation of 
the GC methods in the Dorthmund Data Bank (DDBST, 2011 
release, http://www.ddbst.de ) was used for the predictions. 

The selected 15 constant properties included in the study 
from the DIPPR database are listed in Table 1. Included in the 
Table are the symbols of the properties (as defined by DIPPR) 
and short descriptions of the properties.  Out of the 34 
properties (included in DIPPR), 19 were excluded for several 
reasons. Some were excluded because they are categorized as 
"defined", namely, they are calculated from other properties 
and/or from the molecular structure (i.e., the molecular 
weight, or critical compressibility factor that is calculated 
based on the critical properties).  Excluded are also properties 
for which most of the values in the database are predicted 
and/or are associated with very high uncertainties. The 471 
compounds included in the study could be associated with 84 
groups (mostly homologous series). 

 
Table 1. Constant  properties included in the study from the 
DIPPR database 

 

 
 

SOURCES OF EXCESSIVE PREDICTION ERRORS 
AND RECOMMENDATIONS FOR IMPROVEMENTS 

The results of the evaluation of the TQSPR1 method are 
reported in detail by Shacham et al., [3]. For the great 
majority of the compound/property combinations, predictions 
of acceptable accuracy (meaning that the prediction error is 

No.  Symbol Property description 
1 ENT Absolute Entropy of Ideal Gas at 298.15 K and 100000 Pa 
2 FP Flash Point 
3 HCOM Net Enthalpy of Combustion Standard State (298.15 K) 
4 HFOR Enthalpy of Formation of Ideal gas at 298.15 K and 100000 Pa 
5 HFUS Enthalpy of Fusion at Melting Point 
6 HSTD Enthalpy of Formation in Standard State at 298.15 K and 100000 Pa 
7 HSUB Heat of Sublimation at the triple point 
8 LVOL Liquid Molar Volume at 298.15 K 
9 MP Melting Point (1 atm) 
10 NBP Normal Boiling Point (1 atm) 
11 PC Critical Pressure 
12 RI Refractive Index at 298.15 K 
13 SSTD Absolute Entropy in Standard State at 298.15 K and 100000 Pa 
14 TC Critical Temperature 
15 VC Critical Volume 

372



 

 

lower than the highest data uncertainty) were obtained. For 
many of the compound/property combinations the TQSPR1 
predictions were compared with predictions obtained with 
state of the art GC methods (Constantinou and Gani, [12], 
Wen and Qiang , [13]) and the TQSPR1 predictions were of 
comparable or higher accuracy than the GC methods. There 
were, however, cases where the prediction error exceeded the 
data uncertainty.  In the following the causes of excessive 
prediction errors are discussed. These are common to the 
QSPR methods that we are familiar with.  Our 
recommendations for improving the prediction accuracy are 
also outlined 

"Recommended" property value of a compound is 
inconsistent with values for similar compounds. 

For many compound-property combinations several 
experimental values are reported in the literature, often with a 
considerable difference between them. It is not an easy task to 
categorize some of the values as "unacceptable" and to 
recommend the value which is most probably the correct one. 
For example, Shacham et al. [6] discuss a case where 
excessive prediction error the heat of formation of 1-octene is 
caused by use of the recommended value in the DIPPR 
database, which is however found to be inconsistent with the 
recommended values of the rest of the members of the 1-
alkene series. Shacham et al. [6] show that selection of a 
different value as "recommended" from the available 
experimental data reduces the error below the data 
uncertainty. 

To prevent errors that may be caused by miss-selection   of 
the "recommended" property value, an iterative prediction-
replacement process can be carried out in the database. For a 
group of similar compounds (like members of a homologous 
series), the prediction method is applied by targeting each of 
the members in turn, while using the others as a training set. If 
the prediction error exceeds the data uncertainty, another 
"recommended" value closer to the predicted value for the 
target compound is selected. This prediction-replacement 
process is carried out for all the members of the group until no 
more replacements need to (or can) be made.  

Use of 2D descriptors whose range of definition does not 
cover the entire compound space 

There are many 2D descriptors whose range of definition is 
limited in terms of the number of non-Hydrogen molecule 
atoms. Shacham et al. [3] mentioned for example the 
descriptor EEig13d, which is defined only for molecules that 
contain more the 12 non-Hydrogen atoms. Usually a (pseudo) 
zero value is assigned by Dragon to the descriptors when their 
calculation is attempted outside their range of definition. 
Obviously if the descriptor used in the QSPR model is 
associated with pseudo zero for the target compound and/or 
for some members of the training set, excessive prediction 
errors can be expected. 

To prevent prediction errors of this source, the descriptors 
with limited range of definition should be clearly marked in 
the database (in order not to confuse real zeros with pseudo 
zeros). Compounds associated with a pseudo-zero value of the 
DD, should be removed from the training set (and replaced by 
other compounds from the similarity group, if necessary). 
When the DD value for the target compound is a pseudo zero, 
another DD must be selected according to the principles 

outlined in the description of the TQSPR1 method. 
 
 

Inconsistency in the 3D molecular structure files and or 
3D descriptors  

 
We have studied extensively the potential sources of 

excessive prediction errors when 3D descriptors are used in 
QSPRs or TQSPRs ([3], [14], [15]). Paster et al. [14] 
demonstrated that the 3D descriptors are very sensitive to the 
method, parameters and the initial configuration used to 
generate the 3D optimized molecular structure. 3D structure 
(MOL) files available from different sources may be non-
optimized, or partially optimized configurations, with no 
documentation on how these were obtained. Many 
computational algorithms may converge to a local minimum 
and finding a global optimum structure will depend upon the 
starting configuration. For flexible molecules (e.g., long chain 
hydrocarbons) the 2D to 3D conversion by different software 
can render different conformers, resulting in variation of the 
calculated value for the same 3D descriptor. Thus, if QSPR or 
TQSPR that contains 3D descriptors are used for prediction, it 
is very important to get the 3D structures of all the 
compounds involved (predictive and target) from the same 
reliable source. 

Shacham et al., [3] presented an example where the critical 
volume of 1-decanol is predicted using a 3D (Ds) descriptor 
as DD. The prediction error in that case was very high. 
Examination of the 3D molecular structure (MOL) files of 1-
decanol and its two immediate neighbours in the homologous 
series (1-nonanol and 1-undecanol) revealed inconsistency of 
the 1-decanol's MOL file, and consequently, also in the value 
of the Ds descriptor. The inconsistency in that case was 
rotation of the -CH2OH group in the 1-decanol structure file 
compared to its position in the structure files of the other 
members of the 1-alkanol series. Such a difference is hardly 
noticeable, but it can affect a considerable variation in the 
value of the DD of the target compound, causing excessive 
prediction errors. 

Methods for debugging of the descriptor data base have 
been developed [14, 15]. These should reveal inconsistent 
representation of some of the molecular structures and the 
associated 3D descriptors which are included in the database, 
and identify noisy 3D descriptors that exhibit extremely high 
sensitivity to insignificant variations in the 3D representation 
of the molecular structure. The use of the latter in QSPR 
models should be avoided. These methods should be applied 
also whenever new compounds are added to the database. 

 
Phase change at standard state within the training set 

 
 There are several properties listed in Table 1 for which the 

reported values are for the "standard state", which is defined 
as the stable phase at 298.15 K and 1 bar. These properties 
include standard state enthalpy of formation (HSTD), entropy 
of formation (SSTD) and enthalpy (heat) of combustion 
(HCOM). Refractive indexes (RI) are reported usually for the 
liquid phase, which may not be the valid phase at the 
"standard state" (i.e., the compound is in gas phase at the 
standard state). Liquid molar volume (LVOL) is usually 
reported at standard state temperature, unless TC < 298.15, in 
which case LVOL is reported at the normal boiling point (Tb), 
or at the triple point temperature if Ttp >298.15. Obviously, 
phase and/or temperature variations maybe reflected also in 
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the property variation within the group of similar compounds 
(i.e., homologous series).  

Shacham et al.[3] showed an example of prediction  of  
SSTD of n-tridecane using n-alkanes in the 12 ≤ nC ≤ 22 
region as a training set. The target compound and the 
members of the training set are in liquid phase at standard 
state, while for nC ≥ 18 the compounds are in solid phase. The 
TQSPR1 model obtained when using the full training set 
yields prediction error of 15 %.  Removing the five 
compounds with nC ≥ 18 from the training set yields 
prediction with negligible error of 0.022 %.  

Thus, for prediction of properties whose value is 
determined at the standard state, the phase condition of the 
target compound at standard state must be first determined. 
Only compounds which are in the same phase condition as the 
target (at the standard state) should be included in the training 
set. 

 
Change of property values by orders of magnitude within 
the training set 

 
 Shacham et al., [3] demonstrated excessive prediction 

errors caused by order of magnitude change in the property 
values within the training set. For example, predicting the 
ideal gas enthalpy of formation (HFOR) for the first 11 
members of the 1-alkene series: the DIPPR recommended 
values of HFOR are 2.023e7 for propylene, -5.0e5 for 1-
butene and -2.162e7 for 1-pentene. Thus, there are at least two 
orders of magnitude difference between the HFOR value of 1-
butene and the rest of the members of the 1-alkene series. 
Consequently the TQSPR1 prediction of the HFOR of 1-
butene is very poor (86 % prediction error). However, if the 
coefficients of the TQSPR1 model are determined by 
minimization of the relative error (rather than the absolute 
error least squares) the prediction errors are reduced to 
acceptable levels for all the compounds. 

Thus, in cases where there are order of magnitudes 
differences between the property values of the training set 
members (or a change of sign in the property value), it is 
recommended to use relative error least squares for 
determining the QSPR/TQSPR1 model parameters. 

 
Long range extrapolation to higher nC compounds 

 
The DD descriptor selected based on property values of 

relatively low nC compounds does not necessarily comply 
with the asymptotic behaviour of the property at large nC. In 
such cases, applying the TQSPR for prediction the property 
value of a high nC compound may result in excessive 
prediction errors. For example, the highest nC compound for 
which property data are available for the 1-alkene series in the 
DIPPR database is 1-triacontene (with nC= 30). Shacham et 
al., [16] reported LVOL prediction results for 1-triacontene 
using 10 1-alkenes in the range of 11 ≤ nC ≤ 20 as the  training 
set. Relying on the training set LVOL data for identification of 
the DD, yields LVOL prediction which differ by 21% from the 
value reported by DIPPR. Selecting the DD while matching 
its asymptotic behaviour at nC → ∞ with the asymptotic 
behaviour of LVOL (as explained in the " Considering the 
property value at nC → ∞ …" section) leads to a TQSPR1 
model which gives LVOL value with 1.7 % difference from 
the value reported by DIPPR. This difference is considerably 
lower than the DIPPR data uncertainty (10%).    

Thus, in cases of extrapolation to higher nC compounds it is 

always advisable to match the asymptotic behaviour of the 
DD with the asymptotic behaviour of the target property. 

 
Irregularities in the solid properties related to the 
crystalline structure 

 
The irregularities with regard to solid properties (e.g., 

normal melting temperature, Tm and heat of fusion, HFUS) are 
demonstrated in reference to the Tm of members of the n-
alkane and the n-alkanoic acid homologous series (Fig. 1). 
Three distinct regions can be identified in the Tm curves. In 
the "low nC" region there is a decreasing trend of the Tm 
values with increasing nC. This region includes the first 3 
members of the n-alkane series and the first 4 members of the 
alkanoic acid series. At medium range nC, a general trend of 
increasing Tm values with nC is observed in both curves. 
However, there are "local" oscillations in the Tm values 
between consecutive members with odd and even nC values. 
The oscillations are the highest for lower nC compounds and 
diminish for nC > 20 (n-alkanes) or nC > 25 (alkanoic acids). 
These oscillations in the Tm values are attributed to the 
melting from different crystalline phases (Marano and Holder, 
[17]). In the high nC region, there is a smooth increase of Tm 

with a diminishing slope converging to the asymptotic Tm = 
415 K value for nC →∞ (Paster et al., [5]). 

Brauner and Shacham, [7] reported very good results for 
predicting Tm in the medium and high nC regions using the 
"reference series" method. In the medium nC region two 
versions of Eq. 4 are used: one for odd nC target compounds 
and one for even nC target compounds.  In this case we use in 
Eq. 4 the definition of yt = (Tm)t,nC , where nC is the number of 
carbon atoms in the respective member of the target series, 
and yr = (Tm)r,i   where i is the number of carbon atoms in the 
matching member of the reference series, it can obtain the 
values i = nC or i = nC +1 or  i = nC -1 (see details in Brauner 
and Shacham, [7]). 

For predicting Tm in the high nC region, Brauner and 
Shacham, [7] provided a QSPR (of the form of Eq. 3) for 
predicting Tm of the members of the n-alkane (reference) 
series, and recommended the use of a nonlinear version of the 
QPPR (Eq. 4) for members of other target series.  

Further development of the "reference series" method is 
underway to enable reliable prediction of other solid 
properties of compounds belonging to of homogenous series, 
(such as HFUS) and to extend its applicability for property 
predction of other groups of compounds.   

 

 
 
Fig. 1. Plot of normal melting point data of n-alkanes and n-

alkanoic acids vs. nC up to nC = 32. 
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Prediction errors for low carbon number compounds and 
first members of homologous series 

 
Shacham et al. [3] list extrapolation to a low nC target 

compound as the most common cause for excessive prediction 
error. In Fig. 1, for example, the Tm values of n-alkanes with 
nC > 3 have very little relevance when predicting Tm for 
methane, as the trend of change of Tm in the low nC region 
differs from the trend in the medium nC region. This change in 
trend is caused by the influence of the functional groups that 
is attached to the methyl group (the dominant group in higher 
nC compounds) on the property value. For low nC compounds 
the effect of the functional group is dominant, but it 
diminishes with the addition of methyl groups. Because of 
that experimental information on the property values of low 
nC compounds (or first members of homologous series) is 
essential for correctly assessing the functional groups 
contribution to the property values. 

Phase change at standard state for the members of the 
training set can be another reason for excessive prediction 
errors for low nC compounds.  Shacham et al. [3] used the first 
11 members of the 1-alkene series to demonstrate this 
difficulty.  For this series the first three members: ethylene, 
propylene and 1-butene, are in the gaseous phase at standard 
state, while the rest of the compounds are in the liquid phase. 
The liquid phase compounds cannot provide reliable 
information regarding the standard state properties of the gas 
phase compounds. 

The absolute value of some properties of low nC 
compounds is often much smaller than the absolute values of 
the same properties of the high nC compounds. This may 
inflate the relative errors in prediction of the property for a 
low nC compound. Shacham et al. [3] provided an example 
where similar absolute prediction error for Tb of ethylene (Tb= 
169.41 K) yields much higher relative error than for Tb of 1-
dodecene (Tb = 486.15). As discussed above, minimization of 
the sum of squares of the relative error should be considered 
in such cases.  

CONCLUSIONS 

The property prediction field is a constantly evolving field 
where the objective is to extend its applicability to additional 
groups of compounds and additional properties, and to reach 
the ultimate goal of prediction accuracy within the 
experimental data uncertainty level. We have shown that these 
goals cannot be reached by using one type of technique (like 
group contribution, QSPR or QPPR), but a broader algorithm 
should be developed, which can fit the most adequate 
prediction technique/s to a wide range of compound-property 
combinations.  

Based on our experience in developing several new 
prediction techniques and applying them to a wide variety of 
compound-property combinations, we propose the following 
procedure and principles in developing a general property 
prediction system.  

1. Continuous update of the property data base with new 
experimental property data that becomes available. 
Continuous maintenance of this database by verifying 
the consistency of the "recommended" property values 
with such values of similar compounds. 

2. Continuous maintenance of the descriptor database by 
mapping the range of applicability of certain 2D 

descriptors and checking the consistency of 3D 
structure (MOL) files and 3D descriptors with MOL 
files and descriptors of similar compounds.  

3. When predicting properties for a new target 
compound, the prediction technique needs to be 
adjusted to the specific compound/property 
combination and the available training set. For fluid 
properties the use of the TQSPR1 method is 
recommended provided that enough similar predictive 
compounds are available. The selection of the DD 
should consider both the training set property data and 
the asymptotic property behaviour (in case of 
extrapolation to larger nC). For properties defined at 
standard state, first the phase condition of the target at 
standard state should be predicted. Only predictive 
compounds of the target's phase condition can be 
included in the training set for predicting the desired 
property. If the property values change by orders of 
magnitude within the training set, the minimization of 
the relative (instead of absolute) errors is 
recommended.  For solid properties (and fluid 
properties with insufficient amount of predictive 
compounds) the use of the reference series method 
should be preferred.  

 
Prediction of properties by extrapolation to low nC 

compounds (or first members of homologous series) so as to 
keep the prediction error below experimental uncertainty level 
requires further research.  

 
The extension of TQSPR1 method to predict temperature – 

dependent properties (e.g., vapor pressure) and other phase 
equilibrium related properties (e.g., interaction parameters for 
phase equilibrium calculations, when applying EoS) was 
demonstrated in Shacham et al., [18] and Paster et al., [19]). 
Preliminary results show that our methods can be used also 
for predicting other important parameters (e. g., activity 
coefficients for non-ideal binary systems). 
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INTRODUCTION 

One of the distinguishing characteristics of the mankind is 
the conscious use of energy sources for its own purposes. For a 
very long time the only available energy was that of animals (or 
even that of other human beings); occasionally the energy of the 
wind and rivers was employed. But it was only with the 
extensive use of the fossil fuels that the industrial revolution 
became possible. The widespread availability of energy (ability 
to work) created the world in which we live.  

The first industrial revolution was based on coal, and started 
in coal countries (Germany, France, England). The main energy 
source thus became then the oil, and we still live in the world of 
oil and gas. Our current way of life is based on the exploitation 
of fossil energy sources.  

Fossil fuels (oil and gas) are formed due to the accumulation, 
in millions of years of organic material. This material over the 
millennia has been covered by the ground and has been subject 
to a burial process. In this way, in anaerobic conditions and at 
high temperatures and pressures, hydrocarbons were generated 
and accumulated in the underground porous rocks. 

The first step to be able to produce hydrocarbons is to locate 
possible deposits; for this purpose seismic technologies have 
been developed. After the identification of a target reservoir, an 
oil field development plan is prepared and implemented. 
Hydrocarbons are produced through wells that are drilled from 
the ground surface to the reservoir. If the reader believes this 

whole process is too simple, we can add that, due to the 
increasing energy request, oil production has increasingly 
shifted to offshore fields. This greatly increases the difficulty of 
exploration, development and production: the overall 
production system can easily  be something as complex as 
shown in Figure 1. 

 
THE OIL 

What is commonly called petroleum (from latin “petrae 
oleum”, meaning “oil from rock”) turns out to be a mixture of 
many hydrocarbon components, twenty thousand  compounds 
approximately. The composition is strongly dependent on the 
origin and the formation conditions of the oil reservoir: the 
overall properties may span from very dark, almost solid, 
bitumen-like materials to light, clear yellow liquid, to end up 
with light gas such as methane. The properties and the physical 
status of aggregation result to depend on the operating 
conditions, and separation of different physical phases is 
possible. 

Along the producing pipe (tubing), from reservoir to the 
surface, the mixture is subject to variations in operating 
conditions. In particular, along the tube production, there is a 
pressure draw-down. If the pressure drops below the so-called 
bubble pressure of the mixture, a second phase separate: the 
overall system becomes a liquid-vapor biphasic one. 

 
ASPHALTENE 

OR 
HOW AND WHY I BECAME A FAN OF THE REGULAR SOLUTIONS THEORY 

Sebastiano Correra* 
 

*eni e&p division - ISDEW, via Emilia, 1 - 20097 San Donato Milanese 

ABSTRACT 
Petroleum is a mixture of tens of thousands of organic compounds, with molecular weights spanning in a very large range. It was 
generated underground from the degradation of organic material accumulated over millions of years, and it stays at great depths 
within porous rocks, at high temperature and pressure. The crude oil is produced by means of long pipes, which allow the 
extraction of the oil to the surface, where it is then subject to processes of separation into different fractions. 
Along the extraction process and the pipeline transport, the operating conditions change; this fact can induce phase separations. 
A first separation may occur when, due to the depressurization along the production string, the boiling pressure of the mixture is 
reached: a liquid-vapor separation happens, and the overall system becomes biphasic. In some oilfields and in some wells, 
however, the separation of a third phase is also observed. This solid or gel-like phase is mainly constituted by a specific class of 
compounds: the asphaltenes. The asphaltenes are "the bottom of the bottom of the barrel". Asphaltene is a fraction of the oil that 
contains the heavier and aromatic compounds. 
At the beginning, the nature of this separation seemed mysterious, due to the fact that the oil industry has not observed such a 
phenomenon before. Different physical models and empirical studies have been proposed to explain the phenomenon, and each 
author has defended his own model. For this reason, at first, a thorough analysis of the various models has been carried out in our 
company, looking for a particular behavior and a possible "experimentum crucis" to evaluate the physical consistency of the 
models. We ended up focusing on a particular behavior observed by different researchers and linked to the beginning of phase 
separation. It is possible, in fact, to induce the asphaltene separation by adding a n-paraffin to the crude. For this reason the 
titration of the oil has been and is very employed to study the phenomenon; in this way a lot of data has been accumulated in the 
literature. In particular, there was a general agreement in the literature on an empirical observation that concerns the onset of 
phase separation. After checking that the oils of our interest had this behavior, we focused on finding a physical model consistent 
with the observations. We were able to reconcile the observations with the Flory-Huggins theory. In particular, an experimental 
linear trend is attributable to the regular solutions theory, in the limit of infinite dilution. 
This presentation outlines a history of this logical path. 
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 Figure 1: Overall oil production system 
 
 
Due to this vapour-liquid separation, in the higher part of the  

tubing a bi-phase flux is realized. 
 

 
 
Figure 2: Asphaltene deposits 
 
In the surface facilities, the fluid stream reaches ambient 

conditions. Due to this change in conditions, various streams 
are separated. The main ones are: associated gas (gaseous 
mixture of hydrocarbon compounds), stock tank oil and 
produced water. Often the stock-tank oil is also referred to as 
"dead oil", as opposed to "live oil", that is the reservoir oil. 
Indeed, in the reservoir the gas, due to the high pressure, is  

 
 
 
 

completely dissolved in the liquid: in the reservoir 
hydrocarbons constitute in a single phase liquid 
 

THE ASPHALTENE PROBLEM 

A production problem was noticed from the beginning of the 
twentieth century in some fields: it was observed a gradual 
decrease in the production, linked to the formation of deposits 
into the tubing. The deposition occurred especially in the area 
around the bubble point condition, and deposits were called 
“asphaltene”, i.e. “asphalt-like” compounds. Properties and 
structure of asphaltene  are still being studied, as it is a difficult 
and tricky topic [1,2]. The asphaltene deposition problem is in 
often encountered in field characterized by relatively “light” 
oil, with very low asphaltene content. 

eni encountered this problem for the first time in the eighties, 
in relation to the production of one oil field located in the Po 
Valley. Various research projects were addressed at better 
understand and afford this problem. 

 
 

MODELING OF THE PHASE SEPARATION 

Various possible physical models of asphaltene phase 
separation were proposed in literature, spanning from 
liquid-liquid equilibrium (LLE), solid-liquid equilibrium 
(SLE), colloidal and empirical models [3]. This variety of 
models was linked to the various physical picture proposed by 
researchers. 

On the other hand, in order to have a strong physical basis, 
we looked for an unambiguous and reproducible behaviour, 
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that could allow an insight into the physics of the phenomenon. 
After a careful analysis of the literature, we identified the “onset 
of precipitation” test as a distinctive behaviour [4]. Our effort 
were the focused on these data. 

The onset of asphaltene precipitation is detected by 
gradually adding to the oil (eventually pre-diluted with a 
solvent)  a n-paraffin (often n-heptane or n-cetane). After some 
additions of paraffin, an asphaltene-rich phase precipitate out of 
the mixture. The onset is identified as the point at which this 
second phase start nucleating. If the following definitions are 
adopted: 

 
 

( )
( )amount oil

amountsolvent X =  (1) 

 
( )

( )amount oil
amountsolvent -antiY =  (2) 

 
 
then straight lines are obtained by plotting Y vs. X. These 

straight lines constituted the empirical set-up against which we 
tested our models. 

On the basis of our knowledge of the physical system and of 
the analysis of the previous literature, we choose to try to 
describe our system by employing a pseudo-binary 
Flory-Huggins approach [5]. Indeed, the Flory-Huggins theory 
was developed to thermodynamically describe polymer-solvent 
solutions, i.e. mixtures in which there is a big amount of 
relatively small molecules “solvent” and a little amount of  
relatively big “solute” molecules. From what we knew about 
asphaltene, this description seemed to be right one. In order not 
to have a very complex model, with a lot of tunable parameters, 
we adopted a pseudo-binary approach: in the mathematical 
description, the overall mixture is constituted by two 
components, component (2) being the asphaltene and 
component (1) being the overall mixture constituted by others 
chemical species. The following equations are then to be 
considered: 
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Symbols are defined as follows: 
 
r  ratio of molar volumes 
vi  molar volume of component i 
 
R  gas constant 
T   temperature 
 

iµ∆   chemical potential of component i   
 

iδ  solubility parameter of component i 

iϕ  volume fraction of component i 
χ  interaction parameter 
 
A phase equilibrium between two phases (I and II) is 

considered, by imposing that the chemical potential of each 
component in both phases must be the same: 

 
II
1

I
1 µ∆=µ∆  (7) 

 
II
2

I
2 µ∆=µ∆  (8) 

  
The properties of the pseudo-component 1 are to be 

evaluated -of course- by means of opportune mixing rules. In 
particular the molar volume can be evaluated as molar average 
of molar volumes: 

 

∑=
mixture

ii1 vxv  (9) 

 
Here ix  is the molar fraction. 
The solubility parameter has to be evaluated  instead as a 

volumetric average: 
 

∑ δϕ=δ
mixture

ii1  (10) 

 
The overall model  (i.e. Eq.s (3) ÷  (10) ), when applied, 

give rise to a miscibility gap as reported in Figure 3. 
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Figure 3: Miscibility gap for r = 10 
 
The curve, of course, depends on the ratio of molar volumes 

r. In the plane (asphaltene volume fraction) vs. (interaction 
parameter) there is a two-phase zone, corresponding to the 
equilibrium between two solutions at different compositions. 

 
 

THE APORIA IN WHICH WE FOUND OURSELVES 

At this point, we found ourselves in an aporia.  
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On one hand, we had a lot of experimental confirm (from 
worldwide labs) of the “straight lines” behaviour. Besides, this 
behaviour seemed to be physically reasonable: the more the 
good solvent is present (higher X) the more the precipitant is 
needed (higher Y). 

On the other hand, we must consider the description of the 
experiments in terms of the model: when a precipitant is added 
to the solution, there is an increase in the interaction parameter 
( χ ) and a decrease of the concentration (a decrease of the 

volume fraction 2ϕ ). The first effect tends to de-stabilize the 
mixture, while the second one tends to keep asphaltene in 
solution. However, is predicted an effect of concentration that 
is not observed. 

What had gone wrong? 
 

IT'S A LONG WAY... 

A first possible explanation could be that the chosen physical 
model was not the right one. But we discharged this possibility 
for two main reasons: 
(l) the physical system (i.e. the oil) is a liquid mixture, and 

asphaltene are similar, from a chemical-physic point of 
view, to the other oil components. This justifies the 
proposed approach, in which to the ideal entropy of 
mixing is added a regular solution’s mixing enthalpy term; 

(2) the other proposed models are more complex, with even 
more parameters. It seems that the physical behaviour is 
even simpler than the very simple model we adopted: 
other models would be unnecessarily complicated. 

We started a long re-elaboration  work, in order to reconnect 
the model and the experimental behaviour. A first observation 
was that the observed behaviour means that the onset of 
asphaltene precipitation happens at a fixed overall "solvent 
quality" (expressed in the model by the solubility parameter of 
the mixture), and that this condition does not depends on the 
asphaltene concentration [6]. This consideration leaded to the 
following onset condition: 

 

Crχ=χ  (11) 
 
i.e., the onset of asphaltene separation corresponds to a 

critical value of the interaction parameter. When a n-paraffin is 
added to the mixture, both 1δ  and v1 change, according to Eq.s 
(9) and (10); in this way  χ  (Equation 5) increases. When χ  is 
greater than a critical value, the asphaltene precipitation 
happens. 

As critical value, on the basis of the polymer solutions 
theories, 0.5 was adopted. But, when we tried to fit 
experimental data with this model, a greater value was  
obtained: estimated  values span in the range 0.8 ÷  1.1 [7]. By 
trying to explain this observation, we found that the instability 
condition 1≥χ  is equivalent to the condition: 

 

0G~lim mix0x2

>



 ∆

→
 (12) 

 
Equation (12) means that it is possible to obtain the observed 

instability condition by considering the Flory-Huggins 
expression of the enthalpy of mixing. If the solute is 
significantly bigger than the solvent (r > 10) and if the limit of 

infinite dilution is considered, 1=χ  is the condition at which 
the molar free energy of mixing is zero. 

The physical consequences of this reasoning are remarkable. 
The onset of precipitation is reached by gradually adding a 
precipitant to the (stable) initial mixture. In doing this, the 
concentration of asphaltene ( 2ϕ ) decreases, and this is a 
stabilizing effect. The other effect that counteracts this one is 
the change of the "quality" of the solvent, expressed by the 
solubility parameter of the mixture ( 1δ ). The onset happens 
when the overall solvent power of the mixture is such that 
asphaltene results to be perfectly immiscible (insoluble in the 
mixture). A strong implication of this is that at the onset a "pure 
asphaltene" phase precipitates out of the solution.  

Currently we know that this is the physical behavior that is 
realized in the onset tests on stock-tank oils. In reservoir the 
destabilization of asphaltene happens in a slightly different 
way, and there could be another type of phase separation. 
Deposits formed under these conditions could contain 
significant amounts of non-asphaltenic constituents. This topic 
is still under investigation. 
  

WHAT ABOUT THE STRAIGHT LINES? 

The model for the onset results to be: 
 

@ onset: ( ) 1
RT
v 2

12
1 =δ−δ  (13) 

 
When trying to calculate the precipitant amount through 

Equation (13), a quadratic equation is obtained. However it is 
possible to show that, if the molar volumes of the 
pseudocomponents are similar, straight lines are recovered [6]. 
Besides, when the values of the properties are substituted into 
the equations, the straight lines are always found. 

 

BACK DOWN TO EARTH 

The logical path described so far has a concrete motive. 
Working in the oil industry implies facing extremely complex 
and variable systems with very limited available information. 
Often it is not easy or possible to have samples to be directly 
analyzed, or it is impossible to directly make test at the desired 
conditions. For this reason is of paramount importance to have 
physically founded models. In this way it is possible to perform 
a limited number of tests in the laboratory, and then 
extrapolating the results to different conditions.  

On the basis of this physical model of the onset, the 
following procedure was proposed to determine the region of 
instability in a (P,T) diagram, to forecast well bore asphaltene 
precipitation from stock tank oil measurements: 
(l) Characterization of stock tank oil by means of lab 

measurements and previously developed empirical 
relationship. In this way it is possible to evaluate molar 
volume and solubility parameter of the stock-tank oil [8]. 

(2) Experimental determination of stock-tank oil precipitation 
onset. At the onset, the 1=χ  has to be fulfilled. By 
imposing this condition, it is possible to calculate the 
asphaltene solubility parameter. 

(3) Calibration of an equation of state (usually the 
Soave-Redlich-Kwong EOS [9]) by using the onset data. 
The oil is represented by means of components and  
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Figure 3: Asphaltene Deposition Envelope 

 
 
 pseudo-components, each one characterized by critical 

temperature (Tc), critical pressure (Pc) and acentric factor 
(ω). The parameters of the pseudocomponents can be 
evaluated from their boiling point and specific gravity by 
means of empirical relationships.  

(5) Calculation of live oil molar volume and solubility 
parameter at different T and p conditions (up to reservoir 
conditions) by means of the calibrated equation of state. 

(6) Calculation of asphaltene solubility parameter at the same 
conditions, by means of an empirical relationship. 

 (7) Determination of the asphaltene deposition envelope 
(ADE): at each pair (T, P), χ is calculated with Eq. [5]; if 
the oil conditions are inside the envelope (χ>1), then at 
these conditions the asphaltenes are not stable. 

 
An example of ADE determined with this procedure is 

reported in Figure 3. Therefore, with a relatively simple 
measurement of stock tank oil, it is possible to calculate an 
Asphaltene Deposition Envelope that identifies the pressure 
and temperature conditions in which there is a risk of 
asphaltene separation. If there is an area in the reservoir, the 
pipeline etc. where asphaltene enter the region of instability, 
asphaltene may deposit in that area. 

This model has been employed in eni to assess the 
asphaltene deposition risk in many cases, with good results. 

 

CONCLUSIONS 

The history of the eni’s asphaltene deposition model has 
been here synthetically described. It is a model characterized by  

 
 
 
 

a very limited number of parameters and by the strong 
adherence to experimental observations. The model, gradually 
built over the years, has been and is used to assess the risk of 
asphaltene deposition in well.  

The work of these years allowed me to appreciate the 
elegance and ingenuity of the theory of regular solutions and 
Flory-Huggins theory for polymer solutions. 
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ABSTRACT
Thermodynamics is one of the oldest branches of physical chemistry; its foundations were laid in the late 19th Century. This leads
to some peculiar problems. The first is that some good ideas and good data from “thermodynamic antiquity” became forgotten.
This could happen if there was no practical application, but also if—before the advent of electronic computers—the mathematical
treatment was too difficult or time-consuming. The second peculiarity is that some old concepts, developed solely as means of
survival in the age of the logarithmic tables and slide rules, are still in use today. Now, in the 21st Century, there are new classes
of chemical compounds to consider (e.g., ionic liquids) as well as old classes under unusual conditions (e.g., hydrocarbons at
pressures exceeding 1 kbar), and there are new models based on statistical thermodynamics and quantum mechanics.
In this contribution we shall give examples for these peculiarities. In particular, it will be demonstrated that a “clean and lean”
axiomatic approach can simplify and speed up computations. Furthermore, the problem of recognizing weaknesses of equations
of state will be discussed, as well as molecular theory-based ways to improve them.

INTRODUCTION

In a recent textbook on physical chemistry1, the chapter on
freezing-point depression contains a derivation of the famous
equation

1
T

=
1

Tfus,1
−

Rlnx1

∆fusHm,1
, (1)

(component 1 being the solvent) which then leads to the final
result

∆T =−

RM1T2
fus,1

∆fusHm,1
c2 (2)

after making the simplifications

lnx1 = ln(1− x2)≈−x2 ≈ c2M1 (3)

and

1
T
−

1
Tfus,1

≈−

∆T

T2
fus,1

, (4)

which are allowed in the case of diluted solutions.
All this correct—but why do we have to make these simpli-

fications? They were certainly useful 50 years ago, before the
advent of pocket calculators, when calculations had to be made
with a slide rule or logarithmic tables. But do we really have
to burden our students with such equations anymore in the 21st
Century?

1reference purposely omitted

The beginning of thermodynamics as an exact science can be
placed in the first half of the 19th Century. We can therefore
look back on a success story of about 200 years. But these 200
years were not merely a period of data accumulation; they were
a period of quantitative and qualitative development, and of the
evolution of concepts. It has happened—and may then happen
again—that some concepts reach limits of applicability and then
are superseded by new developments. So it may be necessary
to replace an equation of state, that was good and sufficient in
1950, by a more powerful one in 2013. One can certainly chop
wood with a stone axe, and one can make it really sharp—but in
the long run, one should switch to steel!

This article will discuss some cases where models or proce-
dures have arguably been kept too long.

OLD LAWS

Chemical reaction equilibria

One of the cornerstones of chemical thermodynamics is the
mass action law, which states that for a chemical reaction

|ν1|X1+ |ν2|X2+ . . .⇋ |νk|Xk+ |νk+1|Xk+1+ . . .

between chemical species Xi (stoichiometric factorsνi assumed
to be negative for eductsi < k) and positive for products (i ≥ k)
the partial pressurespi of the species must obey the equation

N

∏
i=1

(

pi

p


)νi

= K , (5)

where the equilibrium constantK is related to the Gibbs energy
of the reaction,

K = exp

(

−

∆rG


m

RT

)

. (6)
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p
 denotes the thermodynamic reference pressure (usually
0.1 MPa). Eq. (5) is correct for ideal gas mixtures only; for
real systems, we have to use fugacities,

N

∏
i=1

(

fi
p


)νi

= K , (7)

with

fi ≡ exp

(

µi −µ


i

RT

)

; (8)

here theµi andµ


i denote the chemical potentials of the reacting
species, which evidently are functions of temperature, pressure,
and composition; theµ


i are reference values. Moreover, there
is an impressive number of variants of the mass action law ex-
pressed in terms of mole fractions, concentrations, or activities,
most of these involving equilibrium constants that are no longer
dimensionless.

Solving Eq. (5), together with the material balance equations,
for the equilibrium compositionsanalyticallyis usually not fea-
sible, except for very simple chemical reactions involving few
components under ideal conditions. But if we have to resort to
determine the equilibriumnumerically, there is no need to in-
voke the mass action law at all. It is more straightforward to use
the exact equation from which the mass action law is derived,

N

∑
i=1

νiµi =~ν ·~µ= 0 , (9)

where~ν and~µ are vectors of stoichiometric coefficients and
chemical potentials, respectively. This equation is applicable
to all chemical reactions and to all states of aggregation. Fur-
thermore, it can be easily extended to multiphase/multireaction
systems by applying Eq. (9) to each phase and each chemical
reaction, and observing the phase equilibrium condition of hav-
ing the sameµi in all phases, e.g., for a system consisting of two
phases and having one chemical reaction,

N

∑
i=1

νiµ
′

i =~ν ·~µ′ = 0

N

∑
i=1

νiµ
′′

i =~ν ·~µ′′ = 0

~µ′ =~µ′′.

(10)

This formulation is easy to teach and easy to program; it does
not need activities or fugacities. This does not mean that, after
formulating thermodynamic problems in terms of chemical po-
tentials, all computational problems evaporate, but we have at
least achieved a clean separation of the modeling (i.e., the way
how we compute theµi(xi , p,T) from the numerical problem of
solving the above equations.

Phase equilibria

The phase equilibrium condition in Eq. (9) is applicable
to all kinds of phase equilibria and not restricted to subcriti-
cal vapour–liquid equilibria like Raoult’s law, another left-over
from the past.

x1

G
m

Figure 1. Schematic representation of the Gibbs energy “function” for a

2-phase equilibrium of a binary fluid mixture (continuous and discontin-

uous case). : molar Gibbs energy, : double tangent indicating

the equilibrium compositions.

It is possible, of course, to pull tricks that make Raoult’s law
applicable at supercritical conditions, and the use other equa-
tions for liquid–liquid equilibria, and still others for solid–fluid
equilibria. But why should me make thermodynamics more
complicated than it is?

Principal energy functions

Another time-hallowed concept is the formulation of equi-
librium and stability criteria with the help of the Gibbs energy.
The Gibbs energy,Gm(p,T,~x) can be obtained from the internal
energy,Um(Vm,Sm,~x), by a series of Legendre transformations.
These transformations replace “density variables” (i.e., variable
that may have different values in coexisting phases) by “field
variables” (i.e., variables that have the same value in coexisting
phases). At a first glance, using the Gibbs energy function for
phase equilibrium problems simplifies matters. But this simpli-
fication comes at a price: As there can be more than one density
at a given pressure, the Gibbs energy is, in the strict sense, not
a function. A diagram of the Gibbs energy vs. mole fraction
for a two-phase equilibrium may exhibit the usual S-shape, but
it may alternatively consist of three separate branches—a fact
that is not mentioned in many textbooks (Fig. 1). Of course, the
physically significant (= stable) value at each composition is al-
ways the one with lowest Gibbs energy. But the existence of
three branches has consequences for the computation of phase
equilibria: Algorithms relying on the local curvature may fail to
find the phase equilibrium, as there is no locally concave region
along the stable portion of the graph; algorithms not making use
of the local curvature are less efficient.

It is advantageous to use the Helmholtz energy instead,
Am(Vm,T,~x), and for many years this has been the customary
approach for work based on equations of state. It is better, how-
ever, to the Helmholtz energy density,Ψ(~ρ,T), where~ρ is the
vector of molar densities,ρi = xi/Vm. Both functions do not
have discontinuities for fluid phase equilibria. The local curva-
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ture of the Helmholtz energy surface is described by its Hessian
matrix,
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and that of the Helmholtz energy density by

Ψ̂ =
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In principle, the two Hessians are equivalent. But the elements
of Â have different dimensions, and this makes it impossible to
calculate the trace or eigenvalues, which are very useful for sta-
bility analysis2. It has been shown that initial values for phase
equilibrium calculations can be found reliably and the calcu-
lation of the equilibrium performed more efficiently with algo-
rithms based on an eigenvalue search on aΨ(~ρ,T) surface [1,2].

In particular, the well-known phase equilibrium conditions

p′ = p′′

µ′i = µ′′i , i = 1. . .N
(13)

become vector equations,

∇Ψ′

·

(

~ρ′′

−~ρ′

)

= Ψ′′

−Ψ′

∇Ψ′ = ∇Ψ′′ .
(14)

Formulating thermodynamic equations this way is not merely
an estheticism: modern computer languages and symbolic-
algebra packages have built-in vector and matrix operations, and
using these features makes programming easier the the program
code better readable and maintainable.

The customary way to check for local (diffusion) stability is
by calculating the determinant of̂A; detÂ = 0 is a necessary
condition for spinodal and critical states. It can be shown, how-
ever, that the computation of eigenvaluesλi of Ψ̂ and setting
λmin = 0 is a far more efficient method.

Another advantage is that, in a~ρ-based system, azeotropy
does not play a role and thus cannot disturb the convergence of
the algorithms.

OLD CONCEPTS FOR EQUATIONS OF STATE

Many recently used equations of state are based on the con-
cept of the hard-sphere fluid, and they are known to perform

2The situation can be remedied by using scaling factors with appropriate
dimensions. An axiomatic derivation of Eq. (11) shows that these must exist.
But they are usually omitted in the literature.
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Figure 2. Amagat (Joule inversion) curve of hydrogen, calculated with

several equations of state. : “soft SPHCT equation” (temperature

dependence of the size parameter based on perturbation theory) [5],

: PC-SAFT equation [6], : Peng–Robinson equation (its Joule

inversion curve is an artifact of the temperature function of its attraction

term.) [7]; grey line: vapour pressure curve with critical point.

satisfactorily. But is it safe to conclude that an equation that
performs well up to 20 MPa will also perform well at 200 MPa?
An easy-to-use test is the calculations of Brown’s characteris-
tic curves [3,4]. Along these curves, one of the thermodynamic
properties of a real fluid is the same as that on an ideal gas. Here
we restrict ourselves to the discussion of the Amagat curve, also
known as Joule inversion curve. Its mathematical conditions are
either one of

(

∂Z
∂T

)

V
= 0

(

∂Z
∂p

)

V
= 0

(

∂p
∂T

)

V
=

p
T

(

∂U
∂V

)

T
= 0 .

(15)

In a pT diagram, the Amagat curve should have a single maxi-
mum and no inflection points, as indicated in Fig. 2. The pres-
sure at the maximum is extremely high, usually 50–100 times
the critical pressure. For some compounds, however, this is still
in the technically relevant range, e.g., for hydrogen.

But even users not interested in such high pressures are ad-
vised to check the Amagat curve, for if there is anything amiss,
deviations or odd behaviour of thermodynamic functions can
already make themselves felt at lower pressures.

1. As a rule, equations of state containing a hard-sphere term
with a temperature-independent size parameter (this ap-
plies to most cubic equations of state) do not show a cor-
rect Amagat curve, or they do not have an Amagat curve
at all. Such equations should be used with caution at high
pressures, for some of their derivative properties behave
wrongly.
The commonly used remedy, namely devising a more
complicated temperature dependence of theattraction
term, invariably fails when the pressure are high enough.

2. Equations of state containing a hard-sphere term with a
simplistic temperature dependence of the size parameter
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Figure 3. The speed of sound of hydrogen computed with several equa-

tions of state. : reference equation [11], : “soft SPHCT” [5],

: PC-SAFT [6], : Peng–Robinson equation [7] (using an acen-

tric factor of 0.0). The parameters of the soft SPHCT, PC-SAFT, and PR

equations were determined from the critical temperature and pressure.

(usually aT−1 dependence or a Boltzmann factor, e.g.,
BACK [8] or PC-SAFT [6]) usually give distorted Am-
agat curves. They are not safe at high pressures, too.
Moreover, it is known that a temperature dependence of
the size parameter may lead to isotherm crossing [9,10].

3. Using a temperature dependence of the size parameter
derived from perturbation theory can lead to equations
of state with correctly shaped Amagat curves and a very
wide pressure range. With modern computers, the nu-
merical overhead for the calculation of the temperature
functions is affordable.

The effect on an important thermodynamic property, the
speed of sound, is shown in Fig. 3: The curve of the Peng–
Robinson equation starts at low pressures with the correct slope,
but departs from the reference equation [11] as soon as softness
effects make themselves felt. The PC-SAFT equation deviates
even more. Only the “soft SPHCT” equation [5], which has a
temperature dependence based on Weeks–Chandler–Andersen
perturbation theory, can match the behaviour of the reference
equation reasonably well3.

Admittedly, the underlying SPHCT equation is too simple for
really accurate work. But the principle of the softness correction
used for the “soft SPHCT” equation can easily be applied to
other equations of state. This ads a numerical complication,
but it is desirable to not let real or perceived difficulties of the
computational implementation let the design of thermodynamic
models too much. In the long run, it is better to use advanced
numerical techniques and to keep the better model.

CONCLUSION

Solving scientific or engineering problems can often be re-
garded as a three-step process, namely

3The reference equation is probably beyond its range of validity at 700 K
and 300 MPa.

• devising a mathematical model,
• solving it,
• and interpreting the results.

Ideally, solving and model making should be distinct steps:
It is not wise to let our (sometimes insufficient) capabilities to
solve equations influence the way how we devise models. Of
course, sometimes we cannot avoid it. But if we have to make
compromises, we must remember so and look for ways to rem-
edy the situation. Overcoming limitations of models by merely
adding one more adjustable parameter usually helps for a while,
but not in the long run.

We should not introduce simplifications and approximation
at a too early stage of the model making. We should especially
avoid making obsolete simplifications and retain exact thermo-
dynamic relations as long as possible.

Over the previous decades, our computing power has become
enormous. We can afford to use theories beyond cubic equations
of state. But our higher computing power is not only caused by
higher processor clock frequencies. Much of it is owed to the
availability of high-level programming languages and program
libraries. If we formulate our thermodynamic problems in a
modern and clear way, using tools of differential geometry, we
can efficiently make use of the available numerical tools.

Let us cease honing our stone axes and try to get chainsaws
instead!

NOMENCLATURE

A Helmholtz energy;̂A: its Hessian matrix
f fugacity
G Gibbs energy
K chemical equilibrium constant
N number of components of a mixture
p pressure
R gas constant
S entropy
T temperature
U internal energy
V volume
x mole fraction;~x: vector of all mole fractions of a phase
Z compression factor,Z = pVm/(RT)
µ chemical potential;~µ: vector of allµi of a phase
ν stoichiometric coefficient;~ν: vector ofνi for a chemical

reaction
ρ molar density;~ρ: vector of all densities
Ψ Helmholtz energy density,Ψ = A/V; Ψ̂: its Hessian ma-

trix

Subscripts

i componenti of a mixture
m molar property
r chemical reaction

Superscripts

 reference value
′,′′ phase indicators
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INTRODUCTION 

Today, the synthesis design and optimization steps of 
chemical processes require more and more to access quasi 
immediately to PVT properties of a nearly infinite set of 
molecules in order to select the most efficient ones without 
having to perform costly and fastidious experiments. In that 
purpose, group–contribution methods can be of great interest 
since they allow guesstimating thermodynamic properties of a 
given mixture from the mere knowledge of chemical structures 
of molecules constituting it. Starting from these observations, 
the so–called PPR78 model (for Predictive Peng–Robinson 
1978) is developed since 2004 [1–12]. This predictive 
equation of state (EoS) combines the Peng–Robinson equation 
in its 1978 version and the Van Laar activity coefficient model 
under infinite pressure. In addition a group contribution 
method is used to accurately quantify the interactions between 
each pair of molecules. Nowadays, the PPR78 model can 
manage complex mixtures containing alkanes, cycloakanes, 
aromatic compounds, alkenes, carbon dioxide, nitrogen, 
hydrogen sulfide, mercaptans and hydrogen. The group–
interaction parameters were determined in order to minimize 
the deviations between experimental and calculated fluid–
phase equilibria on hundreds of binary systems. It is indeed 
acknowledged that accurate phase equilibria is the key point 
to design and optimize chemical processes. However, excess 

enthalpies (hE) and excess heat capacities (E
Pc ) are also very 

important quantities because they are involved in the energy 
and exergy balances of any process. Our first task was thus to 
check whether the PPR78 model could accurately predict such 
data. The obtained results were however not fully satisfactory. 
It was realized that while the Peng–Robinson EoS can 
accurately correlate vapor–liquid equilibrium (VLE) and hE 
data separately, attempting to predict the values of one 

property with parameters obtained from the other does not 
give satisfactory results. We thus decided to refit all the 
group–interaction parameters of the original PPR78 model 
taking simultaneously into account phase equilibria and excess 
properties data. Our goal was obviously to obtain an enhanced 
model having the same accuracy as the original PPR78 to 
predict phase equilibria but also able to accurately describe 
excess enthalpies and excess heat capacities. 

THE PPR78 MODEL 

The PPR78 model relies on the Peng–Robinson EoS [13] 
which for a given pure component i, can be written as: 
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ABSTRACT 
PPR78 is a predictive thermodynamic model that combines the Peng–Robinson equation of state in its 1978 version and the 
Van Laar activity coefficient model under infinite pressure. A group contribution method is used to accurately quantify the 
interactions between each pair of molecules. During the last decade, the group–interaction parameters were determined in 
order to minimize the deviations between experimental and calculated fluid–phase equilibria on hundreds of binary systems. It 
is indeed acknowledged that accurate phase equilibria is the key point to design and optimize chemical processes. Excess 
enthalpies and excess heat capacities are however very important quantities because they are involved in the energy and exergy 
balances of any process. The prediction of such properties with parameters obtained from fluid–phase equilibrium data 
however does not give satisfactory results. It was thus decided to refit all the group–interaction parameters of the original 
PPR78 model taking simultaneously into account phase equilibria and excess property data. The resulting model, called E–
PPR78 (E for Enhanced) has the same accuracy as the original PPR78 to predict phase equilibria but is able to much better 
describe excess enthalpies and excess heat capacities. 
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where P is the pressure, R is the gas constant, T is the 
temperature, a and b are respectively the energy parameter 
and the covolume, v is the molar volume. Tc,i is the critical 
temperature, Pc,i is the critical pressure, and ωi is the acentric 
factor of a pure component i. Extension to mixtures requires 
mixing rules for the energy parameter and the covolume. 
 
• A widely employed way to extend the cubic EoS to a 

mixture containing p components, the mole fractions of 
which are xi, is via the so–called Van der Waals one–fluid 
mixing rules [quadratic composition dependency for both 
parameters – see Eqs. (2) and (3)] and the classical 
combining rules, i.e. the geometric mean rule for the 
cross–energy [Eq. (4)] and the arithmetic mean rule for the 
cross covolume parameter [Eq. (5)]: 

= =

=∑∑
p p

i j ij
i 1 j 1

a x x a  (2) 

= =

=∑∑
p p

i j ij
i 1 j 1

b x x b  (3) 

= −ij i j ija a a (1 k )  (4) 

( )= + −1
ij i j ij2

b b b (1 l )  (5) 

Doing so, two new parameters, the so–called binary 
interaction parameters (kij and lij) appear in the combining 
rules. One of them, namely kij is by far the most important 
one. Indeed, a non null lij is only necessary for complex 
polar systems and special cases. This is the reason why, 
phase equilibrium calculations are generally performed 
with = 0ijl  and the mixing rule for the covolume 

parameter simplifies to: 

=

=∑
p

i i
i 1

b x b  (6) 

When used with temperature–independent kij, cubic EoS 
with Van der Waals one–fluid mixing rules (VdW1f) lead 
to very accurate results at low and high pressures for 
simple mixtures (few polar, hydrocarbons, gases). They 
can however not be applied with success to polar mixtures. 
 

• In order to avoid the limitations of the VdW1f mixing 
rules, extension of cubic EoS to mixtures can be 
performed via the so–called EoS/gE models. Indeed, gE 
models (activity–coefficient models) are applicable to low 
pressures and are able to correlate polar mixtures. It thus 
seems a good idea to combine the strengths of both 
approaches, i.e. the cubic EoS and the activity coefficient 
models and thus to have a single model suitable for phase 
equilibria of polar and non–polar mixtures and at both low 
and high pressures. 
 
The starting point for deriving EoS/gE models is the 
equality of the excess Gibbs energies from an EoS and 
from an explicit activity coefficient model at a suitable 
reference pressure. The activity coefficient model may be 
chosen among the classical forms of molar excess Gibbs 
energy functions (Redlich–Kister, Margules, Wilson, Van 
Laar, NRTL, UNIQUAC, UNIFAC…). Such models are 

pressure–independent (they only depend on temperature 
and composition) but the same quantity from an EoS 
depends on pressure, temperature and composition 
explaining why a reference pressure needs to be selected 
before equating the two quantities. In order to avoid 

confusion, we will write with a special font ( EG ) the 

selected activity coefficient model and with a classical font 
(gE) the excess Gibbs energy calculated from an EoS. The 
starting equation to derive EoS/gE models is thus: 

E E

P

g

RT RT

 
= 

  

G
 (7) 

where subscript P indicates that a reference pressure has to 
be chosen. The first systematic successful effort in 
developing such models is that of Huron and Vidal [14], 
who used the infinite pressure as the reference pressure. 
Starting from Eq. (7), Huron and Vidal (HV) obtained: 
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where EoS
2

C ln(1 2 ) 0.62
2

= + ≈  for the Peng–

Robinson EoS. 
 
Jaubert and Privat [15–16] demonstrated that the 
introduction of a Van Laar–type excess Gibbs energy 
model: 

p p

i j i j ij
E

i 1 j 1Van Laar
p

EoS
j j

j 1

x x b b E (T )
1

C 2
b x

= =

=

= ⋅
∑∑

∑

G
 (9) 

in Eq. (8) was rigorously equivalent to using VdW1f mixing 
rules with temperature–dependent kij. The mathematical 
relation between kij(T) [Eq. (4)] and the interaction 
parameter of the Van–Laar gE model [Eij(T) in Eq. (9)] is: 

2
ij i j

ij
i j

E (T ) ( )
k (T )

2

δ δ
δ δ

− −
=  with i

i
i

a

b
δ =  (10) 

The works by Jaubert and Privat thus demonstrate that the 
use of temperature–dependent kij in the VdW1f mixing rules 
can overcome the limitations encountered with a constant kij. 
 
The previous considerations were the starting point for the 
development of the PPR78 model. We indeed wanted a 
model which could be used with commercial process 
simulators in which the PR EoS is systematically available 
but we also wanted to overcome the limitations of the 
constant kij VdW1f mixing rules (which, as previously 
explained, only apply to simple fluids). This is why, 
following the previous works of Abdoul et al. [17] a group 
contribution method (GCM) to estimate indifferently the 
interaction parameters Eij(T) in Eq. (9) or the kij(T) in Eq. 
(4) was developed. 
 
The following equations were considered: 
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Eq. (11) will be employed with the HV mixing rules and Eq. 
(12) with the VdW1f mixing rules. In both cases, the same 
results will be obtained. In Eqs. (11) and (12), T is the 
temperature. ai and bi are the attractive parameter and the 
covolume of pure i. Ng is the number of different groups 
defined by the method (for the time being, twenty–one groups 
are defined and 21gN = ). αik is the fraction of molecule i 

occupied by group k (occurrence of group k in molecule i 
divided by the total number of groups present in molecule i). 

kl lkA A=  and kl lkB B=  (where k and l are two different 

groups) are constant parameters determined during the 
development of the model (kk kkA B 0= = ). As can be seen, to 

calculate the kij (or Eij) parameter between two molecules i 
and j at a selected temperature, it is only necessary to know: 
the critical temperatures of both components (Tc,i, Tc,j), the 
critical pressures of both components (Pc,i, Pc,j), the acentric 
factors of each component (ωi, ωj) and the decomposition of 
each molecule into elementary groups (αik, αjk). It means that 
no additional input data besides those required by the EoS 
itself is necessary. Such a model relies on the Peng–Robinson 
EoS as published by Peng and Robinson in 1978 [Eq. (1)]. 
The addition of GC method to estimate the temperature–
dependent kij (or Eij) makes it predictive; it was thus decided 
to call it PPR78 (predictive 1978, Peng Robinson EoS). 

For the 21 groups, we had to estimate 420 parameters 
(210Akl and 210Bkl) the values of which were determined in 
order to minimize the deviations between calculated and 
experimental vapor–liquid equilibrium data from an extended 
data base containing roughly 100,000 experimental data 
points (56,000 bubble points + 42,000 dew points + 2,000 
mixture critical points). 

The following objective function was minimized: 

+ + +
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+ + +
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nbubble, ndew and ncrit are the number of bubble points, dew 
points and mixture critical points respectively. x1 is the mole 
fraction in the liquid phase of the most volatile component and 
x2 the mole fraction of the heaviest component (it is obvious 
that 2 1x 1 x= − ). Similarly, y1 is the mole fraction in the gas 

phase of the most volatile component and y2 the mole fraction 
of the heaviest component (it is obvious that 2 1y 1 y= − ). xc1 

is the critical mole fraction of the most volatile component 
and xc2 the critical mole fraction of the heaviest component. 
Pcm is the binary critical pressure. 
 
For all the data points included in our database, the objective 
function defined by Eq. (13) is only: 

 objF 7.6 %=  (14) 

 
The average overall deviation on the liquid phase 

composition is: 

obj ,bubble1 2

bubble

Fx % x %
x% 7.4 %

2 n

∆ ∆∆ += = =  (15) 

 
The average overall deviation on the gas phase composition 

is: 
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dew

Fy % y %
y% 8.0 %

2 n

∆ ∆∆ += = =  (16) 

 
The average overall deviation on the critical composition 

is: 

obj ,crit . compc1 c2
c

crit

Fx % x %
x % 7.1 %

2 n

∆ ∆∆ += = =  (17) 

 
The average overall deviation on the binary critical 

pressure is: 

obj ,crit . pressure
c

crit

F
P % 4.9 %

n
∆ = =  (18) 

 
We can thus assert that the PPR78 model is an accurate 

thermodynamic model which it is able to predict fluid–phase 
equilibria in any mixture containing alkanes, aromatics, 
naphthenes, CO2, N2, H2S, H2, mercaptans, water and alkenes.  

 
It is today integrated in many process simulators like 

ProSimPlus, PRO/II, ChemSep, GEM–Selektor, EQ–COMP 
(and probably soon in UniSim). 

 
Figure 1 graphically illustrates the accuracy of the PPR78 

model. 
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Figure 1. Illustration of the accuracy of the PPR78 model. The 
symbols are the experimental data points. The full lines are the 

predictions with the PPR78 model. 

FROM THE PPR78 MODEL TO THE E–PPR78 
MODEL 

The PPR78 model being able to predict with accuracy fluid–
phase equilibria, it was decided to test its ability to predict 

excess enthalpies (hE) and excess heat capacities (E
Pc ). A 

literature review made it possible to collect 30,000 hE data 

points over 500 binary systems and 2,000 E
Pc  data points over 

100 binary systems. 
By definition, the molar excess enthalpy hE [see Eq. (19)] is 

the difference between the molar enthalpy of a solution and 
the sum of the molar enthalpies of the components which 
make it up, all at the same temperature and pressure as the 
solution, in their actual state weighted by their mole fractions 
zi: 

p
E

i pure i
i 1

h (T ,P,z ) h(T ,P,z ) z h (T ,P )
=

= − ⋅∑  (19) 

For nearly ideal solutions i.e. when the molecules of a 
mixture are similar, hE tends to zero and its influence on an 
energy balance is negligible. For such systems (e.g. mixture of 
n–hexane and n–heptane), high relative deviations – even 
higher than 200 % – are totally acceptable. In return, for 
highly non–ideal systems, hE values can reach several kJ/mol 
and important absolute deviations can have a detrimental 
impact on the energy balance even if the corresponding 
relative deviations remain low (20 % deviation on a hE value 
of 5 kJ/mol leads to a non–acceptable absolute deviation of 
1 kJ/mol). For these reasons, the deviations on the excess 
enthalpies were neither expressed as relative nor absolute 
deviations but instead as a temperature difference defined by: 

E E
cal exp PT h h c  ∆ = −  (20) 

where E
calh  and E

exph  are respectively the calculated and the 

experimental hE values. cP is the heat capacity of the mixture. 

From an engineering point of view, a deviation of 1 K is 
considered as acceptable. For the 30,000 experimental hE data 
point collected, the PPR78 model lead to an average deviation 

of: 78 2.1 KPPRT∆ =  which is at least twice too high. 

Regarding the accuracy on the EPc  prediction, an average 

deviation (on the 2,000 experimental data points) of: 
1 1

PPR78 14.5 J mol KE
Pc∆ − −= ⋅ ⋅  was obtained. Such a 

deviation is huge and totally unacceptable. E
Pc  values are 

indeed generally small and only a deviation smaller than 
1 10.5 J mol K− −⋅ ⋅  can be considered as acceptable. In front of 

such disappointing results, the group–interaction parameters 
[Akl and Bkl in Eq. (11)] were fitted in order to minimize an 
objective function which took into account only the deviations 

on hE and E
Pc . In that case, very accurate predictions could be 

obtained on such quantities but the deviations on VLE data 
were really too large. Moreover, we found unacceptable to 
have two sets of parameters: one for phase–equilibrium 
calculations and another one to perform energy balances. 
Indeed phase equilibrium and enthalpy calculations are 
frequently made together and it is thus useful to consider the 
applicability of a single set of parameters to both these 
properties. This statement was the basis to develop the E–
PPR78 model in which the group–interaction parameters were 
determined in order to minimize an objective function which 
included both the deviations on the fluid–phase compositions 
[see Eq. (13)] and the deviations on the excess properties. The 
corresponding Akl and Bkl group–interaction parameters are 
not yet published but can be found in the thesis by Qian [18]. 
The deviations obtained with such an enhanced model can be 
summarized as follows: 

 
• the deviation on fluid–phase equilibria is: 

 E PPR78 7.8 %objF − =  [see Eq. (13)] 

• the deviation on hE is: 

78 0.6 KE PPRT∆ − =  

• the deviation on E
Pc  is: 

1 1
78 0.5 J mol KE

P E PPRc∆ − −
− = ⋅ ⋅  

 
Such deviations highlight that the accuracy of the E–PPR78 
model to predict fluid–phase equilibria, is the same as the one 
obtained with the original PPR78 model (the two objective 
functions: 7.6 % and 7.8 % are very close). On the other hand, 
the E–PPR78 model allows a much better prediction of the hE 
(∆T has been divided by a factor 3.5) and a spectacular 

improvement on the EPc  prediction can be noticed. 

 
Figure 2 graphically illustrates the accuracy of the E–PPR78 
model to predict excess properties. 
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Figure 2. Illustration of the accuracy of the E–PPR78 model. The 
symbols are the experimental data points. The full lines are the 

predictions with the E–PPR78 model. 

 

CONCLUSION 

In this study, the parameters of the PPR78 model have been 
readjusted by considering phase equilibrium (vapor–liquid 
equilibrium, liquid–liquid equilibrium, mixture critical 
points), excess enthalpy and excess heat capacity data, in 
order to have a simultaneous correlation of VLE, LLE, hE and 

E
Pc . The resulting model has been called E–PPR78 where E 

means enhanced. 
 

Several conclusions can be made from this work: 
 
(1) In comparison with the original PPR78 model, by using 

this enhanced version, the prediction quality of VLE and 
LLE is retained, as well as that of mixture critical points. 
On the other hand, the accuracy of the predicted hE (and 

E
Pc ) data has been remarkably improved. 

 
(2) It is possible to use a cubic EoS with a unique set of 

temperature–dependent binary interaction parameters to 
represent both phase equilibrium and excess properties. 

 
(3) Fitting parameters only to excess properties data or only 

to phase–equilibrium data deteriorates the prediction of 
VLE data and of excess properties, respectively. 
Consequently, parameters must be fitted by considering 

the simultaneous correlation of phase equilibrium and 
excess properties data. 
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*Laboratoire de Chimie Physique, CNRS & Université Paris-Sud, Bâtiment 349, 91405 Orsay Cedex, France, E-mail:
bernard.rousseau@u-psud.fr

EXTENDED ABSTRACT

Mixtures of oil and water are naturally unstable but they can be stabilized by addition of surfactant molecules to form microemulsions. Mi-
croemulsions are macroscopically homogeneous mixtures but present, at the microscopic scale, large heterogeneities with water-rich and oil-rich
domains separated by a surfactant film. The properties of this film are essential for microemulsions as a whole; amongst them, interfacial tension
plays a crucial role as it is strongly related with the microemulsion structure [1].
Intensive research in this area have shown that interfacial tension at the oil-water interface can is modified by several factors including the chemistry
of the surfactant hydrophylic part (ionic or non-ionic), the number and length of the hydrophobic parts, surfactant concentration, addition of a
co-surfactant, addition of salts [2,3,4]. . . In order to understand the interplay between the different species in presence and eventually to tailor new
surfactants or even surfactant mitures, several attempts have been made to compute interfacial tension from molecular dynamics, Monte Carlo or
coarse-grained simulation tools. As usual, the prediction of thermodynamical properties using approaches based on statistical mechanics, requires
both an efficient tool to sample the phase space of the system and an empirical forcefield that describes intermolecular interactions as accurately as
possible.
Monte Carlo and Molecular Dynamics simulations make an intensive use of empirical forcefields that can accurately predict surface tension in
simple liquids or liquid mixtures. By using a system description at the atomistic level, a good understanding of processes can be gained. However,
the time and length scales involved in the simulation of oil-water-surfactant usually go beyond what is commonly attainable today with these tools.
Therefore, coarse-grained simulations, where particles represent several molecules, or groups of atoms inside a given molecule, are nowadays used
as an alternative tool to study such complex systems. One of the most commonly used tool is dissipative particle dynamics proposed by Hooger-
brugge and Koelman [5].
In this paper, we will try to review the difficulties that arise from studying such systems using coarse-grained models [6], in particular when direct
comparison with experimental data is wished (see Fig. 1 and Fig. 2).
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Figure 1. Interfacial tension γ in a model oil-water-surfactant mix-
ture, versus the intramolecular bonding force constant K for different
equilibrium bond lengths r0 and different surfactant concentrations.
At large surfactant concentration, surface tension strongly depends
on surfactant intramolecular parameters.
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Figure 2. Interfacial tension γ in a model oil-water-surfactant mix-
ture, versus total surfactant concentration in boxes with different
shapes (cubic and parallelepipedic). It is shown that interfacial ten-
sion depends on box shape if plotted versus total surfactant con-
centration. Rather, ”bulk concentration” or ”interfacial concentration”
must be used in order to get meaningful results.

We will present the conditions under which chemical (and thermodynamical...) equilibrium is reached and show that spurious effects can arise
such as box shape effects. We will discuss the possible solutions that have been proposed to handle electrostatic interactions in coarse-grained
models, and how consistent forcefield can be derived to describe accurately such systems. Last but not least, we will wonder how dynamical
informations can be obtained from dissipative particle dynamics simulations.
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INTRODUCTION

Molecular simulations are gaining ground as tools for the
prediction of properties of a wide variety of physicochemical,
materials, and biomolecular systems [1].  In materials science
simulations  are  starting  to  be  used  within  high-throughput
screening strategies to optimize atomic-level structure for best
performance in specific applications.  This is exemplified by
recent  work  on  the  design  of  nanoporous  materials  for
methane storage [2].   

One challenge faced by molecular simulations of materials
is  that  accurate  potentials  for  interatomic  interactions  are
often  unavailable.   A  second,  perhaps  more  important
challenge,  is  that  structure  and  molecular  motion  in  most
materials of engineering interest are governed by very broad
spectra  of  length  and  time  scales,  which  are  impossible  to
address with a single simulation technique.   In response to
these challenges,  multiscale  strategies  are  being developed,
which  extend  from  electronic  structure  calculations  to
atomistic  molecular  mechanics,  molecular  dynamics  (MD),
and Monte Carlo (MC) simulations, to mesoscopic methods,
to formulations based on the continuum engineering sciences
[3].

The challenge of long time scales is painfully clear in the
case of polymeric materials.  The longest relaxation times of
polymer  melts  encountered  in  processing  operations  are
typically on the order of ms to s.  It is these broad spectra of
relaxation  times  that  are  responsible  for  the  complex
viscoelastic  behavior  exhibited  by  polymer  melts.  On  the
other hand, the longest times that have been simulated with
MD using classical force fields for interatomic interactions on
specialized computational equipment are on the order of ms
[4],  with  hundreds  of  ns  being  more  typical  of  Beowulf
clusters  in  university  laboratories.   Clearly,  there  are  still
several orders of magnitude on the time scale to be bridged in
order  to  connect  atomic-level  structure  with  macroscopic

performance.
Fortunately,  one can devise  simulation methods that  can

sample rugged potential energy hypersurfaces very efficiently
and equilibrate atomistic  or  coarse-grained polymer  models
many  orders  of  magnitude  faster  than  “brute  force”  MD.
These  methods  are  based  directly  on  the  principles  of
statistical  and  macroscopic  thermodynamics  and  take
advantage  of  some  geometric  characteristics  of
macromolecular systems.

In  this  paper  we  will  briefly  present  some  examples  of
efficient equilibration  strategies for polymers and estimates
of  thermodynamic  properties  and  phase  equilibria  that  are
obtained from their application, mainly at the atomistic level.
We will then outline remaining challenges to the development
of reliable multiscale simulation strategies for polymers.

EFFICIENT  EQUILIBRATION  STRATEGIES  FOR
POLYMERS

Connectivity-altering MC

MC algorithms  that  employ  moves  which  rearrange  the
connectivity  among  polymer  segments  can  dramatically
enhance  the  equilibration  of  long-range  conformational
characteristics, such as the end-to-end distance and the radius
of gyration.  While the longest relaxation time of a real, or
MD-simulated,  long-chain  melt  scales  with  molar  mass  as
M3.4,  the  CPU  time  required  by  End-Bridging  MC for  the
displacement of chain centers of mass to reach the root mean
square end-to-end distance of chains, ‹R2›1/2, scales as M-1 [5].
Thus, the equilibration of long-chain polymer systems, well
within the entangled regime, comes within reach.  Predictions
for  the  density  as  a  function  of  M, for  X-ray  diffraction
patterns  and  SANS  single-chain  structure  factors  are  in
excellent  agreement  with  experiment,  using  force  fields
validated  for  small-molecule  analogues  [5]  (see  Figure  1).

STATISTICAL THERMODYNAMICS-BASED  SIMULATION METHODS 
FOR  THE  PREDICTION  OF  POLYMER  PROPERTIES

Doros N. Theodorou

School of Chemical Engineering, Department of Materials Science and Engineering, National Technical
University of Athens, Zografou Campus, 157 80 Athens, Greece

 

ABSTRACT
Molecular simulations can quantitatively relate thermodynamic properties and phase equilibria to atomic-level structure and
therefore serve as a basis for “molecular engineering design” of materials.  For polymeric materials, however, the broad spectra
of  length scales  and relaxation  times  governing structure  and molecular  motion pose  severe  challenges  for  conventional
simulation techniques.  Many of these challenges have been met by designing simulation methods based on the principles of
statistical thermodynamics, which can sample complex configuration spaces efficiently.  Examples of such methods include
connectivity-altering Monte Carlo simulations, which enable the reliable prediction of equation of state properties, molecular
packing, and entanglements in polymer melts; particle deletion (inverse Widom) methods for the calculation of solubilities of
large molecules in polymers; and Gibbs-Duhem integration methods, based on the imposition of an artificial potential,  to
capture polymer melting points.  Many problems are still not completely resolved, however, such as (a) how to coarse-grain
the molecular representation into one involving fewer degrees of freedom; (b) how to address systems which do not achieve
equilibrium over ordinary time scales, such as glasses; (c) how to deal with crack propagation and fracture.
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Moreover,  topological  analysis  of  well-equilibrated  long-
chain  configurations  leads  to  estimates  of  the  molar  mass
between entanglements,  Me,  which are validated by plateau
modulus  measurements  [6].   Recently,  connectivity-altering
MC  has  been  used  to  elucidate  how  the  melt  density,
entanglement properties, and cohesive energy density depend
on short-chain branching in polyethylenes [7].  

(a)

(b)

Figure 1:  (a) Specific volume as a function of chain
length, in carbon atoms, for linear polyethylene melts
at 450 K and 1 atm,  as predicted by connectivity-
altering Monte Carlo simulations and as measured
experimentally;  (b)  Static  structure  factor  as
predicted from the simulations and as measured by
X-ray diffraction. 

Particle Deletion for Chemical Potentials

The  calculation  of  chemical  potentials  is  central  to  the
prediction of phase equilibria.  Widom's test particle insertion
[8] is an ingenious method for computing chemical potentials
from simulation.   Unfortunately,  when  the  size  of  inserted
molecules  is  large  in  comparison  to  clusters  of  accessible
volume present  in  the  matrix  material,  overlaps  occur  with
overwhelming  probability  and  a  reliable  estimation  of  the
chemical potential becomes impossible.

A number of methods have been proposed to alleviate the
insertion problem.  One that has worked well for polymers is
the particle deletion, or inverse Widom, method [9].  Here one
estimates the chemical potential not by inserting a molecule,
but rather by deleting an already existing molecule from the
system.  One has to realize that deleting a molecule does not
lead to a typical configuration of the remaining system, but
rather  to  a  configuration  that  contains  a  hole.   The  bias
associated with the hole can be rigorously removed through
computationally  efficient  analytical  calculations  of  the
accessible  volume.   Application  of  the  particle  deletion
method has led to excellent estimates of the solubility of large
solvent  molecules,  such  as  benzene,  in  equilibrated
polyethylene  melts  [10]  (see  Figure  2).   Using  the  same
method, it has been possible to capture sorption equilibria of
compressed   CO2 in  glassy  atactic  polystyrene,  as  well  as
swelling and plasticization effects caused by the sorption [11].

 

Figure 2: Solubility of benzene in molten polyethylene
as  a  function  of  temperature,  as  predicted  by
isothermal-isobaric  MC  simulations  with  the  direct
particle  deletion  method  (filled  points)  [10] and  as
measured experimentally (open points). The solid and
broken lines display estimates from the PC SAFT and
the Lattice Fluid equations of state, respectively.  The
red  point  is  a  simulation  estimate  obtained  from  a
simulation box of octuple volume, in order to establish
that there are no system size effects.   The solubility is
expressed in terms of a weight fraction-based Henry's
law constant,  H'.   H'  is  the  ratio  of  the  fugacity  of
benzene  to  the  weight  fraction  of  benzene  in  the
polyethylene,  in  the  limit  where  the  latter  weight
fraction goes to zero.

Melting Points Through Gibbs-Duhem Integration

Predicting  the  complex  morphology  and  properties  of
semicrystalline polymers is a grand challenge for molecular
simulation.   Even  the  prediction  of  Tm,  the  equilibrium
melting point of a polymer crystal, presents difficulties.  By
analogy to what is done for small-molecule materials, one can
build  a  composite  (sandwich)  structure  consisting  of
alternating crystalline and melt domains and try to determine
Tm by MD as that temperature where none of the two types of
domains increases at the expense of the other.  Unfortunately,
however,  polymer  crystal  growth  rates  are  too  low  to  be
observed reliably with MD.  For example, the crystal growth
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rate  for  high  molar  mass  isotactic  polypropylene  (iPP)  has
been reported as 2.2 x 10-7 m s-1.  This means that, in order to
observe growth of a facet by an average distance of 1 Å, one
would need to simulate for 450 µs, a  prohibitively long time.

One  way  to  get  around  this  problem is  to  introduce  an
artificial potential along polymer chains which encourages the
adoption of helical conformations.  The resulting system of
stiffened chains has a much higher Tm which can be predicted
reliably by MD, as the molecular dynamics there is fast.  The
objective  then   is  to  compute  how  the  predicted  Tm will
change upon removal of the artificial potential.  Starting from
the condition of equality of chemical potentials between solid
and  liquid  phases,  one  can  derive,  through  straightforward
thermodynamics, an expression for the derivative of  Tm with
respect  to  a  parameter,  λ,  controlling  the  stiffness  of  the
artificial potential.   This expression involves only ensemble
averaged  energies  and volumes  of  the  individual  solid  and
liquid phases at given λ, which can be extracted from single-
phase simulations at fixed  λ.  Gibbs-Duhem integration of the
derivative down to  λ=0 gives Tm for the “real”, unconstrained
polymer [12].  Application of this strategy has yielded very
good estimates of  Tm  for oligomers of iPP of various molar
masses (Figure 3).  

(a)

(b)

Figure 3: (a) “Sandwich” configuration of molten and
crystalline  isotactic  polypropylene  considered  for  the
calculation of the melting point Tm.  a,  b, and c are the
crystallographic  axes  of  the  monoclinic  α1  form  of
isotactic  polypropylene.   At  equilibrium,  none  of  the
two coexisting phases will grow against the other.  (b)
Equilibrium melting point of isotactic polypropylene at
1 atm as a function of chain length (number of repeat
units  n) ,  as predicted by MD simulations of the melt
and crystal phases through a Gibbs-Duhem integration
scheme  (red  points)  [12]  and  as  measured
experimentally (blue points and line).  

POLYMERS   UNDER  STRESS:   CAVITATION  OF
RUBBERS

Statistical  thermodynamics-based  simulation  methods  are
often  called  to  provide  insight  into  the  stress-strain  and
terminal mechanical behaviour of polymeric materials.   We
briefly  outline  here  a  recently  developed  approach  for
exploring cavitation in rubbery polymers [13].  

Cavitation,  i.e.  the  development  of  cavities  in  a  rubbery
polymer subjected to hydrostatic tension, is a very important
problem.  The development of cavities in the rubbery primary
coating between the inner core and the hard secondary coating
of an optical fibre upon temperature cycling, due to thermal
expansion mismatch, compromises light transmission through
the fibre.  Cavitation is also the first step in debonding two
solid surfaces across a layer of pressure-sensitive adhesive.  

Perfect  polymer  network “specimens”  with  the  chemical
constitution  of  polyethylene,  consisting  of   monodisperse
subchains terminally linked at tetrafunctional crosslink points
with  no  dangling  ends,  have  been  prepared  and  fully
characterized  mechanically  under  tension/compression  via
MD  simulations.    The  specimens  have  been  subjected  to
hydrostatic tension computer experiments at various levels of
stress  (negative  pressure)  [13].   They  have  been  found  to
cavitate at a stress level, -Pcav, which is somewhat lower than
the limit of mechanical stability, -Ps, of the rubbery polymer
and of the corresponding  linear melt.  Analysis of the time to
cavitation  reveals  a  nucleation  process  involving  the
formation  of  a  critical  cavity  in  unstable  mechanical
equilibrium, through density fluctuations in the material. 

Upon  unloading  a  cavitated  specimen,  hysteresis  is
observed  on  the  pressure-specific  volume  diagram.   The
volume of the cavitated specimen decreases as the hydrostatic
stress is  reduced,  cavities coalescing into a single spherical
cavity which snaps closed at a characteristic stress level -Pcl  ,
considerably  lower  than -Pcav  (see  Figure  4).  Repeating  the
loading and unloading experiment in a cyclic fashion causes
the material  to retrace the loading path of its homogeneous
state on the pressure-volume diagram, cavitate at  Pcav  ,  then
trace the unloading path of its cavitated state, and snap back
closed  at  Pcl.  The  isothermal  behaviour  is  thus  entirely
analogous to  a van der Waals  loop associated with a first-
order phase transition between a homogeneous and a cavitated
phase.

The closure stress, -Pcl  , i.e., the stress below which a pre-
existing  cavity  cannot  survive  within  the  material,  is
commensurate with the Young's modulus of the rubber, E.  It
is entirely comparable to the critical stress anticipated by A.N.
Gent  and  collaborators  [14]  on  the  basis  of  continuum
mechanical arguments.  Gent et al. considered a pre-existing
spherical cavity within a material exhibiting nonlinear large-
deformation elasticity following  the neo-Hookean equation of
state and showed that the cavity will  start  growing without
limit at a critical stress of 5E/6.   The actual values of -Pcl  in
the  perfect  networks  subjected  to  MD  simulation  are  very
close to this critical stress.  Furthermore, upon increasing the
subchain  length  in  the  material,  -Pcl   decreases,  remaining
commensurate  with  E,  which  decreases  due  to  the  smaller
crosslink density.

Performing  the  loading  and  unloading  computer
experiments  at  different  temperatures  T reveals  opposite
temperature dependences for the cavitation stress -Pcav  and for
the closure stress -Pcl  .  The cavitation stress -Pcav   decreases
upon increasing T and depends mainly on the cohesive energy
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density of the material.  On the contrary, the closure stress -Pcl

increases upon increasing  T, reflecting the entropy elasticity
associated  with  stretching  the  subchain  conformations,  and
paralleling the behaviour exhibited by the Young's modulus
E.

(a)

(b)

Figure 4: (a) Pressure as a function of  specific volume
for a computer specimen of  a perfect  tetrafunctional
polyethylene  network  consisting  of  end-linked   201
carbon-long  subchains  subjected  to  hydrostatic
tension experiments at 450 K.  Bonds are not allowed
to break in the model.  Simulation points for loading
and unloading are shown with filled and open symbols,
respectively.  The solid line is a fit of the homogeneous
(uncavitated) data with the Sanchez-Lacombe equation
of state. The (negative) pressure levels Pcav , Pcl , Ps are
indicated.   Hysteresis  and  a  van  der  Waals  loop
consisting  of  a  homogeneous  (left)  and  a  cavitated
(right)  branch  are  evident.  (b)  Snapshots  of  the
specimen at characteristic points marked in (a).  

THE CHALLENGES AHEAD

Thermodynamics-based  strategies,  such  as  the  ones
outlined above, can be invoked within multiscale simulation
schemes  to  predict  equilibrium  structure  and  properties  of
polymeric  materials.   Moreover,  they can be used to  relate
generator  functions  and  parameters  appearing  in
nonequilibrium thermodynamic formulations for the temporal
evolution  of  material  systems,  such  as  GENERIC  [15].
Typically, one chooses a set of slowly evolving variables and
invokes a time scale separation, assuming that all remaining
variables distribute themselves according to the requirements
of equilibrium, subject to the constraints imposed by the slow
variables.  Molecular  simulations  can  then  provide  the
“potential  of  mean force” (pomf)  as  a  Gibbs or  Helmholtz
energy that  is a function of the slow variables and will dictate
their evolution.  

Often  dynamics  is  slow  because  the  system  has  to
overcome high (relative to kBT) barriers in the pomf in order
to move from one basin of the pomf (“state”) to another in the
space  of  slow  variables.  The  dynamics  then  acquires  the
character of a sequence of infrequent jumps  between states,
successive  jumps  being  practically  uncorrelated.   Rate
constants,  i.e.,  probabilities  per  unit  time,  for  the  jumps to
occur can be computed from atomic-level information via the
theory of infrequent events.  The evolution of the system can
then  be  tracked  via  solution  of  a  master  equation  in  the
occupancy probabilities of the states [16].

Coarse-graining  is  necessary  and  basic  tools  for  its
implementation  are  in  place.   There  is  still  a  lot  to  do,
however,  to  make  coarse-graining  a  generally  applicable
strategy, subject to minimal loss of information as one passes
between different  levels  of description.   For  one thing,  the
choice  of  slow variables  requires  a  lot  of  good judgement,
which  can  often  be  developed  by  analysis  of  atomistic
simulation trajectories.

In polymers a popular mode of coarse-graining is to group
multi-atom  moieties  into  single  quasi-atomic  entities
(“superatoms”).  As the pomf with respect to the superatoms
is  highly  multidimensional,  approximate  expressions  are
postulated for it, which typically break it up into bonded and
nonbonded effective potentials analogous to the ones invoked
by  atomistic  force  fields.   These  contributions  can  be
accumulated in numerical form by iteratively matching intra-
and  intermolecular  correlation  functions  between  atomistic
and  coarse-grained  simulations.   This  strategy,  Iterative
Boltzmann Inversion (IBI) [17], has worked well for polymer
melts.  IBI effective potentials, however, are thermodynamic
state-dependent  and  cannot  be  used  for  temperatures,
densities, and compositions far from the ones for which they
have been accumulated.  Using them across phase boundaries
is especially unreliable.

Many systems do not reach equilibrium over ordinary time
scales.  The description of their properties must necessarily be
time-dependent.  On the other hand, in some of these systems
it is not at all obvious how one should define slow variables.
A  typical  example  is  glasses,  which  are  ubiquitous  in  the
polymer field. Their structure and properties depend on the
history of their formation and change with time in the course
of  physical  ageing.   Their  mechanical  response is  complex
and rate-dependent.   “Energy landscape-based” descriptions
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are  promising  for  the  prediction  of  glassy  dynamics.   The
molecular  configuration is viewed as undergoing infrequent
transitions between basins constructed around local minima of
the  potential  energy,  the  paths  and  rate  constants  of  each
transition being computed by atomistic transition-state theory
and the overall  evolution of the system being tracked by a
master  equation.   At  long  times,  lumping  basins  into
“metabasins”  is necessary, in order to keep the description
tractable [16].

Predicting the ultimate mechanical behaviour of polymeric
materials is another major challenge for multiscale simulation.
Crack  propagation  typically  involves  bond  breaking,  i.e.,
chemical  phenomena,  and  calls  for  electronic  structure
calculations, or refined “reactive force fields”.  On the other
hand, damage zones are large in extent,  due to the relative
softness  of  polymeric  materials,  and  the  constitutive
behaviour around crack tips may be highly viscoelastic.  The
state  of  the  art  in  simulating  fracture  of  primarily
nonpolymeric materials has been summarized [18].  

NOMENCLATURE

Symbol Quantity SI Unit

  E Young's modulus Pa
  H' Weight  fraction-

based  Henry's  law
constant

Pa

  k Wave vector m-1

  kB Boltzmann's
constant

J K-1

  M Number  average
molar  mass  of
chains

kg mol-1 

  Me Molar mass betwe-
en entanglements

kg mol-1 

   n Degree  of
polymerization,
measured in repeat
units

-

  P Pressure Pa
  Pcav Cavitation pressure

of rubbery polymer
Pa

  Pcl Closure pressure of
rubbery polymer

Pa

  Ps Limit  of  mecha-
nical  stability,  i.e.
pressure  at  which
the  isothermal  slo-
pe of pressure with
respect  to  specific
volume  becomes
zero. 

Pa

 ‹R2› Mean squared end-
to-end distance of a
chain 

m2

  S Static  structure
factor  for  X-ray
diffraction

-

  T Absolute
temperature

K

  Tm Equilibrium
melting point

K

  Vsp Specific volume m3 kg-1

   λ Parameter  in
artificial  potential
inducing  helical
conformation  of
chains

 - 
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EXTENDED ABSTRACT 

 
Block copolymers (BCPs) are long chain molecules consisting of several chemically different blocks. Due to the chemical nature of the bond 

between blocks they do not macrophase, but form various structures on the nano-scale. BCP systems can be used as templates for the energy 
materials, advances separation templates, catalysts and for nano-electronics devises. Modern materials science uses block copolymers in solutions 
and mixtures of several BPCs and BCPs and homopolymers. Due to the intrinsic complexity of the systems, which have a very large physical 
parameter space, their experimental study is a much elaborated task. With the advances of computers, computational methods become a crucial 
component in the BCP research and the advances materials design. In our contribution we discuss computer simulation results for BCP systems 
and their relation to experimental data. Computer simulation results presented are based on two models: a Ginzburg-Landau type description and 

on self-consistent field theory (SCFT) for polymers. The Ginzburg-Landau model used is a basis for Cell Dynamics simulation (CDS) [1]. It is an 
extension of the square gradient model, which has proven to be very useful for polymer blends, while CDS is a powerful tool for BCP systems.  
In this talk we focus on two topics – confinements and external fields (electric, shear). In real practice BCP are often found in thin films (of the 
thickness of several structural domains), and most recently - in nano-pores. Confined structures are found to be very different from the bulk ones. 
We investigate various BCP systems: lamellae, cylindrical, spherical, and gyroid. Confinement has a profound influence on the BCP structure. In 
thin films non-bulk structures are formed in the layers next to the confining surfaces. In this way some such structures as perforated lamellae can 
be formed. In cylindrical pores helical and toroid structures are formed in various combinations. In spherical confinement the observed structures 
are reminiscent of knitting ball, onion, perforated spherical layer, virus-like morphology and others. Manipulation by the external electric or flow 
fields is a way of the nanostructure alignment. Kinetics of this process can be different depending on the field strength. We observe various phase 
transformations in these two types of fields. Examples include: spheres-to-cylinders and giroid-to-cylinders, as well as orientation transitions, 
such as changing lamellae orientation. In the case of the electric field lamellae orientation is found to depend on the strength of the electric field 
and the temperature. Using CDS can serve as a first part of the simulation tandem together with SCFT in a computer-aided design of novel 
nanostructured materials [1]. 
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ABSTRACT
“Ceci n’est pas une pipe” wrote René Magritte on what was only the representation of a pipe. Phenomena and their physical
descriptions differ, and in particular the laws ruling the former might enjoy symmetries that have to be spent to attain the latter.
So, inertial frames are necessary to draw numbers out of Newtonian mechanics and confront with experiment, but ultimately the
laws of mechanics are independent of reference frames. Generalizing work done in Ref. [M. Polettini, EPL 97 (2012) 30003] to
continuous systems, we discuss from a foundational point of view how subjectivity in the choice of reference prior probability
is a (gauge) symmetry of thermodynamics. In particular, a change of priors corresponds to a change of coordinates. Employing
an approach based on the stochastic thermodynamics of continuous state-space diffusion processes, we discuss the difference
between thermostatic and thermodynamic observables and show that, while the quantification of entropy depends on priors, the
second law of thermodynamics is formulated in terms of invariant quantities, in particular the curvature of the thermodynamic
force (gauge potential), which we calculate in a few examples of processes led by different nonequilibrium mechanisms.

INTRODUCTION

We can say nothing about the thing in itself, for we
have eliminated the standpoint of knowing. A quality
exists for us, i.e. it is measured by us. If we take away
the measure, what remains of the quality?
F. Nietzsche [1]

At a first sight the varied terms appearing in the title pair
as fish with bicycles. Indeed, it is our final purpose to convey
that these concepts, bundled together, solve a controversy about
the role of the observer in statistical mechanics, and partake to
a fundamental symmetry of thermodynamics. On a less ambi-
tious tone, objectives of this contribution are: To discuss a sim-
ple but compelling foundational aspect of nonequilibrium sta-
tistical mechanics, to extend the theory developed in Ref. [2] to
systems with a continuous state space and, with the aid of some
examples, to further back up the role of a thermodynamic cur-
vature for the determination of the equilibrium/nonequilibrium
character of steady states of diffusive systems.

It is renowned that statistical mechanics has been enormously
successful in describing systems at thermodynamic equilibrium,
bestowing a probabilistic nature on physical concepts such as
that of entropy, which notoriously has two facets. The head is a
state function coined in the 19th-century to put limits on the ef-
ficiency of machines. After the intuitions of Boltzmann, the tail
was coined by Gibbs, and later Shannon in applications to in-
formation theory, to yield a much known but poorly understood
measure of “disorder” or, more precisely, of “missing informa-
tion” [3]. A baffling feature of the latter acceptation is that it

∗Corresponding author.
†Artwork author.

Figure 1. A room as perceived by two observers with different prior
knowledge of its state. Is there an objective criterion to quantify its dis-
order, given that entropy is “missing information”?

is prone to a certain degree of subjectivity, that only apparently
does not affect its thermodynamic counterpart. We are all ac-
quainted with the following fact (see Fig.1): As children, when
mum scolded us for being messy, we would whine claiming to
know exactly where our toys were. Wryly, when she tidied up
we would not be able to retrieve them again. If entropy is miss-
ing information, then what is the entropy of a room? Is it the
mom’s barren neatness, or the child’s playing strategy?

Making a huge leap upward: The Universe today presents a
high degree of structure and information (from galaxies to plan-
ets down to ourselves) due to the ordering effect of gravity, but
in the far past it was a fluctuating quark-gluon plasma that cos-
mologists describe solely in terms of its temperature and few

404



Figure 2. Currents circulate in nonequilibrium steady states.

other parameters. Then, did entropy decrease ever since, con-
trary to the second law of thermodynamics?

The latter question introduces the theme of nonequilibrium
processes. Today, statistical methods encompass the response
of equilibrium states to small perturbations, to embrace the so-
phisticated phenomenology of systems subject to nonequilib-
rium conditions. A special mention goes to the framework
of stochastic thermodynamics [4], a prominent theory that de-
scribes the thermodynamics of open systems evolving under
Markovian dynamics. Nonequilibrium systems produce entropy
as they evolve under the influence of thermodynamic forces to-
wards steady states that maintain a constant heat flux towards
the environment. A crucial feature of nonequilibrium steady
states is the circulation of currents around loops (see Fig.2). If
on the one hand the thermostatics of equilibrium states is based
on state functions, such as the entropy, the thermodynamics of
nonequilibrium processess deals with dynamical quantities like
the entropy production. The second law of thermodynamics, by
many (including Einstein and Ehrenfest) considered to be the
most universal law of physics, states that entropy production
along a time interval dt is non-negative

σdt = dS−d̄Q
T
≥ 0 (1)

and that it only vanishes at equilibrium states. Here σ is the
entropy production rate and d̄ denotes an inexact differential.
This law eventually provides an “arrow of time”. But then, if
entropy is a subjective quantity, will the validity of the second
law and the direction of time depend on the observer?

Similar dreaded outlooks led to criticisms about the actual
relevance of the information-theoretic approach to thermody-
namics, as pioneered by Jaynes [5]. For example Ref. [6] is a
funny skeptical fable about an obtuse physicist questioning an
omniscient angel about who is the “right” observer. At the 11th
Granada Seminar [7] Lebowitz prodded the scarce information-
ist supporters that an observer who’s no Ph.D. might threaten
the fate of physical laws.

Our apology of the informationist approach supports the fol-
lowing point of view. A change of observer is analogous to a
change of reference frame in mechanics, or of coordinate sys-
tem in general relativity: It does not alter the process, but it
does alter the representation of the process. While it is always

necessary to choose an observer to actually do physics (and this
choice can be done in a more or less awkward way1), it is nec-
essary that the fundamental laws remain invariant. For this rea-
son, while thermostatic quantities like the entropy can change,
it is necessary that the entropy production rate involved in the
second law does not. In other words, changes of subjective ob-
server must be a symmetry of nonequilibrium thermodynamics.
In particular, as we will see, it can be implemented as a so-
called gauge symmetry, that is, a symmetry that acts locally,
from point to point, rather than globally (like a change of units
does).

PLAYING DICE AND SITTING ON STOVES

Dice are a common tool for intuitive probabilistic thinking,
so much that Einstein declared that “God doesn’t play dice”,
objecting the probabilistic nature of quantum mechanics (but he
would also say that “physical concepts are free creations of the
human mind, and are not uniquely determined by the external
world”). Sticking to classical statistical mechanics, we don’t
dare challenge the divine intentions, and rather consider differ-
ent human observers rolling dice.

Given the common-sense symmetry of a die with respect to
its bouncing on a table, one is compelled to assign prior 1/6
to all faces. This seems such an obvious choice, that it is hard
to admit that it is just as subjective as any other. This prior
is related to a measure of a die’s properties, made by an ob-
server who has a sufficiently complete perspective on the die
with respect to the process being performed and to uncount-
able previous experiences of seeing and hearing of similar dice
rolling. It is nevertheless legit to color a die’s faces one red,
one green, one blue and all others yellow, and have an heavily
myopic person examine it from a distance, so that he can only
resolve spots of color. He will have sufficient reason to believe
that the system is a tetrahedron. According to his most plau-
sible probability assignment, the die’sfaces would have prob-
ability (1/4,1/4,1/4,1/12,1/12,1/12) to show up. From his
perspective, this makes perfectly sense.

Suppose that ourselves and the myopic person play dice, cor-
recting our prior according to the output. If, by the law of large
numbers, the die’s faces come out approximately 1/6 of the
times, we the seeing will gather no further information, since
we had a fully satisfactory estimation of the die’s entropy in the
beginning. The myopic, who had a worse estimation, will gain
further information. By the paradigm that information is phys-
ical, we can say that our measure of the initial entropy and of
the forthcoming heat fluxes differed from his. Nevertheless, the
process occurred in the same way. This gedankenexperiment
can provoke an objection: The half-blind person is in a chroni-
cle state of ignorance and he doesn’t see the “truth”. But so are
we with respect to a loaded die, in which case we either know
technical details about how it was loaded and then formulate a
reasonable prior, or else we can just make an hypothesis and
then correct it according to the output, as in Fig. 3.

Let’s now move to physical quantities, in particular tempera-
ture. Consider a hot stove, and let’s ask:

What is the stove’s temperature?

Taking a naı̈ve materialistic approach, one could say a stove is
a stove and it has the temperature it has. We can sit on it and

1For example, it doesn’t make much sense to describe the ballistics of a
rocket on the Earth using the rest frame of a merry-go-round on the Moon,
although in principle it is possible.405



Figure 3. A die and the process of throwing a die suspect of being
loaded, given the biased set of outputs on the right-hand side.

perceive it. But things are more sophisticated. We ourselves
are thermometers. Every-day thermometers interact with cer-
tain degrees of freedom of the system, say, the electromagnetic
forces of the outer non-shielded electrons of a solid’s molecules,
but essentially do not interact strongly with the nuclei, elec-
troweakly with neutrinos, they do not exchange gluons, mas-
sive vector bosons, gravitons, strings, quanta of space-time and
whatever is beyond our present state of knowledge. But one
can in principle put the stove in an accelerator and get a much
more accurate estimate of the temperature. So, the answer to the
above question depends on the coarse graining of “reality” that
physical apparatuses always entail. We leave aside the question
whether there exists an ultimate temperature (see Fig.4).

A different question that we can pose is:

What happens when a thermometer is put on the stove?

Italics was used to emphasize their different natures: The first
questions an essential property of the system, while the second
concerns a process which occurs when two physical systems are
put in relation. Much like in the Zen koan “What is the sound of
one hand?”, we claim that the first question is unphysical (but,
rather, metaphysical), while the second is physical, and giving
an answer necessarily calls into play observers. If we sit on the
stove, we will get burnt in a few seconds, again according to an
Einstein’s estimate, independently of what we think of it.

The punchline is: We should not worry about subjectivity of
physical quantities, just as much as we don’t deem it necessary
to wear another coat when we express 75.2◦ Fahrenheit as 24◦

Celsius. We should rather make sure that fundamental physical
laws are independent of this choice of reference frame. This is
the main objective of this paper.

SWITCHING PRIORS AND COORDINATE FRAMES

Let xxx ∈ X be a generic state of a system, labeling some mi-
croscopic degrees of freedom (for example, positions and mo-
menta of the molecules of a gas, spin states of a ferromagnet
etc.). For simplicity we suppose that the state space has finite
volume normalized to unity,

∫
X dxxx = 1. Statistical descriptions

of the system assign a probability density p(xxx) to microstates.
For example when the mechanisms involved in a physical pro-
cess involve exchange of a form of energy with a single heat
bath at temperature T the most plausible distribution compati-
ble with an observed average value of the energy 〈E〉, assum-
ing that the underlying microstates are equiprobable, is Gibbs’s

canonical distribution pGibbs(xxx) = exp−[E(xxx)−F ]/(kBT ), with
F Helmholtz’s free energy and kB Boltzmann’s constant, that we
set to unity in the following. Notice that our prudent wording
emphasized that the choice of probability density is congenial to
a particular process, and that there is a choice of prior involved.

The Gibbs-Shannon (differential) entropy

S =−
∫

X
dxxx p(xxx) ln p(xxx) (2)

is a measure of the missing information of the probability dis-
tribution with respect to a state of perfect knowledge. It van-
ishes when p(xxx) = δ(xxx− x̄xx), and it is maximum when the dis-
tribution is uniform. As announced, there is a correspondence
between statistical and physical entropies, as one can appreci-
ate by plugging the canonical distribution to recover the well-
known expression between equilibrium thermodynamic poten-
tials T S = 〈E〉−A.

In regard to probability densities, an important mathemati-
cal detail that we need to point out is that they are obtained by
taking the so-called Radon-Nikodym derivative of a probability
measure P with respect to another2 that we call the prior Ppr,

p =
dP

dPpr
. (3)

In Eq. (2) the prior is implied to be the uniform normalized dis-
tribution over microstates, dPpr = dxxx. Hence the definition of
entropy always pivots on a prior. Also, the canonical distri-
bution can be obtained as the maximum entropy distribution
compatible with a measured value of the average energy 〈E〉,
assuming the uniform prior over microstates, viz. starting with
the microcanonial ensemble.

Let us rewrite entropy in terms of probability measures:

S =−
∫

X
dP ln

dP
dxxx

. (4)

Our point of view in this paper is that the choice of uniform
prior is just as subjective as any other choice, and that changes
of priors

dxxx→ dP′pr, (5)

at fixed probability measure P (that is, at fixed macrostate) are
legitimate and need to be coped with in a consistent manner.
Under such a transformation we obtain

S′ =−
∫

X
dP ln

dP
dP′pr

= S+
〈

ln
dP′pr

dxxx

〉
, (6)

where the average is taken with respect to P. Entropy is not
an invariant object, as it gains an additional term. It is also well
known that entropy is not invariant under orientation-preserving
coordinate transformations xxx 7→ xxx′(xxx), with Jacobian

Λ = det
(

∂xxx′

∂xxx

)
> 0. (7)

2We assume that all probability measures are absolutely continuous with
respect to the uniform distribution.
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Figure 4. Is there an ultimate temperature of a bed?

Being the probability measure a volume form, viz. dP = dP′

so as to preserve probabilities of events, and since the volume
element transforms according to dxxx′ = Λdxxx, one finds the trans-
formation law for the probability density p′ = Λ−1 p. Plugging
into Eq. (2), under a change of coordinates the entropy gains an
inhomogeneous term

S′ =−
∫

xxx′(X)
dP′ ln

dP′

dxxx′
= S+ 〈lnΛ〉. (8)

Notice that a volume-preserving transformation with Λ = 1 pre-
serves the entropy. This is the case for canonical transforma-
tions in Hamiltonian mechanics and for the Hamiltonian flux
(indeed it is inappropriate to say that “entropy of an isolated
system cannot decrease”, since it is a constant of motion). How-
ever, volume-preserving transformations are too restrictive. For
example, in the approach to nonequilibrium thermodynamics
based on dynamical systems and Gaussian thermostats, evolu-
tion does not preserve the phase space volume [8].

The analogy of Eq. (8) with Eq. (6) suggests that every
change of prior can be achieved by a change of coordinates
with dP′pr = dxxx′. In fact, inspecting Eq. (4) we realize that a
coordinate transformation maintains dP but replaces dxxx with a
new prior. In the new coordinates dxxx′ is the uniform measure
while dxxx is not anymore. A coordinate transformation realizes
a change of the relevant degrees of freedom that are supposed to
be equiprobable. This is well illustrated by this riddle: Picking
a number xxx between 1 and 10 at random, the probability that it is
smaller than 5 is 1/2, while picking xxx′ at random between 1 and
100, the probability that it is smaller than 25 is 1/4. How is it
possible that picking either a number or its square aren’t equally
likely? The solution is to recognize that different choices of
prior were made in the two cases, and that the uniform prior
(“at random”) in one set of coordinates is not the uniform prior
in the other set of squared coordinates.

To some authors, non-invariance of the entropy sounds as
a dazzling puzzle that discredits its utility. The italian-speaking
readers will also find a discussion on this tone in Ref. [9], which
comes to the conclusion that Jaynes’s MAXENT reasoning is
circular. Our point of view is that there is not a preferred set of
coordinates, and while the determination of thermostatic quan-
tities does depend on coordinates, thermodynamics should not.
Hence the entropy must be complemented with another quantity
that grants the overall invariance of thermodynamics.

ENTROPY PRODUCTION RATE

We now suppose that the system is in contact with an envi-
ronment that determines a Markovian evolution of its probabil-
ity density, dictated by the Fokker-Planck equation

ṗ =−∇ ·
(

pAAA−T ∇p
)
=−∇ · JJJ, (9)

with AAA a thermodynamic force and T an environmental temper-
ature. The dot derivative is with respect to time. On the right-
hand side we put it in the form of a continuity equation in terms
of a probability density current JJJ. Under mild assumptions the
Fokker-Planck equation evolves towards a unique steady state
p∗, at which the current has no sinks and sources, ∇JJJ∗ = 0 (the
asterisk will mark the steady value of any observable). A steady
state is in equilibrium when the steady state currents vanish,
while nonequilibrium steady states are characterized by nonva-
nishing currents that circulate in the system’s state space.

Since this equation regulates the dynamics of the process,
we assume it to be invariant under change of priors/coordinates.
Unfortunately, a fully satisfactory treatment would require more
advanced tools from the theory of differential forms, including
the introduction of a metric. Ref. [10] contains further details.
The current transforms like a vector density. A suitable transfor-
mation law for the divergence grants that ∇ ·JJJ is a scalar density.
Within the current, under a change of coordinates the gradient
of the probability density develops an inhomogeneous term that
must be reabsorbed by the thermodynamic force. Hence overall
invariance enforces the transformation laws

p′ = Λ
−1 p, AAA′ =

∂xxx
∂xxx′

(AAA−T ∇ logΛ) . (10)

This pair of equations is reminiscent of gauge transformations
as encountered in (quantum) field theory, with p playing the role
of the wave function, AAA that of gauge potential, and T that of
coupling constant. As a technical note, the gauge group in this
case is the noncompact group of real positive numbers under
multiplication, whose elements are the Jacobians of orientation-
preserving diffeomorphisms.

One can now use the transformation law for the gauge poten-
tial to counterbalance the inhomogeneous term developed by
the entropy. To this purpose we prefer to consider the rate of
entropy production Ṡ. Its transformation law is

Ṡ′ = Ṡ+
∫

JJJ ·∇ logΛdxxx. (11)

It can then be seen3 that the following heat flux rate

d̄Q
dt

=−
∫

JJJ ·AAAdxxx (12)

has exactly the same transformation law as Ṡ but for a factor
1/T , so that the entropy production rate

σ = Ṡ− 1
T

d̄Q
dt

[d̄Si = dS− d̄Se] (13)

3Notice that the scalar product in this expression denotes the presence of a
metric, which also has to transform properly altogether.
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is indeed an invariant quantity (between square parenthesis we
reported the analogous decomposition of the entropy produc-
tion as found in older thermodynamics textbooks [11]). This
expression for the entropy production rate is well-known in
the stochastic thermodynamics literature [4]. It can easily be
proven to be positive, which is a statement of the second law,
Eq. (1). By construction σ is invariant under gauge transforma-
tions, hence the second law holds in all coordinates/with respect
to all choices of prior.

CURVATURE AND STEADY STATES

In general, AAA is not a conservative force, that is, it is not a
gradient. Then σ is not the total time derivative of a state func-
tion, from which it follows that d̄Q∗/dt 6= 0 and the steady state
value of the entropy production does not vanish: Nonequilib-
rium steady states maintain a constant entropy production as
currents circulate. Instead when AAA = −∇Φ, which we refer to
as the condition of detailed balance, then σdt is an exact differ-
ential and it vanishes at the steady state.

The characterization of nonequilibrium can be elegantly
made in terms of the curvature of the gauge potential. Curva-
ture is a crucially important quantity in gauge theories. For ex-
ample, in the field-theoretic formulation of electromagnetism,
the curvature tensor contains the components of the electric
and magnetic fields and entails the peculiar differential form
of Maxwell’s equations. In this section we discuss thermody-
namic curvature and express the steady state entropy production
in terms of it. The main messages are that one should consider
several different contributions to the curvature, and that a van-
ishing curvature is intimately related to the occurrence of equi-
librium steady states.

Nonconservative force

The curvature associated to the non-conservative force AAA in
Eq. (9) is defined as

Fab =
∂Ab

∂xa −
∂Aa

∂xb , (14)

Here a,b denote vector and tensor components. Notice that it
transforms like a 2-tensor under coordinate transformations and
it does not gain inhomogeneous terms, hence it is gauge invari-
ant. When the force is a gradient, then the curvature vanishes.
The converse is not generally true, as there might be topolog-
ical contributions to the entropy production, such as isotropic
flows around the fundamental cycles of a torus. Such topolog-
ical contributions have been studied by several authors in Ref.
[12]. Here we discard them.

A theorem by Hodge implies that the current can always be
decomposed as (letting δab be the Kroenecker’s delta)

Ja = ∑
b

∂

∂xb

(
Θ

ab−Ψδ
ab
)
+Ω

a, (15)

where Ψ is a scalar potential, Θ is a skew-symmetric tensor, and
Ω is an harmonic vector, such that ∆Ω = 0. The latter term is
the one that provides topological contributions, and we discard
it. Taking the gradient, since Θ is skew-symmetric, we find that

−∇ · JJJ = ∆Ψ = ṗ. (16)

In particular at a steady state one has ∆Ψ∗ = 0. It is known that
on a compact manifold without boundary the only harmonic
scalar is a constant function Ψ∗ = const., hence we find that
only the term in Θ∗ survives in the expression for the steady
current. Plugging into the entropy production rate and integrat-
ing by parts we obtain the steady state value

σ
∗ =

1
2T ∑

a,b

∫
FabΘ

∗abdxxx. (17)

This result can be seen as a continuous version of a decompo-
sition by Schnakenberg of the steady entropy production rate in
terms of fundamental cycles of a graph [13].

Competition between heat reservoirs

We now consider a Brownian particle interacting with two
baths at different temperature. Its stochastic motion is described
by the differential equation

ẋxx =−∇Φ1 +
√

2T1 ζζζ1−∇Φ2 +
√

2T2 ζζζ2, (18)

where, as usual, ζζζ1 and ζζζ2 are uncorrelated sources of white
noise, 〈ζa

i (t)ζ
b
j(t
′)〉 = δabδi jδ(t − t ′), i, j ∈ (1,2). The key as-

pect regarding this system is that, although the two forces are
gradients (condition of local detailed balance [14]), meaning
that detaching either bath returns equilibrium, competition be-
tween the two baths to impose their own equilibrium gives rise
to nonequilibrium character, and further curvature terms.

The Fokker-Planck equation for this system reads

ṗ =−∇ · JJJ1−∇ · JJJ2 = ∇ ·
(

p∇Φ1 +T1∇p+ p∇Φ2 +T2∇p
)
.

(19)
It is known that a proper description of the thermodynamics of
the system requires to resolve the two mechanisms, otherwise
one would systematically underestimate the entropy production
[14]. For this reason we distinguished two currents that flow
in parallel and we resolve two driving forces AAAi = −∇Φi. The
steady state can be easily computed giving p∗ ∝ exp−(Φ1 +
Φ2)/(T1 +T2), and while the total steady current JJJ∗1 + JJJ∗2 van-
ishes, one finds that the individual currents do not:

JJJ∗1 =−JJJ∗2 =
p∗

T1 +T2
(T2∇Φ1−T1∇Φ2) . (20)

Again, we can perform the Hodge decomposition of JJJ∗1 as in
Eq. (15) to obtain

σ
∗ =

∫ (AAA1 · JJJ∗1
T1

+
AAA2 · JJJ∗2

T2

)
dxxx =

∫ (
∆Φ2

T2
− ∆Φ1

T1

)
Ψ
∗
1 dxxx.

(21)
Notice that Ψ∗1 in this case does not vanish, since ∇JJJ∗1 6= 0.
The above formula shows that when several baths compete one
shall also consider contributions from the cross scalar curvature
∆Φ2/T2−∆Φ1/T1 even if local detailed balance holds.

Blowtorch

Systems subject to a temperature gradient undergo the so-
called blowtorch effect, first described by Landauer [15]: Even
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if the thermodynamic force is conservative, the varying tem-
perature profile T = T (xxx) might turn it into a nonequilibrium
driving force. The steady entropy production now reads

σ
∗ =−

∫
∇Φ · JJJ∗

T
dxxx =

1
2 ∑

a,b

∫
F(T )

ab Θ
∗abdxxx, (22)

where again we employed Hodge’s decomposition and intro-
duced an additional curvature term given by

F(T )
ab =

∂

∂xa Φ
∂

∂xb
1
T
− ∂

∂xb Φ
∂

∂xa
1
T
. (23)

The thermodynamics force ∇(1/T ) appears. The blowtorch ef-
fect vanishes when Φ(xxx) = Φ(T (xxx)). It can be shown that this
curvature term is the infinitesimal version of a cycle

∮
dΦ/T

when the integral is performed along a small square cycle with
sides in the a-th and b-th directions. The latter expression is
reminiscent of Clausius’s expression for the entropy along a
closed individual realization of a process (rather than of an en-
semble). In a recent paper one of the authors [16] interpreted
temperature gradients as a deformation of the metric of space.

CONCLUSIONS

You never oughta drink water when it ain’t runnin’.
J. Steinbeck, Of Mice and Men

In this paper we faced the problem of subjectivity of
information-theoretic entropy under a change of reference prior
probability, and turned it into an opportunity for a symmetry
principle of nonequilibrium thermodynamics. We argued that
the physical counterpart of a reference prior choice is the inher-
ent coarse-graining that any description of a physical system en-
tails. We observed that while thermostatic quantities pertaining
to fixed states such as the entropy need not be invariant, funda-
mental laws pertaining to processes like the second law of ther-
modynamics must be independent of the observer. We then for-
mulated transformation properties as so-called gauge transfor-
mations and built an appropriate gauge-invariant entropy pro-
duction, returning a well known expression in the framework
of the stochastic thermodynamics of diffusion processes. At a
nonequilibrium steady state, the entropy production can be ex-
pressed in terms of the curvature of the nonequilibrium force
(gauge potential). Several contributions coming from different
nonequilibrium mechanisms have been described.

From a slightly more philosophical perspective, we sup-
ported the informationist approach to statistical mechanics, re-
jecting imputations of solipsism (“reality doesn’t exist”) or
cognitive-relativism (“reality depends on the observer”), but
rather arguing that it is a very laic and prudent point of view
that purports that the only physically meaningful concepts are
those that can be measured, and measures require observers. In
other words, there are no omniscent angels in physics. Never-
theless, we showed that physical laws such as the second law of
thermodynamics are ultimately be independent of the observer.
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NOMENCLATURE

All quantities can be considered to be dimensionless.

AAA Thermodynamic force / gauge potential
Fab, F(T )

ab Curvature, blowtorch curvature
JJJ Probability density current
p Probability density
P, Ppr Probability measure, prior probability measure
Q, d̄Q/dt Heat, heat flux rate
S Gibbs-Shannon entropy
t Time
T Temperature
xxx, X Microstate, state space
Λ Jacobian of a coordinate transformation
σ Entropy production rate
ζζζ White noise
Φ Scalar potential for the force
Ψ, Θ, Ω Scalar, tensor and vector current terms
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ABSTRACT
Applications like exergy and entropy generation minimization (EGM) are widely used in engineering research and industry.
Exergy attributes work potential to heat and therefore it allows to conduct meaningful analyses on systems where the First Law
seems to fail. Entropy generation minimization, the design methodology used to seize the opportunities identified by exergy
analyses, enables the engineer to optimize thermodynamic efficiency of systems under consideration. However, it seems that
popularity of the Second Law in engineering has pushed its application beyond the limits. Does the result of an exergy analysis
allow to allocate engineering efforts? Can we consider and isolate components or local phenomena in an EGM procedure without
fully taking into account their interdependencies? Although those questions appear to be answered affirmative in a significant
amount of recent publications, we question the accuracy of that answer in this paper by presenting a number of illustrative
examples.

INTRODUCTION

The pursuit of solutions to a problem drives the engineer
to apply analysis and design techniques on a system aiming at
technical and economic opportunities. One analysis technique
which acquired major scientific attention in recent decades is
the exergy analysis together with its design counterpart entropy
generation minimization (EGM) [1–5]. This paper endeavors to
elaborate an assessment on these Second Law based techniques
and their use in engineering methodologies.

Exergy analyses pinpoint and quantify thermodynamic im-
perfections as irreversibilities which either are not identified
or misevaluated by energy analyses [6, 7]. These irreversibil-
ities are the differences between the actual work performed and
the maximum theoretical useful work obtained if a system is
brought into thermodynamic equilibrium [4]. Entropy genera-
tion minimization on the other hand seizes the possibilities ex-
ergy analyses identify as entropy generation is directly propor-
tional to irreversibility. Minimization of the total entropy gen-
eration is therefore equal to system efficiency optimization [8].

In this paper we present the limits of exergy analyses and en-
tropy generation minimization indicated by the infeasibility of
reversibility. Illustrative cases are discussed to demonstrate how
the inevitability of irreversibility on macro-level crops the ap-
plicability of both Second Law based techniques. Although the
authors are convinced of the benefits of exergy analyses to vi-
sualize losses and of entropy generation minimization as a cost
function to optimize an entire system, it seems appropriate to
sound a note of caution considering their application on subsys-
tems which are thermodynamically connected.

The relevance of this work can be founded by following non-
exhaustive list of articles dealing with Second Law analysis
and design on a local scale without considering the system in

∗Corresponding author

which these parts, components or subsystems (eventually) op-
erate [9–17]. Moreover the content of this paper will provide an
argument to regard the Second Law of thermodynamics as an
alternative for rather than an addition to the First Law in engi-
neering analysis and design.

The remainder of this contribution is structured as follows.
We start with a comparison between First and Second Law ef-
ficiency and discuss the implications of the differences. Subse-
quently we offer three perspectives on the Second Law in en-
gineering: a modeling, analysis and design perspective. These
perspectives enable us to demarcate the field of application of
the Second Law in engineering. Finally conclusions are sum-
marized.

SECOND LAW EFFICIENCY

Efficiency is a ratio of actual performance and ideal perfor-
mance. The essential difference between First Law efficiency
and Second Law efficiency is the definition of that ideal perfor-
mance which serves as a benchmark. The First Law of thermo-
dynamics puts every form of energy on the same level

∂E
∂t

=

[
∑ ṁ

(
h+

1
2

V 2 +gz
)]in

out
+

n

∑
i=0

Q̇i−Ẇ . (1)

From a First Law perspective heat and power are therefore in-
terchangeable modes of energy transfer. The Second Law of
thermodynamics associates heat transfer with entropy

∂S
∂t
≥∑

in
ṁs−∑

out
ṁs+

n

∑
i=0

Q̇i

Ti
, (2)

Ṡgen =
∂S
∂t
−

n

∑
i=0

Q̇i

Ti
−∑

in
ṁs+∑

out
ṁs. (3)
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Ẇ
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Figure 1. General representation of an open thermodynamic system.

Elimination of Q̇0 in Eq. (1) and (3) gives the Gouy-Stodola
theorem [18]

Ẇ =

[
∑ ṁ

(
h−T0s+

1
2

V 2 +gz
)]in

out
− ∂

∂t
(E−T0S) (4)

+
n

∑
i=1

Q̇i

(
1− T0

Ti

)
︸ ︷︷ ︸

ηC

−T0Ṡgen︸ ︷︷ ︸
İ

which indicates that the Second Law introduces a scaling factor,
known as the Carnot efficiency ηC , to devalue heat transfer. Due
to this devaluation, the Second Law benchmark will always be
lower than the First Law benchmark.

Although the ideal performance associated with the First
Law and Second Law are different, optimization of First and
Second Law efficiency both lead to the design with maximum
thermodynamic efficiency. The benchmark put forward by both
thermodynamic laws are in reality unattainable. Whether one
minimizes the gap between reality and the First Law ideal or
the Second Law ideal, the absolute gap reduction will be equal.
Therefore we can state that Second Law efficiency optimization
is an alternative for First Law efficiency optimization.

The First Law holds energy conservation and falls short in
defining an efficiency metric for components which only trans-
fer (and not use or transform) energy. The Second Law pin-
points all losses İ including those associated with energy trans-
fer. As such there exists a Second Law efficiency for compo-
nents like heat sinks and heat exchangers. Therefore Second
Law efficiency is a popular objective function to design those
type of components (e.g. [9, 14, 16]).

PERSPECTIVES ON THE SECOND LAW

The birth of the Second Law of thermodynamics is associ-
ated with the work “Réflexions sur la puissance motrice du feu
et sur les machines propre à développer cette puissance” (1824)
by Sadi Carnot, a French military engineer and physicist [19].
A few decades later, Lord Kelvin and Clausius formalized the
Second Law of thermodynamics. Ever since the Second Law
has been of major interest in exact and applied sciences [20].

Today the Second Law has several appearances in engineer-
ing. In this section we provide and illustrate three perspectives
on the application of the Second Law in engineering, i.e. a mod-
eling perspective, an analysis perspective and a design perspec-
tive.

Modeling

A thermodynamic model is a mathematical representation of
a physical situation, defined by a system, the system boundary
and the environment [21]. A system is a quantity of matter or a
region in space upon which attention is concentrated in the anal-
ysis of a problem [22]. As such the definition of a system is an
artificial concept to isolate scientific focus justifying a model to
describe reality. The correspondence of a model to reality how-
ever is heavily dependent on the choice of the system boundary
which separates the system from the environment and on the
mathematical description of the interaction between system and
environment.

The exergy method can be regarded as a modeling technique
with a peculiar definition of the environment and its interac-
tion with the system. The environment is a very large body or
medium in the state of perfect thermodynamic equilibrium. It
has no gradients or differences involving pressure, temperature,
chemical potential, kinetic or potential energy [23]. The interac-
tion between the system and the environment is represented by a
Carnot engine. The work output of this reversible machine is the
exergy of the system. It is the maximum theoretical useful work
obtained if the system is brought into thermodynamic equilib-
rium with the environment by means of processes in which the
system interacts only with this environment (Gibbs) [4].

Exergy represents a reversible limit which reveals what is im-
possible rather than what is feasible. The mathematical deriva-
tion of exergy only incorporates the equality sign of the Second
Law of thermodynamics and with this it omits constraints real-
ity imposes (e.g. time, material properties). Exergy therefore is
an inaccurate model to describe reality. The question that arises
is: “Can you draw conclusions based on an exergy model?”

Analysis

Second Law analysis comprises a comparison of reality (or
an accurate model) with the corresponding exergy model. It
uses exergy as a benchmark to pinpoint and quantify thermo-
dynamic imperfection as irreversibility which is the difference
between the actual work performed and the maximum theoreti-
cal useful work determined by the reversible model (Carnot).

As an example consider a thermal power plant. A power
plant generates electricity from mechanical power which is ob-
tained through a conversion of thermal power (Q̇ on Tcc). Fig-
ure 2 shows two possible thermodynamic models for this instal-
lation. On the left hand side there is the exergy model which
represents the ideal power plant. According to this model the
power plant output power is

ẆC = Q̇
(

1− T0

Tcc

)
. (5)

On the right hand side we have a more realistic model presented
by A. Bejan [3]. This endoreversible power plant model isolates
the irreversibility due to heat transfer across finite temperature
differences by inserting two heat exchangers (HE1 and HE2)
with a limited heat transfer surface inventory (C ≤ C1 +C2).
Based on this model the maximum power plant output is

ẆB = Q̇
(

1− T0

Tcc− Q̇/C

)
, (6)
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Figure 2. Power plant: exergy model (l), model by Bejan (r) [3].

which is smaller than ẆC .
An exergy analysis reveals irreversibility as a result of heat

transfer across finite temperature differences. Unfortunately
this irreversibility can not be eliminated since finite time and
space, construction material properties, system topology and
economic considerations constrain the heat transfer surface in-
ventory (cf. constraint on C in the endoreversible model). In
reality some irreversibilities are intrinsic and consequently un-
avoidable [18, 23–29]. A quantification of losses based on a
comparison with the reversible limit (exergy model) is decep-
tive because large irreversibilities can be imposed and are there-
fore inevitable [29]. The value of irreversibility as a result of an
exergy analysis does not indicate the potential to reduce it.

An exergy analysis implicitly performs a system decompo-
sition as it aspires to compare reality with the reversible ideal
on a local scale to allocate engineering efforts [3]. However, al-
though an exergy analysis pinpoints and quantifies losses which
might or might not be reducible, it does not necessarily reveal
the source of these losses. Some irreversibilities are caused
by the component in which they occur (endogenous exergy de-
struction) others are caused by other components (exogenous
exergy destruction) [27, 28, 30, 31] which implies that a reduc-
tion of irreversibility in one component can induce a larger in-
crease of irreversibility in another component [30]. This can
be understood by considering the discrepancy between reality
and the exergy model since the latter one inherently does not
take into account any interaction between interconnected com-
ponents. A local reduction of irreversibility can therefore have
a pernicious effect on the overall efficiency.

As an illustration, consider a heat sink cooled chip (see
Fig. 3). The chip provides a heat load Q̇ at a junction tempera-
ture Tj with a corresponding exergy

Ėchip =
∫∫

A
q̇′′
(

1− T0

Tj

)
dA (7)

and hands it over to the heat sink.
Subsequently this exergy is (partly) transferred to the passing

fluid

∆Ėf = ṁ(ef,out− ef,in) . (8)

The endogenous irreversibility of the heat sink is then naturally
defined as

İhs ≡ Ėchip−∆Ėf. (9)

CHIP

HEAT SINK

ENVIRONMENT

P

in out

Q̇(Tj)

P

Q̇(Tj)

Figure 3. Schematic representation of a heat sink cooled chip.

The chip itself receives electric power and converts it to the
heat load Q̇. The conversion of electricity to heat generates an
irreversibility İchip which can be decomposed in an intrinsic part
İi and an avoidable part İa

İchip ≡ Q̇− Ėchip, (10)
≡ İi + İa. (11)

The intrinsic irreversibility İi is the loss of exergy due to the
conversion from electricity to heat at a temperature Tj,max. This
loss is fixed by electrical integrity of the chip and in particular
by the maximum allowable junction temperature Tj,max which is
a technical constraint.

İi =
∫∫

A
q̇′′
(

T0

Tj,max

)
dA (12)

The avoidable irreversibility İa on the other hand is the loss of
exergy due to the fact that the junction temperature Tj remains
below the maximum allowable junction temperature Tj,max.

İa =
∫∫

A
q̇′′
(

T0

Tj
− T0

Tj,max

)
dA (13)

This avoidable loss is actually an exogenous irreversibility since
it is not constrained by the chip but determined by heat sink
design. Indeed, it is the heat sink which governs the junction
temperature Tj. Therefore minimization of İa should be regarded
as a challenge in heat sink design.

Figure 4 shows the Grassmann diagram of the heat sink
cooled chip. The intrinsic irreversibility İi together with the
maximum amount of exergy which can be passed on to the heat
sink are hatched. Notice that although the intrinsic irreversibil-
ity İi often is the largest irreversibility in a heat sink cooled chip
system, it is unavoidable. This illustrates that it is not always
possible to allocate engineering efforts solely based on the ab-
solute value of irreversibility. Furthermore one can deduce from
the diagram and corresponding equations (Eq. (7) and (13)) that
a reduction in junction temperature Tj reduces the irreversibility
in the heat sink İhs but on the other hand increases the avoidable
irreversibility in the chip İa. Since chip and heat sink are ther-
modynamically dependent one can not lower the irreversibility
in one component while assuming the other won’t be affected.

Design

Second Law based design endeavors to minimize the differ-
ence between reality and the corresponding exergy model. Al-
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∆Ėf
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İi

İa
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Figure 4. Grassmann diagram for a chip heat sink combination with
Tin= T0.

ternatively formulated it strives to minimize the irreversibility.
Since irreversibility is proportional to entropy generation, engi-
neering literature conveniently baptized Second Law based de-
sign as entropy generation minimization or EGM [18].

Entropy generation minimization allows to compare different
interactions on a common basis [3]. This is one of the benefits
associated with a Second Law based design methodology often
found in literature. The Second Law reduces the number of ob-
jectives as it eliminates an ad hoc trade-off between heat transfer
and fluid flow losses since a trade-off is embedded in the con-
cept of irreversibility or entropy generation [32–34]. Yet this
trade-off is based on the exergy model. How meaningful is this
trade-off if applied to real applications which are irreversible?

To answer this question we examine a Brayton cycle as de-
picted in Fig. 5. This Brayton cycle takes a mechanical exergy
input (PC ) and a thermal exergy input (Q̇cc at temperature Tcc)
to generate a mechanical exergy output (PT ) while producing an
exhaust flow exergy (e6). A Brayton cycle with a topology as is
presented will not use this flow exergy e6. Therefore the exergy
of e6 is lost. Since this flow exergy is mainly composed of ther-
mal exergy we can conclude that due to the cycle topology the
actual work potential of heat transfer irreversibility is lower than
the theoretical work potential indicated by the exergy model.

The cycle turbine uses a pressure and temperature difference
to generate the turbine power PT . Divergence of the isobaric
lines, the compressor pressure ratio, the heat transfer and fluid
flow efficiency of the recuperator together with the isentropic ef-
ficiency of the turbine determine how PC on one hand and Q̇cc on
the other will be used to produce power. Since all components
are irreversible, exergy as such and work potential attributed to
thermal or mechanical energy specifically do not reflect the true
potential of the energy streams to produce turbine power.

Previous reflections illustrate that entropy generation mini-
mization of a heat exchanger as a component cannot provide
the most optimal recuperator for a Brayton cycle. Although
heat exchanger design is a trade-off between momentum losses
and heat transfer enhancement it is not necessarily entropy gen-
eration that provides the optimal trade-off. Indeed, the actual
work potential of energy streams is determined by irreversible
components. Therefore it is different from the theoretical work
potential as derived from an exergy model.

Entropy generation minimization has been applied to design

Te
m

pe
ra

tu
re

Specific entropy

Figure 5. T-s diagram of a Brayton cycle with recuperation.

a large variety of components. Especially in the field of heat
exchangers and heat sinks EGM has acquired some renown as
optimization criterion since energy falls short in quantifying
the performance of these components (e.g. [14, 16, 33, 35–37]).
However, component optimization is not necessarily in corre-
spondence with system optimization.

Thermodynamic optimization of a system is equivalent to a
minimization of the total entropy generation Ṡtot

gen which is an
addition of the entropy generation in all components (n)

Ṡtot
gen =

n

∑
i=1

Ṡi
gen. (14)

Minimizing Ṡtot
gen is

min Ṡtot
gen = min

n

∑
i=1

Ṡi
gen, (15)

6=
n

∑
i=1

min Ṡi
gen, (16)

meaning that optimized components do not necessarily result
in an optimized system unless these components are thermo-
dynamically isolated [18]. This simple mathematical reflection
urges to raise a note of caution considering the application of
EGM on component or on smaller scales without considering
the overall system.

Entropy generation minimization assumes an invariable envi-
ronment. Applying entropy generation minimization on a com-
ponent or subsystem is therefore identical to casting the remain-
ing part of the system as an invariable environment model. Such
a model does not represent reality as it does not incorporate the
effects of a local entropy generation minimization on another
location or in another time frame.

Beyer addressed this issue already in the 70s [23, 30, 38] and
also in subsequent decades similar remarks have been formu-
lated mainly in the field of thermo-economics [25, 31, 39–42].
Entropy generation minimization has to be applied on the over-
all system or on independent components or subsystems. If not,
the objective is different from system efficiency and therefore
meaningless if thermodynamic efficiency is targeted. A system
is in general more than the sum of its parts. It is a complex net-
work of components and elements which influence each other.
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CONCLUSION

If reversibility would be feasible then exergy can be con-
served and the exergy model could be an accurate model. Un-
fortunately reversibility is unattainable and therefore the equal-
ity sign in the formulation of the Second Law is deceptive. The
inequality sign of the Second Law is what reality defines. It is
this inequality that represents the arrow of time and indicates di-
rection. A direction which is incorporated in transfer and trans-
port functions (e.g. Fourier’s Law, Fick’s Law).

The Second Law only enables us to pinpoint and quantify
losses relative to the reversible ideal. Since reversibility is infea-
sible every entity under consideration creates losses. However
the causes of these losses remain unknown and consequently
engineering or economic efforts can not be allocated based on
these losses. Minimization of all losses is equivalent to ther-
modynamic efficiency optimization. Entropy generation mini-
mization is therefore an alternative cost function for First Law
optimization. Anyhow it does not allow to decouple a system
and design interacting components in thermodynamic isolation.

ACKNOWLEDGMENT

The work of Ruben Gielen is sponsored by the Institute for
the Promotion of Innovation through Science and Technology
in Flanders (IWT Vlaanderen).

Nomenclature

A heat source base area [m2]
C heat transfer surface inventory [W/K]
Ė exergy [W]
E energy [J]
e flow exergy [J/kg]
g gravitational acceleration [m/s2]
h specific enthalpy [J/kg]
İ irreversibility [W/K]
ṁ mass flow rate [kg/s]
P power [W]
Q̇ heat [W]
q̇′′ chip heat load per source base area [W/m2]
S entropy [J/K]
s specific entropy [J/kg K]
Ṡgen entropy generation [W/K]
T temperature [K]
V velocity [m/s]
Ẇ work [W]
z height [m]

sub/superscripts
0 dead state
cc combustion chamber
f fluid
in inlet
j junction
max maximum
out outlet
tot total
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INTRODUCTION 

Recent developments in nano science and technology 
reveal the difference between nano and macro scale material 
properties. Quantum wells, quantum wires and quantum dots 
are the remarkable examples for the diversity in transport and 
optical properties of the same material. Similarly, 
thermodynamic properties of gases confined in nano domains 
become size and shape dependent due to wave nature of 
particles [1-12]. 

Here, dimensional transitions in thermodynamic properties 
of an ideal monatomic Maxwell gas confined in a rectangular 
box are considered. Partition function is used to determine 
free energy. From expression of free energy; entropy, internal 
energy and specific heat at constant volume are then derived 
in exact forms based on expressions of infinite summations. 
Therefore the expressions are valid even for strongly confined 
domains although the trivial macroscopic expressions based 
on integral approximation are valid only for unbounded 
domains. 

To examine the dimensional transitions in thermodynamic 
properties, dimension of momentum space is defined based on 
mean probability change per step in quantum state space. 
Internal energy of excited states is taken into account by 
eliminating ground state energy from internal energy to 
consider only thermal contributions instead of size dependent 
contribution of ground state energy. Similarly instead of 
considering entropy itself, only the entropy of momentum 
space is considered by subtracting entropy of the ground state, 
which is the pure configurational entropy, from the entropy 

itself. Dimensionless inverse scale factors 1 2 3, ,    are 

defined as the ratio of the sizes of rectangular box in each 
direction (L1, L2 and L3) to Lc. Thermodynamic quantities and 
their dimensional transitions are examined in terms of these 
dimensionless scale factors. 

THERMODYNAMIC PROPERTIES OF AN IDEAL 

MAXWELL GAS IN A RECTANGULAR BOX 

Free energy expression of an ideal Maxwell gas is given as  
 

1 lnbF Nk T
N
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where, N is number of particles, T is temperature, bk  is the 

Boltzmann’s constant and   is the partition function. For 

particles confined in a rectangular box,   is defined below 

[5] 
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Here  , ,i j k  are the quantum state numbers running from 

unity to infinity, 
n  is the dimensionless inverse scale factor 

defined as 
n n cL L   where 

nL  is the size of the box in 

direction n and  TmkhL bc 22 . 

Entropy is determined by the derivation of free energy with 
respect to temperature as follows, 
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where  1 2 3, ,      is given by 
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ABSTRACT 
In this work, dimensional transitions in thermodynamic properties of an ideal Maxwell gas confined in a finite domain are 

studied. When one of the sizes of confinement domain becomes shorter than the thermal de Broglie wavelength of particles, 
momentum space is subject to a dimensional transition. Dimension of momentum space is defined based on mean probability 
change per quantum state step. Variation of the dimension with domain sizes is examined. Dependencies of internal energy, 
specific heat at constant volume and entropy on domain sizes as well as dimension of momentum space are analyzed. 
Dimensional transitions in momentum space from 3D to 2D and similarly from 2D to 1D and 1D to 0D are considered. It is 
shown that there is an increment in specific heat at constant volume during the dimensional transitions. Furthermore, all 
quantities considered here decreases when the confinement increases. 
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Free energy and entropy relations are used to obtain 

internal energy expression as 
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On the other hand, by differentiating the internal energy 

with respect to temperature, specific heat at constant volume 
is determined as 
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where  1 2 3, ,      is defined as  
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To examine the dimensional transition in thermodynamic 
properties above, dimensionless entropy, internal energy and 
specific heat at constant volume are introduced as, 
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It should be noted that conditions of 1N   and N   

should be satisfied to use both statistical approach and MB 
statistics respectively. In case of confinement in two directions 
(directions 2 and 3), these conditions are expressed as  
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Therefore, MB statistical approach can still be used if the 

value of 
1  is sufficiently small in spite of large values of 

2  

and 3 ,  2 3, 1   . 

 

DIMENSION DEFINITION AND TRANSITION IN 

MOMENTUM SPACE 

Before examining dimensional transition in thermodynamic 
properties, dimension in momentum space should be defined 
with probabilistic approach. Excitation probability of particles 
in momentum space drastically decreases for the confinement 
direction and particles lose their excitation chance in that 
direction. In other words, only the ground state of momentum 
in confined direction can be occupied by the particles and all 
the excited states of momentum in that direction become 
empty. Occupation probability of quantum state r is  
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Change of probability per change of quantum state number is 
 

   , 1 ,r r r r rp p r p r      (13) 

 

The ensemble average of absolute value of 
rp  is  

 

r r r

r

p p p     (14) 

 

When 
r  is greater than unity, the probability of ground state 

goes to unity which means that the whole particles accumulate 

in ground state. In that case, rp  also goes to unity since 

the probabilities of the excited states are zero and probability 
distribution becomes a single point in probability space. 
Therefore, this situation corresponds to a zero dimensional 

probability space. On the contrary, as 
r  goes to zero each 

state becomes equally probable which corresponds one 
dimensional space. Consequently the dimension of momentum 
space can be determined by 
 

3 i j kD p p p        (15) 

 
Thereby, dimensional transition from 3D to 0D can be 

examined by Eq.(15) as a function of 
1 2 3, ,   . The 

dimensional transition due to change of domain sizes in 
directions of 1 and 2 is shown in Fig.1.  

 

 
Figure 1: Dimensional transition from 3D to 2D and 1D. 

 
Similarly dimensional transition from 1D to 0D is given in 

Fig.2. 
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Figure 2: Dimension transition from 1D to 0D. 
 

As seen in Fig.(1) and Fig.(2), even the value of 3 for 
n  is 

enough for a strong confinement and dimensional transition in 
direction n.   

DIMENSIONAL TRANSITION IN THERMODYNAMIC 

PROPERTIES 

Internal energy of particles in exited states is calculated as 
 

2 2 2

1 2 3ex ou u u


  


       (16) 

 

where 
ou  is the ground state energy. The reason of subtracting 

ou  is that the ground state energy considerably increases when 

the domain sizes decreases. Thus thermal energy can 
stimulates only the particles in excited states instead of 
particles in ground state. Therefore confinement energy 

represented by the ground state energy is eliminated if 
exu  is 

considered. Similarly dimensionless entropy of particles in 
excited states is determined by 
 

lnex os s s





     (17) 

 
By subtracting entropy of the ground state, which is the pure 
configurational entropy, from the entropy itself, only the 

entropy of momentum space is considered. In other words, 
exs  

is the measure of disorder in momentum space only. Due to 
the first term of the right hand side of Eq.(17), however, the 

value of exs  goes to infinity when n  goes to zero as 

expected. Therefore, exs  is normalized by dividing to its value 

for unconfined domain (3D domain) as follows 
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 (18) 

 

Variation of exu , exs  and vc  with domain sizes can be 

examined by changing 
3  for different set of  1 2,   values. 

Since the variation of dimension with domain sizes is also 
known, it is possible to examine the variation of 
thermodynamic quantities also with dimension by matching 
the values of dimension and thermodynamic properties for the 

same  1 2 3, ,    values. 

RESULTS AND DISCUSSIONS 

3D unbounded domain is represented by 

 1 2 30, 0, 0     . Confinement of the domain in one 

direction needs an increment of   value in that direction 

from zero to the values higher then unity. By following the 
same procedures for other directions, it is possible to confine 
the systems into smaller dimension in momentum space. 
Therefore the dimension of momentum space can be 
decreased from 3D to 2D, 1D and 0D. 

The change of dimensionless internal energy and specific 
heat at constant volume of particles in excited states with 

respect to 
3  are given in Fig.3. and Fig.4 respectively.  

 

 

 
 
Figure 3: Variation of internal energy of particles in excited 

states with 
3 . 

 
 

 
 
Figure 4: Variation of specific heat at constant volume of 

particles in excited states with 3 . 

 
In Figure 4., it seems that there is an increment in specific 

heat at constant volume as an interesting behavior during the 
dimensional transitions. Functional analysis of Eq.(10) shows 
that the first term represents the ensemble average of the 

square of dimensionless energy  
2

bk T  while the second 

one represents the square of ensemble average of 

dimensionless energy 
2

bk T . Therefore Eq.(10) can be 

rewritten as 
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2 2

v b bc k T k T    (19) 

 
The first term in Eq.(19) increases faster than the second 

one up to a critical value of 0.56   and then the first one 

approaches to the second one. Therefore the contribution of 
momentum component to the heat capacity becomes 
negligible for each direction when the related alpha value gets 
higher and higher values. In this case, also the dimension of 
momentum space decreases a unit value. This increment in 
specific heat is a pure quantum size effect which may be 
experimentally verified. 

 
In Fig.5, variation of normalized dimensionless entropy of 

the particles in excited states with 
3  is given for different set 

of  1 2,   values. 

 
 

 
 
Figure 5: Variation of normalized entropy of gas in excited 

states with 
3   

 
Normalized entropy of the particles in excited states 

decreases with increase of 
3 . For each confinement process, 

change in 
exs  is 1/3. For the case of  1 23, 3   , 

exs  goes 

to zero when 
3  goes to higher values then unity. Because all 

particles occupy ground state which has zero entropy. On the 
other hand, it should be noted that in case of 

 1 2 33, 3, 3     , Eq.(11) becomes 

 

 2 2 2
1 2 3

1N e
    

 (20) 

 
Therefore, number of particles should be much less then unity 
to use Maxwell statistics which is physically meaningless. 
Consequently, although the expressions mathematically give 

the consistent results for  1 2 33, 3, 3      they 

represent a physically impossible condition. 

As a result of increasing values of 1 2 3, and   , 

dimensional transitions occur from 3D to 2D, 2D to 1D and 
1D to 0D. Dimensionless internal energy and specific heat of 
particles in excited states versus to dimension is given in Fig. 

6 and Fig. 7 respectively. Both 
exu  and 

vc  decrease 1/2 for 

each unit dimensional transition. 
 
 

 
 
Figure 6: Variation of internal energy of gas in excited 

states with confined domain dimension 
 

 
 
Figure 7: Variation of specific heat at constant volume of 

gas in excited states with confined domain dimension 
 
In Fig.8 dimensional transition of normalized entropy of 

particles in excited states is shown. As expected, entropy 
value decreases with decreasing dimension. 

 

 
 
Figure 8: Variation of normalized entropy of gas in excited 

states with confined domain dimension 
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NOMENCLATURE  

Symbol Quantity SI Unit 
   
Cv Heat capacity at 

constant volume 
J K

-1 

vc  Dimensionless Specific 
heat at constant volume  

 

F Free energy J 
h Planck’s constant J s 
kB Boltzmann’s constant J K

-1
 

L Domain length m 
Lc Half of the most 

probable wave length 
m 

m Particle mass kg 
S Entropy J K

-1
 

s  Dimensionless entropy  

exs  Dimensionless entropy 
of particles in excited 
states 

 

os  Dimensionless entropy 
of ground state 

 

T Temperature K 
U Internal energy J 

u  Dimensionless internal 
energy 

 

exu  Dimensionless internal 
energy of particles in 
excited states 

 

ou  Dimensionless energy 
of ground state 

 

n  Dimensionless inverse 
scale factor 

 

  Partition function  
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INTRODUCTION 

Nano Scale transport has a great deal of attention in recent 
years because of the increasing trend of manufacturing on 
these scales. Many transport phenomena in macro scale have 
to be revised or modified since many negligible effects in 
macro scale can be dominant in nano scale [1-3]. Quantum 
size effects (QSE) are one of these effects and they arise when 
thermal de Broglie wavelength of particles is not negligible in 
comparison with the characteristic size of the system. In such 
a case, wave character of particles becomes important and 
make thermodynamic and transport properties depend on 
shape and size of the domain [4-16]. 

Quantum degeneracy is another effect, which can be 
important in case high density or low temperature conditions. 
Under those conditions, thermal de Broglie wave length of 
particles is large enough in comparison with the mean distance 
between particles. Therefore quantum degeneracy becomes 
important and cause considerable changes in transport 
behaviours. In this case, quantum statistics (Fermi or Bose) 
should be used in calculations. 

Transport processes in nano domains are generally 
considered within the scope of free molecular transport regime 
in which particle wall collisions are dominate instead of 
particle-particle ones. Therefore, size and surface effects can 
be more important in free molecular flow regime. 

In this paper, thermal self-diffusion in free molecular 
transport regime is considered and both quantum degeneracy 
and QSE are taken into account in the calculations. Thermal 
self-diffusion fluxes of monatomic ideal Fermi and Bose gases 
(like He3 and He4) are determined. The influences of 
quantum degeneracy and QSE on thermal self-diffusion rates 
are examined. 

THERMAL-SELF DIFFUSION IN QUANTUM 

DEGENERACY LIMIT 

Thermal self-diffusion coefficient built up a relation 
between the diffusive flux and the temperature gradient and it 
is written in the following form  

 

TDJ th 


 (1) 

 
Here, Dth is the thermal self-diffusion coefficient, J is the 

particle flux due to temperature gradient, T


. To examine 

quantum size effects on thermal self-diffusion, nano scale 
transport domain is considered. Therefore free molecular 
transport regime is dominant since the mean free path of 
particles is usually larger than the characteristic size of the 
domain at nano scale. For ideal Maxwellian and quantum 
gases (Fermi and Bose) thermal self-diffusion coefficient can 
be given for free molecular transport regime as [17]; 
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In Eq. (2), n is particle density, Lg is the characteristic size 

of the domain which can be given by V/2A where V and A are 
domain volume and surface area respectively, kB is the 
Boltzmann’s constant, T is temperature, m is the particle mass 

and   is the dimensionless chemical potential defined as 

TkB  in terms of chemical potential,  . Definitions of 

 , 0g  and 2g  functions are given in Refs. [13, 17] and their 

ratios in Eq.(2) can be obtained for an ideal quantum gases 
(namely Fermi Dirac-FD and Bose Einstein-BE gases) as 
follows 
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ABSTRACT 
Thermal self-diffusion coefficients of monatomic ideal Fermi and Bose gases (like He3 and He4) are analytically determined 

by considering quantum size effects (QSE) for free molecular flow regime. The variations of thermal diffusion coefficients for 
Fermi and Bose gases with chemical potential are analyzed by neglecting QSE to understand the pure effect of quantum 
degeneracy. The results show that quantum degeneracy causes a substantial difference especially in degeneracy limit. It is seen 
that quantum degeneracy reduces thermal diffusion rate for both Fermi and Bose gases. There is a limit value for diffusion rate 
in a completely degenerate Bose gas. Furthermore, diffusion rates for Fermi and Bose gases are different from each other for 
the same degeneracy level. This difference in diffusion rates can be used for isotopic separation. QSE on thermal diffusion 
coefficients are also investigated. QSE cause tiny deviations from macroscopic behavior of thermal self-diffusion. QSE have 
negative contribution on thermal self-diffusion at low degeneracy while an opposite contribution appears at high degeneracy 
limit. Dimensionless diffusion coefficient goes to unity for a completely degenerate Fermi gas while it goes to infinity for a 
Bose gas. 
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where Li  represents the Polylogaritm functions while 

negative and positive signs stand for Fermi and Bose gases, 
respectively. The strength of degeneracy increases with 
increasing value of Λ. Completely degenerate Fermi and Bose 

gases are obtained for the corresponding limits of   and 

0 . In classical limit,  , degeneracy disappears 

and Polylogarithm functions reduces to     eeLi  . Thus, 

Eqs. (3) and (4) reduce to the equations given below for an 
ideal Maxwell gas 
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To examine the pure quantum degeneracy effects on 

thermal self-diffusion, dimensionless diffusion coefficient is 
defined and determined by using Eqs. (3) and (4) in Eq.(2) as 
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Degeneracy effects can be analysed for Fermi and Bose 

gases separately by using the proper value intervals of   in 
Eq.(7). The results are given in Fig. 1. 
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Figure 1: Variation of dimensionless diffusion coefficient 

with dimensionless chemical potential for Bose (dashed curve) 
and Fermi (solid curve) gases. 

 
It is seen that quantum degeneracy reduces thermal 

diffusion rate for both Fermi and Bose gases. Furthermore, 
diffusion rates for Fermi and Bose gases are different from 
each other for the same degeneracy level (the same value of 

 ). This difference in diffusion rates can be used for isotopic 
separation if one isotope obeys Fermi statistics while the other 
one obeys Bose one, like He3 and He4 gases. For a 

completely degenerate Bose gas ( 0 ), by using the 

asymptotic forms of Polylogarithm functions, it is possible to 

show that Eq.(7) goes to     474.023324  . On the 

other hand, for a completely degenerate Fermi gas, it goes to 
zero. 

SELF-THERMAL DIFFUSION UNDER QUANTUM 

SIZE EFFECTS 

In order to consider quantum size effects, which result from 
the wave character of particles and may cause considerable 
changes in transport phenomena at nano scale, it is necessary 

to calculate the functions of  , 0g  and 2g  more precisely. 

These calculations have been done in Ref. [17] and the 
following ratios can be given  
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where 32   , j  is inverse scale factor defined as 

jcj LL , Lc is the half of the most probable de Broglie 

wave length given by  TmkhL bc 22  and Lj is the domain 

size in j direction. Since the direction 1 is chosen as a 

transport direction here, 01   (there is no confinement in 

direction 1). It is clear that Eqs.(3) and (4) can easily be 
recovered from Eqs. (8) and (9) when domain sizes in 
directions 2 and 3 are larger enough in comparison with Lc, 

  0, 32  . 

To examine the pure quantum size effects on thermal self-
diffusion rate, a dimensionless diffusion coefficient for 
quantum gases is defined as the ratio of diffusion coefficient 
with and without QSE. By using Eqs.(8) and (9) as well as 
Eqs.(3) and (4) in Eq.(2), dimensionless diffusion coefficient 
is obtained as 
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Equation (10) can be used to analyse QSE on thermal self-

diffusion rate for Fermi and Bose gases as well as Maxwell 

gas by using the proper   values. The variation of 
dimensionless diffusion coefficient with dimensionless 

chemical potential is seen in Fig.2 for 1.032   . 
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Figure 2: The variation of dimensionless diffusion 

coefficient with dimensionless chemical potential for 1.0 . 

 
Fig. 2 shows that QSE cause tiny deviations from 

macroscopic behavior of thermal self-diffusion. QSE have 
negative contribution on thermal self-diffusion at low 

degeneracy or classical limit (  ), while an opposite 

contribution appears at high degeneracy limit. Dimensionless 
diffusion coefficient goes to unity for a completely degenerate 
Fermi gas while it goes to infinity for Bose gas. In Maxwellian 

limit (  ), Eq.(10) can be simplified by using the 

asymptotic forms of Polylogarithm functions,     eeLi  , 

as 
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CONCLUSION 

The results show that quantum degeneracy decreases 
thermal self-diffusion rate. There is a limit value for diffusion 
rate in a completely degenerate Bose gas. On the other hand, 
diffusion rate goes to zero in degeneracy limit for a Fermi gas. 
Different diffusion rates of Fermi and Bose gases for the same 
degeneracy level may allow to design an isotopic enrichment 
process if one isotope obeys Fermi statistics while the other 
one obeys Bose one, like He3 and He4 gases. 

Although quantum degeneracy causes a considerable 
difference in diffusion rate, only tiny deviations from 
macroscopic behavior of thermal self-diffusion arises due to 
QSE. On the other hand, opposite contributions of QSE on 
diffusion rates of Fermi and Bose gases are also obtained for 
strongly degenerate limit. Therefore, QSE may also be used 
for isotopic enrichments. 

A possible experimental verification of QSE on thermal 
self-diffusion rate can be a macroscopic manifestation of wave 
nature of particles in diffusion process. The results may be 
used to design some new devices and processes. 

NOMENCLATURE  

Symbol Quantity SI Unit 
   
Dth Thermal self-diffusion 

coefficient 
m

-1
.s

-1
.K

-1 

J Particle flux (# of particle)·m
-2

·s
−1

 
kB Boltzmann’s constant J K

-1
 

Lc Half of the most 
probable wave length 

m 

Lg Characteristic size of 
the domain 

m 

Lj Size of the domain in 
direction j 

m 

n Particle density # / m
3
 

m Particle mass kg 
T Temperature K 
α Dimensionless inverse 

scale factor 
 

Λ Dimensionless chemical 
potential 

 

μ Chemical potential Joule 
BE Bose-Einstein statistics  
FD Fermi-Dirac statistics  
MB Maxwell-Boltzmann 

statistics 
 

QSE Quantum size effect  
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ABSTRACT
In this paper, we examined 0D and 1D Fermi gases (for example an electron gas in semiconductors or even atom gases like He3)
confined in certain dimensions. It has been shown that thermodynamic properties have a discrete nature in nanoscale. Also,
they have certain physically meaningful values, which mean thermodynamic properties cannot take any continuous value, unlike
classical thermodynamics in which they are considered as continuous quantities. We conclude that, as long as the confinement is
strong enough, discrete nature of thermodynamic properties can be observed. Since quantum confinement in semiconductors is
a well-established experimental research area, it is also possible to experimentally verify the results obtained here. Furthermore,
the possibility of introducing new effects and developing new thermodynamic devices that depend on the discrete nature of
thermodynamics in nanoscale will be discussed.

INTRODUCTION

Leap forwards in nanotechnologies in recent years, make
it necessary to study thermodynamic behaviors of matter in
nanoscale, which leads to a relatively new research area called
as nano thermodynamics.[1-12] Numerous researches are go-
ing on in these areas recently. There are considerable deviations
from classical thermodynamics and there have been proposed
new effects based on the quantum nature of the systems. One of
these new effects is examined under the name of Quantum Size
Effects (QSE) in literature recently.

Thermodynamic properties such as number of particles, free
energy, entropy, internal energy, chemical potential and heat ca-
pacity are represented with summations over quantum states, in
their fundamental and exact forms. In macro scale, these sum-
mations in thermodynamic expressions may be replaced by in-
tegrals to make algebraic operations easy. However, when the
sizes of the domain are comparable to the thermal de Broglie
wavelength of particles, for instance in nanoscale; wave na-
ture of particles become dominant, so we cannot use integrals
instead of summations, since continuum approximation is no
longer valid. Exact forms of thermodynamic properties must
be considered in nanoscale thermodynamics. There are several
ways to calculate exact sums in thermodynamics; one way is
using Poisson summation formula. Evaluating partition func-
tion by Poisson summation formula expands the sum to three
terms. Integral term is the conventional term that has been used
in classical thermodynamics under continuum approximation.
Zero correction term is a consequence of the fact that there are
no zero-momentum states for particles in a system. Eventu-
ally, discrete term represents the discrete nature of momentum
states and becomes dominant in nanoscale. Effects of zero cor-
rection term have been studied in literature as QSE. When the
domain size is comparable to the thermal de Broglie wavelength
of particles, contribution of zero correction term becomes rec-
ognizable. In addition to zero correction, in Fermi-Dirac statis-
tics, discrete nature of thermodynamic properties, which depend

on Pauli Exclusion Principle, starts to reveal itself. Intrinsic
discrete nature has not seen in Maxwell-Boltzmann and Bose-
Einstein statistics, since discretization is a consequence of Pauli
Exclusion Principle, which is used fundamentally in the deriva-
tion of Fermi-Dirac statistics.

EXACT EXPRESSIONS OF THERMODYNAMIC PROP-
ERTIES FOR A FERMI GAS CONFINED IN A RECTAN-
GULAR DOMAIN

For a rectangular domain with dimensions L1,L2 and L3, en-
ergy eigenvalues from Schrödinger equation are

ε =
h2

8m
[(

i1
L1

)2 +(
i2
L2

)2 +(
i3
L3

)2],

with (i1, i2, i3)=1,2,3,...,
(1)

where h is the Planck’s constant and m is the mass of the
fermion. Fermi-Dirac distribution function is

f =
1

e−Λ+(α1i1)2+(α2i2)2+(α3i3)2
+1

(2)

where Λ = µ/kbT and αn’s are dimensionless scale factors
defined as αn = Lc(T )/Ln with n = 1,2,3 and Lc(T ) =

h/
√

8mkbT =
√

π

2 λth, where λth is the thermal de Broglie wave-
length, kb is the Boltzmann’s constant and T is the temperature
of the gas. Summations over all states of the distribution func-
tion will give the number of particles of a Fermi gas

N =
∞

∑
(i1,i2,i3)=1

1
e−Λ+(α1i1)2+(α2i2)2+(α3i3)2

+1
(3)
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Now we can write the exact forms of thermodynamic properties
such as internal energy U and heat capacity at constant volume
CV respectively as follows

U = kbT
∞

∑
(i1,i2,i3)=1

[(α1i1)2 +(α2i2)2 +(α3i3)2] f (4)

CV = kb

∞

∑
(i1,i2,i3)=1

[(α1i1)2 +(α2i2)2 +(α3i3)2]2 f (1− f )

−
[∑∞

(i1,i2,i3)=1[(α1i1)2 +(α2i2)2 +(α3i3)2] f (1− f )]2

∑
∞

(i1,i2,i3)=1 f (1− f )
(5)

DISCRETE NATURE IN STRONGLY ANISOMETRIC
QUANTUM DOTS

For 0D, we examined two cases; strongly anisometric do-
main and isometric domain. In strongly anisometric domain,
dimensionless scale factors are chosen as α1 = 1, α2 = 40 and
α3 = 40, so that domain is confined in all three directions to
make it a quantum dot, only 2 directions are confined much
strongly than the other direction. Note that, α = 40 is not a
physically meaningless confinement, since it can be reached by
using todays techniques in laboratories. For strongly anisomet-
ric domain, dimensionless chemical potential Λ against particle
number N has been shown in Figure 1:

Figure 1. Strongly anisometric 0D domain (Quantum Dot), N vs Λ

Dimensionless chemical potential values between 0 and Λ0
corresponds to zero particle. In other words, physically mean-
ingful Λ values start from Λ0. In Figure 1, critical Λ values are
Λ0 = (α1)

2 +(α2)
2 +(α3)

2 and Λ1 = (α1)
2 +(α2)

2 +(2α3)
2.

Beginning from Λ0 = (1)2+(40)2+(40)2 = 3201, states of the
momentum component in direction-1, start to be occupied by
particles since the discreteness of momentum in direction-1 is
not as strong as in directions-2 and 3. That means, occupation
of momentum states in direction-1 is possible, although the oth-
ers are not. Hence, we can convert triple sum into a single sum,
in a limited range of Λ.

N =
∞

∑
i1=1

1
e−Λ+(α1i1)2+(α2)2+(α3)2

+1
(6)

Thereby, Eq. 6 gives exactly the same results of Eq. 3, for
Λ < Λ1. After Λ1 = (1)2 + (40)2 + (2× 40)2 = 8001 value,
we have to consider excitations also in other directions. As it
is shown in Figure 1, Λ changes with N in a stepwise manner.
These steps can be seen in close-up more easily in Figure 2

Figure 2. Strongly anisometric 0D domain (Quantum Dot) close-up, N
vs Λ

Points on the middle of stepwise plateaus indicate Λ values
corresponding to the integer particle numbers. As long as num-
ber of particles has integer values, continuous parts which do
not contain points, are the forbidden region for Λ values. In
other words, chemical potential can take only some certain dis-
crete values which correspond to the integer number of parti-
cles. That is a very crucial deviation from classical thermody-
namics. After Λ1, the second modes of momentum components
in direction-2 and 3 start to be occupied and the relation between
N and Λ has a new character. Pay attention to that, horizontal
steps are not completely flat, so the derivative of the function
in any point is never zero. Similar stepwise behavior of particle
number vs Λ, can be seen also in internal energy of Fermi gas.
In Figure 3 and 4, dimensionless internal energy and specific
heat at constant volume; Ũ = U

NkbT and C̃V = CV
Nkb

, versus Λ are
shown respectively.

Figure 3. Strongly anisometric 0D domain (Quantum Dot), Ũ vs Λ
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Figure 4. Strongly anisometric 0D domain (Quantum Dot), C̃V vs Λ

Behavior of specific heat is as shown in Figure 4. Definite
Λ values, marked with points, are determined from N vs Λ re-
lationship and they are same in all figures. Besides, effects of
particle addition to the system which is moderately confined in
direction-1 and strongly confined in direction-2 and 3, can be
shown in Figure 5.

Figure 5. Strongly anisometric 0D domain (Quantum Dot), C̃V vs N

DISCRETE NATURE IN ISOMETRIC QUANTUM DOTS

Now, let’s consider isometric quantum dot. In isometric do-
main, dimensionless scale factors are chosen as α1 = 3, α2 = 3
and α3 = 3. So, confinement is not extremely strong, however
it is strong enough to make the structure a quantum dot. Be-
cause of the contribution of the excited modes of momentum
components, we have to do triple sum in order to express state
functions and particle number, in all range.

For this case, N, U and CV versus Λ are shown respectively
in Figures 6, 7 and 8. Unlike the first case, for this case there
are allowed values also in the steepnesses of the function, since
excited modes in each direction start to be occupied from the
very early Λ = (3)2 +(3)2 +(3)2 = 9 value.

Figure 6. Isometric 0D domain (Quantum Dot), N vs Λ

Figure 7. Isometric 0D domain (Quantum Dot), Ũ vs Λ

Figure 8. Isometric 0D domain (Quantum Dot), C̃V vs Λ

Another interesting inference is that, unlike the first case
we considered, adding particles does not affect thermodynamic
properties equally in this case. Since occupation of momen-
tum states in all directions are possible, particle addition causes
sometimes to an increase, and sometimes to a decrease in spe-
cific heat CV as in Figure 9. Particle number dependency of heat
capacity is so severe that in some cases (high magnitude peaks
on the Figure 9), changing number of particles in the domain
causes to eight or more times radical changes in heat capacity
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of the system. Also, for a quantum dot with α values α1 = 1,
α2 = 1 and α3 = 1, we can see oscillations in heat capacity, in
Figure 10. Even for the large number of particles, oscillations
are still observable.

Figure 9. Isometric 0D domain (Quantum Dot), C̃V vs N

Figure 10. Isometric moderately (α1 = α2 = α3 = 1) confined 0D
domain (Quantum Dot), C̃V vs N

THE CASE OF QUANTUM WIRES

For 1D structures, it is shown in Figures 11 and 12, that step-
wise behavior turns into kind of a quasi-continuous behavior. In
spite of that, noticable peaks can still be observed in heat ca-
pacity, in Figure 13. Again changing number of particles in the
system has different effects on the heat capacity, as it is shown
in Figure 14. Change of particle number affects system dras-
tically, so that CV doubles and halves even for small changes
in large number of particles. Such strong dependencies can be
verified experimentally.

Figure 11. 1D domain (Quantum Wire), N vs Λ

Figure 12. 1D domain (Quantum Wire), Ũ vs Λ

Figure 13. 1D domain (Quantum Wire), C̃V vs Λ
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Figure 14. 1D domain (Quantum Wire), C̃V vs N

As we expected, discrete nature of thermodynamics becomes
slighter and slighter as we decrease the number of confined di-
rections. For quantum wire (1D) and well (2D), discrete na-
ture and peaks in heat capacity are still partially observable.
Conversely, for the bulk (3D), discrete nature disappears almost
completely.

DISCUSSION

In this study, we made numerical calculations on several ther-
modynamic quantities (N, U , CV ) by using exact summations.
We showed that in nano scale, there is an intrinsic discrete na-
ture in 0D and 1D Fermi gases (quantum dots and nanowires)
and thermodynamic quantities can take only some certain val-
ues, if there is no applied external potential field to the system.

In case of the existence of electrical field, chemical potential
becomes electrochemical potential. Therefore, it is possible to
change Λ value by changing the strength of the field. In that
case, intermediate values between certain Λ values, which cor-
respond to the integer number of particles, correspond now to
the non-integer number of particles. This means that, by apply-
ing and changing an electrical field, it is possible to create quasi-
particles which have non-integer numbers. This also leads to a
possibility of making quantum dot energy conversion and stor-
age units. If the external electrical field is increased, quantum
dot will store the energy and when the external field is disabled,
system will turn back into its initial state, by releasing energy.

Considering the development rate of nanotechnology, it is
very likely not only to verify the discrete nature of thermody-
namic properties, but also to make efficient quantum energy
storage devices which can easily be used later in new energy
technologies. In addition to numerical results, evaluation of ex-
act sums into analytical expressions is under consideration.
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INTRODUCTION 

Efforts of the scientific community to understand the 
fundamental behaviour of nature and as a consequence 
effectively develop new technologies has placed quantum 
entanglement and coherence in the spotlight. Understanding 
the loss of quantum entanglement and coherence is at the core 
of explaining the transition between the microscopic and 
macroscopic worlds [1, 2]. Furthermore, manipulation of these 
type of communication phenomena is of great importance for 
the development of nanometric devices such as, for example, 
quantum computers [3-5] and quantum cryptographic systems 
[6, 7]. 

Entanglement among zero-entropy states or coherence 
among non-zero-entropy states is produced when two initially 
independent systems interact with each other. During this 
interaction, their states become correlated and can no longer be 
described independently of each other, that is, a single 
nonseparable system behavior is observed for the states of the 
two constituents. According to unitary dynamics, the state of 
the newly born composite should evolve in a superposition of 
outcomes. Nevertheless, daily observations of Nature and 
experiments on microscopic systems [8, 9] indicate that a loss 
of coherence among the local states of the constituents is 
always present. For example, during the physical measurement 
of a nonseparable microscopic system (e.g., a particle), the 
macroscopic measuring device (meter) gets entangled with the 
state of the particle and there after behaves as a macroscopic 
system in a superposition of states. The particle-meter 
composite system is then created, and an understanding of the 
loss of correlations between its constituents is at the core of 
quantum mechanics. Different theories are proposed to 
describe this phenomenon. One of them, that of dissipative 
quantum dynamic (DQD), considers that after its first 
entanglement with the particle, the meter gets involved into a 
second entanglement, this time with its surrounding 
environment, which provokes a fast dissipation of its quantum 
coherence originating from its initial entanglement with the 

atom [1, 2]. Spontaneous relaxation is then modeled under the 
concept of the so-called “open-system model”, which assumes 
that the system interacts with a thermal bath of harmonic 
oscillators (reservoir). The loss of coherence, disentanglement, 
or spontaneous relaxation is attributed to an irreversible 
reduction process resulting from weak interactions between the 
system and reservoir. Under this assumption, the dissipation 
phenomenon results from a loss of information only. The 
dynamic equation of DQD is a linear Markovian quantum 
master equations (i.e., those of the Kossakowski-Lindblad-
Gorini-Sudarshan type [10-12]). These type of equations 
mimic well the non-linear dissipative behavior of simple 
systems. However, a proper description of the non-linear 
dynamics of the state of composite systems is not achieved [13, 
14]. 

In this paper, the modeling of the non-linear dynamic 
behavior of the state of a composite system formed by an atom 
and an electromagnetic field mode is developed using IQT and 
its dynamical law of time evolution along the direction of 
steepest entropy ascent (SEA), which is an effective 
implementation of the locally maximal entropy production 
(LMEP) principle [15-17]. The state of the composite (closed 
and adiabatic) microscopic system evolves in time towards 
stable equilibrium, resulting in the loss of correlations between 
its constituents. The non-linear IQT equation of motion 
consists of two terms, the first of which captures the unitary, 
Hamiltonian dynamics of the Schrödinger-von Neumann 
equation, and the second the non-linear dynamics of a 
dissipative evolution in state based on the principle of SEA [16-
19], which allows each constituent to follow the path of locally-
perceived SEA [20]. Within the IQT framework, the dissipative 
aspects of the time evolution emerge from the non-Hamiltonian 
terms in the IQT equation of motion. Thus, instead of focusing 
on the non-Hamiltonian effects of the interactions between a 
microscopic system and its surroundings, the IQT description 
assumes the composite system to be isolated and its time 
evolution to be intrinsically non-Hamiltonian. In so doing, a 
loss of quantum entanglement or coherence is fully predicted. 

NON-EQUILIBRIUM THERMODYNAMIC MODELING OF  
AN ATOM-FIELD STATE EVOLUTION WITH COMPARISONS TO  
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ABSTRACT 
The analysis of the decoherence phenomenon between the local states of an electromagnetic field mode and an atom, such as 
that experimentally studied in Cavity Quantum Electrodynamics (CQED), is presented in this paper. The equation of motion of 
Intrinsic Quantum Thermodynamics (IQT) is used to model the dynamics of the state of the general microscopic system 
constituted by the two distinguishable and indivisible elementary subsystems. The evolution of state of the composite, as well as 
the reduced states of its constituents, is traced from a state of non-equilibrium to a state of stable equilibrium. Results show how 
the entanglement and coherence initially present between the locally-perceived states of each subsystem are erased when the 
state of the composite system evolves towards a state of stable equilibrium. The results presented provide an alternative and 
comprehensive explanation to that obtained with the “open system” approach of Dissipative Quantum Dynamics (DQD) and its 
associated quantum master equations of the Kossakowski-Lindblad-Gorini-Sudarshan type. Results of the relaxation modeling 
are compared with those of decoherence obtained experimentally by the CQED group at Paris. 
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Figure 1. Schematic representation of an atom-field Cavity QED 
experiment [21]. 
 

CQED EXPERIMENTAL TECHNIQUE BY THE 
GROUP AT PARIS 

The description of the experiments as well as the values used 
in the present modeling are based on the work developed by the 
CQED group of Haroche and co-workers at Paris [9, 21-26]. 
The reader is encouraged to visit these references for a 
thorough description of the theoretical background, 
experimental setup, and measurements developed on 
decoherence between the local states of the atom and the 
electromagnetic field mode. The description provided in the 
rest of this section is according to our understanding of these 
experiments. 

A schematic representation of the experimental 
configuration is depicted in Figure 1. Rubidium atoms are 
contained in an oven B from which one atom in state 

eB =ψ  (excited level) is selected and subsequently 
subjected to a classical resonant microwave 2/π  pulse in 1R  
supplied by the source 'S . This creates a state in a 
superposition of circular Rydberg levels e  and g  (ground 
level) for the atom, corresponding to principal quantum 
numbers 51 and 50, respectively. Afterwards, the atom is 
allowed to enter the high-Q quantum cavity C that contains an 
electromagnetic field mode in a Fock state α  previously 
injected into the cavity by an external source S . The atom and 
cavity are off-resonant, thereby, absorption of photons is not 
exhibited during the interaction, and the atom shifts only the 
phase of the field mode by an amount φ . This dephasing 
provokes the coupling of the excited level of the atom to the 
field mode state with phase φα ie  ( 0α ) and the coupling of 
the ground state of the atom to the field mode state with phase 

φα ie−  ( 1α ). In this manner, an entanglement between the 
states of the constituents is created such that 

( )10 ,,
2

1
ααψ geC +=  ��� 

After leaving the cavity, the atom is subjected again to a 
resonant microwave pulse in 2R  equal to that at 1R , mixing 
the atom energy levels and creating a “blurred” state for the 
composite, which preserves the quantum ambiguity of the field 
phase such that 

( ) ( )1010 2

1

2

1
2

ααααψ φ ++−= − gee i
R  ��� 

Finally, the excited level state of the Rb atom is observed and 
recorded by a detector D. 

In order to measure the decay of coherence left on the field 
mode state by the atom, a second atom of identical 
characteristics of that of the first one is put through the same 

path after a delay time dt . The reading of the state of the 
second atom at D uncovers the effects left by the first atom on 
the state of the field mode. 

A theoretical description of the experimental observations is 
provided by [23] in the form the following correlation signal: 

( ) ( )[ ]φη γφγ

2sin1cos
2

1
)(

2sin12 d
dt ten

d enet −−− −=
−

 ��� 

where 3.3=n  is the average number of photons in the field 
mode, RT/1=γ , and RT  is the photon lifetime. 
 

MODEL DESCRIPTION 

Atom-field Jaynes-Cummings Hamiltonian 

In the modeling of a field mode-atom system, it is common 
that the single mode of an electromagnetic field is assumed to 
be quantized and treated as a two-level-type harmonic 
oscillator fully represented in subspace F� , while the atom is 
treated as a two-level-type spin-½ particle fully represented in 
subspace A� ���	
���. This represents the simplest model in 
which light and matter can interact. 

The Hamiltonian on FA ��� ⊗= ��describing the total 
energy of the composite is the traditional Jaynes-Cummings 
Hamiltonian [30-32] (in the rotating-wave approximation) 

VHH += 0  �� 

where 

( ) ( )NIIH AfF
z

a ⊗+⊗= ωσω ��
2

1
0  (5) 

( )−+ ⊗+⊗Ω= σσ †
02

1
aaV �  (6) 

Here �  is the reduced Planck constant, zσ is the −z Pauli 
operator, +σ  and −σ  are the raising and lowering (“spin-
flip”) operators, †a  and a  are the creation and annihilation 
operators, and aaN †=  is the photon number operator. aω  is 
the transition frequency between the excited and ground energy 
levels of the atom, fω  is the cavity frequency, and 0Ω  the 
Rabi frequency which indicates the strength of the atom-field 
interaction. 

For the present model, values taken from [9] are used. The 
transition frequency between the excited and ground energy 
levels of the atom is GHz099.512/ =πωa , the Rabi 
frequency is kHz242/ =Ω π , and a detuning 

kHz702/ =πδ ( fa ωωδ −= ) is provided. 

IQT state evolution dynamics 

The generators of the motion for the isolated atom-field 
mode composite system is given by the set { }HIR ,=  with the 
identity operator I  expressed as FA III ⊗=  and the 
Hamiltonian operator by Eq. (4). The IQT equation of motion 
is [20] 

[ ] ��
�

�
��
�

�
⊗+⊗−−= FA

F
FA

A

DDH
i

dt

d
ρ

τ
ρ

τ
ρ

ρ 11
,

�
 (7) 

where the first term on the right-hand side describes the unitary 
Hamiltonian dynamics of the system and the second the non-
Hamiltonian dissipation dynamics. The operator 
[ ] HHH ρρρ −=,  is the commutator between the Hamiltonian 
and the density or state operator, ρρ FA Tr≡  and ρρ AF Tr≡  

�������	


���

�
��
�

�� �� �� �

��

�Bψ
1Rψ Cψ

2Rψ
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are the reduced state operators, and Aτ  and Fτ  are time 
functionals or scalars that are a particular characteristic of each 
subsystem. For the case presented, they are assumed to be 
constants. 

A correlation functional or entropy of entanglement function 
is [20] 

( ) ( ) ( )FFFAAAAF ρρρρρρρσ lnTrlnTrlnTr)( −−=  (8) 

It measures the coherence between the constituents of the 
system. The norm of the commutator operator ( [ ]ρ,HiC = ) is 

( )†Tr CCC =  (9) 

and is used as an indicator of how the off-diagonal elements of 
the matrix representing the state operator evolve towards zero. 
It can, thus, also be thought of as a measure of the evolution of 
the coherence of the constituents. 

The rate of change of the correlation functional given by Eq. 
(8) is expressed as 

( )
DAFHAF

AF

dt

d
σσ

ρσ
�� −=

)(  (10) 

where the first term on the right-hand side represents the 
contribution, which the Hamiltonian term of Eq. (7) makes to 
the rate of change of the correlation functional. The second 
term on the right-hand side represents the contribution of the 
dissipative term of Eq. (7). Based on the characteristics of Eq. 
(7), it is has been conjectured [20] that DAF |σ�  only destroys 
correlations between the constituents, namely, it should be 
nonnegative at all times. 

Important ingredients of the IQT model are the local 
observables given by the linear local operators 

( ) ( )[ ]H�IH FAF
A

⊗≡ Tr  (11a) 

( ) ( )[ ]HI�H FAA
F

⊗≡ Tr  (11b) 

which represent the local effective reduced Hamiltonians and 
can be interpreted as the “locally perceived energy” of the 
overall system by each constituent [16, 20], and the local 
observables given by the nonlinear local operators 

( ) ( )[ ]�B�IkS FAFB
A lnTr ⊗−≡  (12a) 

( ) ( )[ ]�BI�kS FAAB
F lnTr ⊗−≡  (12b) 

which represent the local effective reduced entropy operators 
and can be interpreted as the “locally perceived entropy” of the 
overall system by each constituent [16, 20]. 

The entropy of the overall isolated, composite, microscopic 
system is given by the von Neumann entropy relation [33] 

( )��kS B lnTr−=  (13) 

where Bk  is Boltzmann’s constant. 
For the IQT modeling, it is considered that 0=t ����������

���������������������������������������������������������������The 
initial state operator 

220 RR ψψρ =  ��� 

for the composite represents a pure (zero entropy) state. In 
order for the state operator to evolve in time according to Eq. 
(7), a slight perturbation in agreement with [34] is induced. A 
value of 95.0=λ  is used in the perturbation in order to start 
the evolution in a very close state to the original zero-entropy 
initial state ( 1=λ ) given by Eq. (14). Values for °= 1002φ
[9] and the probability of the atom to be on its excited level 
state 1P ≈e  are used. 

 
Figure 2. Evolution of the norm ||C|| of the commutator term. 

 
 

 
Figure 3. Entropy evolution corresponding to the composite system. 

 
 

 
Figure 4. Energy-entropy diagram depicting the evolution in state of 
the composite system. 
 

In the next section, the internal-relaxation time in the IQT 
equation of motion for each constituent is considered to be a 
real positive constant with values of 300== FA ττ  ms. This 
value is chosen because it is long enough to show well the 
various features of the state evolution in time of the composite 
system and its constituents. As seen below in the comparison 
with the experimental results of [9], a value of 0.26 ms is also 
used. 
 

RESULTS 

Figure 2 shows the norm of the commutator operator formed 
by the Hamiltonian and density operators, as given by Eq. (9). 
This shows how the off-diagonal elements in the overall 
density or state matrix are decaying with time as the system 
evolves towards a state of stable equilibrium. Thus, it is also an 
indicator on the degree to which the coherence between the 
constituents is being dissipated in time. As seen in the figure, 
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the steepest descent occurs at the beginning of the time 
evolution. This steep descent is in accord with the steepest-
entropy-ascent principle pictorially described in Figure 3 for 
the entropy evolution. Note that only the first part of the 
complete evolution in state of the composite system is depicted 
in Figures 2 and 3, i.e., that part from the initial perturbed state 

0A  in Figure 4 to state 1A  which occurs at 4105×=τt . Both 
states are non-equilibrium states quite far from that of stable 
equilibrium, i.e., state seA . The latter is estimated to occur at 
or after 6102.5 ×=τt based on the simulation actually 
completed, which was stopped at state 2A after an elapsed time 
of 5106×=τt (also a non-equilibrium state), since the state of 
the system at this point was evolving very slowly, i.e., 
asymptotically in a non-linear manner, towards seA  and the 
primary coherence and decoherence features of interest had 
already been captured. 

Figure 5a depicts the evolution of the local density operator 
for the electromagnetic field mode. When the atom is detected 
in its excited level state, the state of the electromagnetic field 
is projected into a state of maximum local coherence. 
Subsequently, this local coherence decays in a steep fashion 
according with the evolution of Eq. (7). Figure 5b shows the 
evolution of the local density operator for the Rb atom where 
revival and death of its local coherence is observed during the 
evolution but with ever smaller amplitudes until the local 
coherence dies out at stable equilibrium. 

Figure 6 shows the evolution of the rate of change of the 
contribution of the dissipation term of the equation of motion 
to the rate of change of the entropy correlation functional. Its 
value is non-negative always, showing that the dissipative term 
of the equation of motion does not create correlations between 
the constituents, but instead always destroys the correlations 
formed during the initial interaction between the constituents. 

 

 
(a) 

 
(b) 

Figure 5. Evolution of the reduced density operators for (a) the 
electromagnetic field mode and (b) the Rb atom. 

 
Figure 6. Rate of change 

DAFσ�  corresponding to the contribution of 
the dissipative term of Eq. (7) to the rate of change of the correlation 
functional or entropy of entanglement in Eq. (10). 

 
 

 
Figure 7. Comparison of the loss of coherence predicted by IQT 
(green) and by the correlation function of [23] (blue) with the CQED 
experimental results of the group at Paris [9] (red triangles). 
 
 

In Figure 7, the results of the present model are compared to 
experimental data reported in the literature by Haroche and co-
workers [9]. The red triangles correspond to average values of 
experimental measurements obtained from [9]. The blue line 
corresponds to the theoretical prediction made using the 
correlation functional given by Eq. (3) [23]. The initial point of 
the correlation has been moved in accord with [9] from a value 
of 0.5 to 0.18 on the vertical axis to take into account 
experimental imperfections. The detection of the atom in the 
excited level state projects the state of the field in a maximally 
coherent local state. Thus, C  can be used as a direct indicator 
of how the coherence of the electromagnetic field mode is 
being dissipated in time. The green line corresponds to C  
using a value of 26.0== FA ττ  ms for the internal-relaxation 
times of the constituents in the equation of motion. This is 
comparable to the characteristic time reported for the CQED 
experiment in [35]. As in the case of the correlation functional, 
the maximum value for C  is moved to 0.18 in the vertical 
axis. 

As can be seen in the figure, this decoherence indicator of 
IQT predicts the experimental data well, especially at the 
beginning and at the end of the decoherence evolution. A very 
slight deviation from the experimental values is observed with 
the fourth and fifth values but this is well within the error bars 
for the experiment indicated in the figure. Thus, this deviation 
may well correspond to normal imperfections in the 
experimental equipment such as the quality of reflexion of the 
mirrors, which allows a leak of photons from the cavity [25, 
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36]. Another factor may be that the value chosen for the 
internal-relaxation times Aτ  and Fτ do not completely take 
into account the physical characteristics of the constituents. For 
example, it may be that slightly differing values for each 
relaxation time are needed or that these times are instead 
functionals of the state operator as described in [15, 34]. Of 
course, this is still an open area of research. 
 

CONCLUSIONS 

In this paper, an approach based on the principle of steepest 
entropy ascent, which provides the basis for the non-linear IQT 
equation of motion, is applied to the case of a composite 
microscopic system consisting of an atom and an 
electromagnetic field mode, the simplest model in which 
matter and light can be examined. Results show how the 
coherence of the composite system is dissipated when the 
system evolves towards a state of stable equilibrium and how 
this affects the local coherence of each constituent. For the 
electromagnetic field mode, the local coherence decays from 
some maximum to zero. The loss of coherence of the 
electromagnetic field follows the same trend as for the 
composite system. For the atom, the coherence is zero at the 
beginning of the evolution. Subsequently, however, several 
revivals and deaths of the coherence for the atom are observed. 
Nevertheless, even the amplitudes of these revivals and deaths 
decay with time. 

Finally, the decoherence phenomenon predicted with the 
IQT model is compared to the experimental data of Haroche 
and co-workers [9]. The comparison shows that IQT prediction 
is in good agreement with the experiments and is, in fact, in 
much better agreement than that for the correlation function 
developed for this experiment in [23]. 
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EXTENDED ABSTRACT 

 

In equilibrium thermodynamics physically based equations of state, like the perturbed-chain statistical associating fluid theory [1] of state, 
have undergone great advancement during the past two decades. These theories based on Wertheim’s perturbation theory [2–5] focus on the 
different functional groups present in the molecule, but assume the molecules to be linear chains. It is often possible to describe branched 

molecule despite that assumption, but this description demands the adjustment of new pure component parameters. Moreover, for strongly 
branched molecules like hyper-branched polymers, these kinds of models are not able to describe vapour-liquid equilibria and liquid-liquid 
equilibria simultaneously [6], even though using a second order perturbation theory. The introduction of molecular architecture, however, does 
involve higher order perturbation theories. Local correlations between different segments have to be introduced and in this process unknown 
radial distribution functions occur that have to be approximated somehow [7].  

This difficulty can be overcome by assuming the molecules to live on a lattice, where local correlations can be introduced through a Mayer 
like [8] series expansion in the inverse coordination number z-1 and the reduced segmental nearest neighbour interaction energy ε/kBT. Freed and 
co-workers [e.g. 9] derived the Lattice Cluster Theory (LCT) in such a manner, with local correlations of up to four consecutive segments. This 
lattice free energy was made compressible by Dudowicz and Freed [10] by introducing holes into the lattice. However, the LCT in the multi-
component formulation is quite unwieldy due to its large equations. Also it is prone to numerical error due to heavy summations. This issue is 
usually addressed by breaking down the multi-component approach to a lower and specified number of compounds [e.g. 11–14]. However, in 
this contribution a way is shown to lower the complexity of the multi-component version without loosing any algebraic information, effectively 
reducing the number of contributions to the free energy from 102 in the original papers [10] to 26 in the new version. Moreover the theory is 
shown to depend only on the numbers of singly connected self avoiding walks of specific lengths on the graph representation of the respective 
molecule and no longer on some unconnected or crossing paths, which are usually employed in the equations. 

Using the new equations for the free energy of multi-component lattice trees, the mixing behaviour of some hypothetical compounds is 
calculated in order to assess the influence of architecture on the phase equilibrium of upper critical solution liquid-liquid behaviour. Moreover 
the vapour-liquid equilibrium of branched alkanes is predicted from the knowledge of the phase behaviour, their linear counterparts show. 
Mixtures of linear and linear alkanes are investigated and the prediction on the basis of simple mixing rules is compared to experimental data. 
Furthermore the phase behaviour of Boltorn H3200 in propane correlated with LCT shows the ability of the theory to simultaneously describe 
vapour-liquid, liquid-liquid and vapour-liquid-liquid behaviour of this hyper-branched polyester with alkane end-groups in propane. Together the 
theoretical investigations show that LCT in this new version is a highly versatile tool for the description and prediction of the thermodynamics 
involving branched and highly branched molecules. 
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ABSTRACT
The generalized Gibbs-Duhem equation is obtained for systems with long-range interactions in d spatial dimensions. We consider
that particles in the system interact through a slowly decaying pair potential of the form 1/rν with 0≤ ν≤ d. The local equation
of state is obtained by computing the local entropy per particle and using the condition of local thermodynamic equilibrium. This
local equation of state turns out to be that of an ideal gas. Integrating the relation satisfied by local thermodynamic variables
over the volume, the equation involving global magnitudes is derived. Thus, the Euler relation is found and we show that it is
modified by the addition of a term proportional to the total potential energy. This term is responsible for the modification of the
Gibbs-Duhem equation. We also point out a close relationship between the thermodynamics of long-range interacting systems
and the thermodynamics of small systems introduced by Hill.

INTRODUCTION

Long-range interacting systems have received considerable
attention in recent years due to their remarkable dynamical and
statistical behavior [1, 2]. Self-gravitating systems [3–7], two-
dimensional vortices [8], nuclear physics [9] and also toy mo-
dels such as the Hamiltonian mean field model [10] are ex-
amples of systems presenting such a behavior. These systems
are intrinsically non-additive and may have negative heat ca-
pacity in the microcanonical ensemble leading to ensemble in-
equivalence [1, 11, 12].

Systems with long-range interactions are characterized by
slowly-decaying pair potentials through which the constituent
parts of the system interact at large distances. When parti-
cles interact all with the same coupling, the absence of screen-
ing causes inhomogeneous configurations (except for the limit-
ing case of non-decaying interactions), in equilibrium or meta-
equilibrium, where the formalism of thermodynamics can be
applied. Unlike the case of short-range interacting systems,
where many features are well understood, there is a lack of com-
plete knowledge about the dynamical and statistical properties
of systems with long-range interactions.

To be more specific, a definition of what we mean by long-
range potentials can be formulated as follows: a potential that at
large distances decays as 1/rν is formally said to be long-range
if ν≤ d, where d is the dimension of the embedding space [1,2].
Below we will give an argument that justifies why this particular
range for the power of the decaying potential deserves special
attention. Thus, here we are concerned with the study of the
thermodynamics of d-dimensional systems with these power-
law interaction potentials (0 ≤ ν ≤ d) by using the mean field
approximation.

In the mean field approach it is implicitly assumed that the
number of particles is large enough so that the system can be
treated as a continuous medium and the description of the rele-
vant physical quantities is assumed to depend on the density (or
distribution function) in the one-particle phase space. Despite

the fact that correlations are ignored in the mean field approach,
this model offers a mathematical tool for a suitable treatment of
self-interactions in the system. It turns out to be very accurate in
the thermodynamic limit, except near the critical points where
the system undergoes a phase transition or collapses [9,13–16].
Although the validity of the mean field solutions strongly de-
pends on the control parameters used to specify the thermody-
namic state of the system, the functional form of any thermo-
dynamic potential in the mean field limit is the same in each
ensemble representation.

Quite remarkably, de Vega and Sánchez obtained the local
equation of state of the self-gravitating gas assuming local hy-
drostatic equilibrium [14]. This equation coincides with that of
an ideal gas. Additionally, the same local equation of state is
found using the condition of local hydrostatic equilibrium for a
system with arbitrary long-range interactions in the mean field
limit [17].

We will see that the local ideal gas equation of state of the
system can be obtained by computing the local entropy per par-
ticle and using the condition of local thermodynamic equilib-
rium [18]. Although the result is the same, this procedure is
conceptually different. The local entropy per particle (and also
other thermodynamic potentials) can be obtained from the vol-
ume of the phase space using the saddle point approximation
or, equivalently, using the one-particle distribution function ap-
proach. After volume integration of the relation satisfied by
local quantities, an equation involving global thermodynamic
quantities can be found. This is the Euler relation, which for
systems with the interaction potentials considered here, is mo-
dified by the addition of an extra term containing the total po-
tential energy. This reflects the fact that an extra degree of free-
dom, proportional to the potential energy, has to be considered
to formulate a thermodynamic description of systems with long-
range interactions. The formal structure of thermodynamic re-
lations for systems with long-range interactions is thus the same
as the corresponding one for small systems. It can be seen that
the total potential energy plays the role of the subdivision po-
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tential introduced by Hill [19] to treat small systems. Because
systems with long-range interactions may also be considered as
small, this connection can be seen as more than a formal map-
ping between mathematical relations.

LOCAL EQUATION OF STATE

Consider a d-dimensional system of N point-like particles
of mass m enclosed in a spherical container of volume V (and
radius R), which interact through a pair interaction potential that
at large distances behaves as

φi j = κ|qqqi−qqq j|−ν , (1)

where κ is a coupling constant, qqqi is the coordinate of particle
i, i = 1,2, . . . ,N, and 0 ≤ ν ≤ d. In d = 1 the container is a
0-sphere which is the pair of end-points of the line segment of
length 2R, in d = 2 the 1-sphere is formed by the points at the
boundary of a circumference of radius R, and so on. The Hamil-
tonian is given by HN = E0 +W , where E0 is the kinetic energy
and W = ∑

N
i> j φi j is the total potential energy.

In the microcanonical description, the state of the system is
characterized by a fixed value of the total energy E and the num-
ber of microstates in full 2d-dimensional phase space is given
by Σ(E) = (2πh̄)−dN (N!)−1 ∫

E>HN
dτ, where h̄ is the reduced

Planck’s constant and dτ is the volume element in phase space.
Thus, the microcanonical entropy reads S(E) = kB lnΣ(E),
where kB is Boltzmann’s constant. To compute the entropy in
the mean field limit, the volume of the system is divided in cells
and, after integrating over momentum, the configurational inte-
grals in Σ(E) become summations over all possible occupation
number distributions. In the limit N → ∞, the discrete occu-
pation number distributions become continuous fields and sum-
mations become a functional integration over the number den-
sity n(xxx), where now xxx represents the spatial components of a
single point in the one-particle configuration space. This func-
tional integration is solved with the saddle-point approximation
in such a way that the number density that maximizes the en-
tropy (hence defining the equilibrium configurations) is given
by [18]

n(xxx) = λ
−d
T exp

[
µ−Φ(xxx)

kBT

]
, (2)

where λT =
[
2πh̄2/(mkBT )

]1/2
is the thermal wavelength, µ is

the chemical potential and T is the temperature. Here we have
introduced the self-consistent potential Φ(xxx) which takes the
form

Φ(xxx) =
∫

n(xxx′)φ(xxx,xxx′)ddxxx′, (3)

where now φ(xxx,xxx′) = κ|xxx− xxx′|−ν describes the interaction be-
tween particles in the one-particle configuration space. Notice
that Φ(xxx) depends explicitly on ν and, therefore, so does the
density. As a result, the microcanonical mean field entropy be-
comes [18]

S = kB

∫
n(xxx)

[
− ln

(
n(xxx)λd

T

)
+

2+d
2

]
ddxxx. (4)

In addition, in terms of Φ(xxx) the total potential energy takes the
usual form

W =
1
2

∫
n(xxx)Φ(xxx)ddxxx, (5)

and the total energy reads

E =
dkBT

2

∫
n(xxx)ddxxx+

1
2

∫
n(xxx)Φ(xxx)ddxxx. (6)

The details of the above calculations can be found in [18],
where the used method is based on a previous work [13, 14]
concerning self-gravitating systems (ν = 1). This method and
the validity of the expressions for the thermodynamic quantities
that are obtained in the mean field approach rest on the assump-
tion that the interactions are long-ranged. In other words, it is
assumed that the main contribution to the interaction energy of
a particle is due to distant particles rather than to its immediate
neighbors. To see that this is fulfilled with 0 ≤ ν ≤ d, we now
come back to the argument that justifies the formal definition
of long-range potentials. We will follow [1]. Let us consider a
particle placed at the origin of the (d− 1)-dimensional sphere
of radius R. In order to estimate the energy ε of the particle
due to the interaction with the rest of particles in the bulk, let
us assume that particles are homogeneously distributed so that
n(xxx) = constant. We also assume that there is a short-distance
cutoff δ�R describing the scale where short-range interactions
have to be considered. Writing r = |xxx− xxx′| we have

ε =
∫ R

δ

ddr n
κ

rν
=

nκΩ(d)
Rd−ν−δd−ν

d−ν
, ν 6= d

nκΩ(d) ln(R/δ) , ν = d
, (7)

where Ω(d) = 2πd/2/Γ(d/2) is the solid angle factor, Γ(x) being
the Gamma function. On the one hand, we see that if 0≤ ν≤ d,
the integral is dominated by the contribution coming from its
upper limit and then by long-range interactions. The energy ε

grows as ε ∝ V σ if 0 ≤ ν < d (logarithmically in the marginal
case ν= d), where σ≡ 1−ν/d is the long-range parameter, and
hence the total energy scales as E ∝ V σ+1. On the other hand, if
ν > d the energy ε remains finite for δ/R� 1 and consequently
E ∝ V . This is the usual scaling of extensive systems where
interactions are short-ranged (ν > d). Therefore, the mean field
approach can suitably describe interactions in the system only
if they are long-ranged and the formulation considered here is
not valid for short-range potentials. It is worth noting that, in
general, the equilibrium or metaequilibrium configurations have
to be obtained by using numerical calculations due to the non-
trivial functional relation between the potential and the density.
For the case of self-gravity, the potential satisfies the Poisson-
Boltzmann equation. Therefore, thermodynamic quantities can
be expressed in closed form in terms of its solution. However,
this equation has to be solved numerically as well.

Local thermodynamic quantities can be defined taking into
account our ability to write the entropy and the energy as in-
tegrals over the volume. In view of (4), the local entropy
per particle is given by s(xxx) = kB

[
− ln

(
n(xxx)λd

T
)
+ 2+d

2

]
. This

is a Sackur-Tetrode-type entropy per particle written in terms
of local variables. In the same way, the local kinetic energy
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and local energy per particle take the form e0 = d
2 kBT and

e(xxx) = e0 +
1
2 Φ(xxx), respectively. Thus we have

S =
∫

n(xxx)s(xxx)ddxxx, (8)

E =
∫

n(xxx)e(xxx)ddxxx, (9)

E0 =
∫

n(xxx)e0 ddxxx. (10)

We also introduce the local volume per particle defined by
v(xxx) = 1/n(xxx), so that the local entropy can be written as
a function of the local kinetic energy and this local volume,
s = s(e0,v). From the condition of local thermodynamic equi-
librium we have [20, 21],

1
T

=

(
∂s
∂e0

)
v

and
p
T

=

(
∂s
∂v

)
e0

, (11)

which leads to the local equation of state [18]

p(xxx) = n(xxx)kBT. (12)

This implies that particles at a certain point xxx behave as an ideal
gas, but the pressure and density vary from point to point (ex-
cept in the limiting case of non-decaying interaction potential,
i.e. σ = 1). Since local interactions (short-ranged) are neglected
in comparison to the interaction with distant particles, this result
is physically consistent. Therefore, the system behaves locally
as a free gas under the action of an external field created by the
particles in the bulk. The same result can be found by consider-
ing local hydrostatic equilibrium [13, 14, 17]. This is achieved
by equating the gradient of pressure to the force density:

∇p(xxx) = n(xxx)∇Φ(xxx). (13)

In addition to the functional form of the local variables, we
can also write down an explicit relation among them. Taking
into account the expression for the local entropy and introducing
the ideal gas chemical potential µ0(xxx) = kBT ln

[
n(xxx)λd

T
]
, one

deduces

T s(xxx) = e0 + p(xxx)v(xxx)−µ0(xxx) . (14)

The same equation could have been deduced if as a starting
point one assumes that the system locally behaves as an ideal
gas. Since µ = µ0(xxx)+Φ(xxx), equation (14) can also be rewrit-
ten in the form

T s(xxx) = e(xxx)+ p(xxx)v(xxx)−µ+
1
2

Φ(xxx) . (15)

Notice the presence of the last term on the r.h.s. in the above
expression; it is due to the definition of the local energy e(xxx).
As we will see in the next section, such a term will give rise to
an extra term in the Euler relation and therefore, in the Gibbs-
Duhem equation.

An alternative way to address the local description of the
system is by considering the distribution function f (xxx, ppp) de-
fined in one-particle phase space, where ppp is the momentum
of a particle. The distribution function is normalized so that
N =

∫
f (xxx, ppp)ddxxxdd ppp. In order to obtain equilibrium or meta-

equilibrium configurations, using variational calculus one looks
for the distribution function which maximizes the Boltzmann
entropy S =−kB

∫
f (xxx, ppp) ln( f (xxx, ppp)/ fc)ddxxxdd ppp, where fc is a

constant fixing the origin of the entropy. Consequently, the dis-
tribution function that maximizes the entropy (at least locally)
turns out to be the Maxwell-Boltzmann distribution with the
self-consistent potential (3), and the number density is given
by (2). Besides, the constant fc is chosen so that the en-
tropy coincides with the one in the microcanonical description:
fc = e/(2πh̄)d .

Thus, any local magnitude per particle q(xxx) associated with
the global quantity Q can be defined according to

n(xxx)q(xxx)≡
∫

f (xxx, ppp)Q (xxx, ppp)dd ppp (16)

provided Q =
∫

f (xxx, ppp)Q (xxx, ppp)ddxxxdd ppp. For instance, in
the case of the Boltzmann entropy one takes Q (xxx, ppp) =
−kB ln( f (xxx, ppp)/ fc). After integrating over momentum using the
Maxwell-Boltzmann distribution, the resulting local entropy per
particle s(xxx) is the same as the one found in the microcanoni-
cal ensemble using the mean field approximation. Therefore,
the condition of local thermodynamic equilibrium leads to the
same local equation of state [18], equation (12).

GLOBAL THERMODYNAMIC RELATIONS

Once the relation between thermodynamic variables is esta-
blished at a local level, the corresponding relation between
global variables is obtained by integrating over the volume.
Concretely, we want to obtain the corresponding Euler relation
from which a generalization of the Gibbs-Duhem equation can
be deduced. In this way, multiplying both sides of (15) by n(xxx)
and integrating over the volume yields

T S = E +
2
d

E0−µN +W , (17)

where we have used that
∫

p(xxx)ddxxx = kBT
∫

n(xxx)ddxxx = 2
d E0.

We now introduce the pressure evaluated at the boundary of
the d-dimensional system, P ≡ p(xxx)|xxx ∈ boundary. To proceed
further, the pressure P has to be related to (17). This can be
done if the global equation of state is taken into account, which
can be computed by rescaling the energy in the microcanonical
density of states and using the usual thermodynamic relations
for the total entropy [13, 14, 18]. The rescaled energy reads
Λ ≡ ERν/

(
|κ|N2

)
[13, 16]. As a result, the global equation of

state takes the form

PV
NkBT

= 1+ν
W

dNkBT
. (18)

Therefore, with the help of (18), equation (17) can be rewritten
in such a way that

T S = E +PV −µN +σW, (19)
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which is the Euler relation for the systems discussed here.
Moreover, by differentiating (19) one gets

T dS = dE +PdV −µdN +σdW −Ndµ−SdT +V dP (20)

and since T dS = dE +PdV −µdN one obtains [18]

σdW = SdT −V dP+Ndµ , (21)

which is the generalized Gibbs-Duhem equation for long-range
interacting systems.

The marginal case ν = d corresponds to systems with long-
range parameter σ= 0. In such a case, the Euler relation and the
generalized Gibbs-Duhem equation reduce to the usual one in
the thermodynamics of short-range interactions. For σ 6= 0, the
temperature, chemical potential and pressure are independent
variables, so that W =W (T,P,µ). The thermodynamic relations
in terms of partial derivatives of W have been considered in [18]
and verified for the case of a self-gravitating gas (σ = 2/3) and
for a system with spatially uniform interactions (σ = 1).

In what follows we will see that the thermodynamic relations
satisfied by systems with long-range interactions can be mapped
to the corresponding relations satisfied by small systems intro-
duced by Hill [19]. Hill’s small systems bear this name be-
cause they are composed by a small (non-macroscopic) number
of particles. The systems we have considered above are macro-
scopic in the sense that the number of particles is assumed to
be infinite. However, the latter are small in the sense that the
range of the interactions is large compared to the size of the
system. Due to this finiteness, an extra degree of freedom has
to be considered to account for a complete thermodynamic de-
scription. This extra degree of freedom in long-range systems
is σW while for systems with small number of particles it is
incorporated through the subdivision potential E .

In the formalism introduced by Hill [19], an ensemble of
non-interacting small systems is considered. Thus, the subdi-
vision potential accounts for the energy gained by the system
when the number of members of the ensemble varies. For any
single small system one has

T S = E +PV −µN−E , (22)
T dS = dE +PdV −µdN , (23)
dE =−SdT +V dP−Ndµ . (24)

As it can be seen, these relations are exactly the same as those
we have obtained for systems with long-range interactions if the
identification E =−σW is made.

To conclude, it is important to stress here, as was mentioned
by Hill, that the use of different environmental variables, i.e.
control parameters, would lead to different descriptions of the
thermodynamic phenomena when small systems are consid-
ered [19]. The same occurs in long-range interacting systems
when different ensemble representations are not equivalent. We
have considered only the microcanonical ensemble, but the re-
sults apply also for the canonical and grand canonical ensem-
bles. This is because in the mean field approximation the ther-
modynamic potentials all have the same functional form in the
different ensembles [18]. However, the critical points where the
mean field approximation ceases to be valid are characteristic
of each ensemble.

DISCUSSION

By integration of the relation among the different local ther-
modynamic variables over the volume of the system, we find the
corresponding equation satisfied by the global variables. It is
shown that the potential energy enters as a thermodynamic vari-
able which modifies the global thermodynamic equations. That
is, the Euler relation is modified if the system possesses long-
range interactions and takes the form T S = E +PV −µN+σW .
As a result, we find a generalized Gibbs-Duhem equation which
relates the potential energy to the intensive variables: σdW =
SdT −V dP+Ndµ. For the marginal case where the power of
the decaying interaction potential is equal to the dimension of
the embedding space, the usual Gibbs-Duhem equation is re-
covered. Therefore, when long-range interactions are present in
the system, the intensive variables become independent due to
the freedom introduced by the potential energy. The potential
energy naturally depends on the intensive variables. We also
emphasize that this deviation from standard thermodynamics is
similar to what happens with Hill’s thermodynamics of small
systems.
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NOMENCLATURE

d Dimension of the embedding space
dτ Volume element in full phase space
e(xxx) Local energy per particle at point xxx
E Total energy
E Subdivision potential
e0 Local kinetic energy per particle
E0 Total kinetic energy
f (xxx, ppp) Distribution function in one-particle phase space
fc Constant in Boltzmann entropy = e/(2πh̄)d

h̄ Reduced Planck’s constant = 1.054571726(47) ×
10−34 Js

HN N-particle Hamiltonian
kB Boltzmann’s constant = 1.3806488(13)×10−23 JK−1

m Mass of a particle
n(xxx) Number density at point xxx
N Number of particles
ppp Momentum in one-particle phase space
p(xxx) Local pressure at point xxx
P Pressure at the boundary of the system
q(xxx) Generic local magnitude per particle
Q Generic global magnitude
Q (xxx, ppp) Generic magnitude in one-particle phase space
qqqi Coordinate of particle i
r Interparticle distance
R Radius of the spherical container
s(xxx) Local entropy per particle at point xxx
S Total entropy
T Temperature
v(xxx) Local volume per particle at point xxx
V Volume of the system
W Total potential energy
xxx Position in one-particle configuration space
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δ Short-distance cutoff
Γ(x) Gamma function of x
ε Energy of a particle at the center of the system
κ Generic coupling constant
Λ Rescaled energy
λT Thermal wavelength
µ Chemical potential
µ0(xxx) Ideal gas chemical potential at point xxx
ν Power of the decaying pair interaction potential
σ Long-range parameter = 1−ν/d
Σ(E) Number of microstates
φ(xxx,xxx′) Pair interaction potential between particles in one-

particle phase space
Φ(xxx) Potential at point xxx
φi j Pair interaction potential in full phase space
Ω(d) Solid angle factor for the (d−1)-sphere
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ABSTRACT
We study the motion of charged and neutral tracers, in an electrolyte embedded in a varying section channel. Making use of
systematic approximations, we map the convection diffusion equation governing the motion of tracers density in an effective 1D
equation describing the dynamic along the channel where its varying-section is encoded as an effective entropic potential. This
simplified approach allows us to characterize tracer diffusion in semi-confined environment by measuring its mean first passage
time (MFPT). We disentangle the MFPT dependence upon channel geometry, electrolyte properties and tracers charge even at
equilibrium. Such behavior can be exploited in different biological as well as synthetic situation whenever relevant phenomena
can be triggered by the presence pf few particles.

INTRODUCTION

The motion of charged tracers in an electrolyte has become a
matter of interest due to its implication in both biological situa-
tions as well in the development of micro- nano-fluidic devices.
In many cases tracers move in an electrolyte that is embedded
in a channel or in a porous media. Due to the interaction with
the electrolyte, the walls of the channel or the porous media ac-
cumulate net charge. Hence a net, screened, electrostatic field
develops inside the channel. This feature is at the basis of phe-
nomena such as electro-osmosis and it has been exploited for
micro- nano-pumping. The currents in these devices generally
relies on the control of some external force as hydrostatic or
electrostatic fields. Tuning the external forcing leads to the con-
trol of particle currents as it happens, e.g. in sodium-potassium
pumping in neurons.

An alternative route to current control relies on the geomet-
rical confinement provided by the channel itself. It has been
shown [1],[2] that the rectification provided by local variation in
channel section can strongly affect particle transport. Moreover,
the geometrically-induced current control is affected by the in-
homogeneous distribution of particles along the radial direc-
tion [1]. This is the case of neutral tracers under an external field
as gravity, or of charged tracers embedded in an electrolyte con-
fined in charged-wall channel. Recently different groups [3], [4]
have characterized the flow in varying-section channels when
the electrostatic field generated by the charge channel walls is
characterized by a screening (Debye) length,k−1, that is van-
ishing small compared to the channel half-amplitude,h(x).

However, the regime wherek−1 is comparable to the chan-
nel bottleneck leads to a competition between electrostatic driv-
ing and geometric confinement and can lead to new dynamic
scenarios where channel modulation plays a relevant role in
charged tracer transport. Such regime has already shown in-
teresting features as current inversion and negative mobility for
forced electrolytes [5].

In this piece of work we show that, even at equilibrium, a sig-

0 L/2 L

x

y

h0

h1

σ,ζ

Figure 1. Electrostatic field inside a varying-section channel whose

bottleneck amplitude h0−h1 is comparable with the Debye double layer

thickness k−1.

nature of the interplay between the local rectification provided
by the varying-section channel and the inhomogeneous distribu-
tion of charged tracers, provided by the transverse electrostatic
field, can be read out from the tracers mean first passage time
(MFPT) along the channel. Our results show a remarkable de-
pendence of the MFPT on particle charge as well as on chan-
nel corrugation. For positively charged channel walls, positive
(negative) tracers are depleted (attracted) towards the channel
walls and their MFPT is enlarged (reduced) respectively. We
expect such features to be relevant for several biological sit-
uations where channel walls are made by bilipidic membrane
while the cytoplasm or physiologic solution particles are trans-
ported is rich in salt. In the latter situation the MFPT is a key
quantity since cell fate might be determined by the recognition
of, low concentrated, receptors. On the other hand in synthetic
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situations such as nuclear waste containers or pattern forming
system, a charge-dependence of the MFPT can lead to enlarge-
ment of the half-life of the former as well to, transitory, pattern
formation/deformation for the latter.

To capture the main features of such an interplay between
the geometrically induced local rectification provided by the
varying-section channel and the electrostatic field we study a
z− z electrolyte embedded in a conducting channel (similar re-
sults have been obtained for an insulating channel). To keep an
analytical insight we assume a highly diluted ion concentration
and a smallζ potential on the channel walls, i.e.βeζ ≪ 1 where
β−1 = kbT is the inverse temperature (beingkB the Boltzmann
constant) ande the elementary charge. This choice keeps the
electrostatic field inside the channel in the linear regime hence
allowing for a Debye-Huckel approximation to the electrostat-
ics inside the channel. In order to gain insight in the properties
of the MFPT of charged tracers and the which are the most rel-
evant parameters determining their dynamic, we will assume
that the channel amplitude,h(x), varies slowly, i.e.∂xh(x) ≪ 1.
Such assumption allows for a projection of the 2D−3D convec-
tion diffusion equation to an effective 1Dequation, where the
varying-section of the channel will enter as an entropic effec-
tive potential.This approximation, called Fick-Jacobs, has been
used and validated in many different scenarios [6], [1], [7].

The structure of the text is the following: in section II we
will derive the Fick-Jacobs equation for charged tracers moving
in a varying-section channel, in section III we will present our
results while in section IV we will summarize our conclusions.

THEORETICAL FRAMEWORK: EQUILIBRIUM

The motion of suspension of charged particles is character-
ized by a convection-diffusion equation, that in the overdamped
regime, reads:

∂tP(x,y, t) = Dβ∇ · (P(x,y, t)∇U(x,y))+D∇2P(x,y, t) (1)

whereD is the diffusion coefficient andU(x,y) is the total con-
servative potential acting on the particles. When particles are
embedded in a confined region as is the case for tracers mov-
ing across a channel, the boundary condition of eq. 1 along
the channel longitudinal axis will vary according to its chan-
nel amplitude. If the channel section varies only along thex-
direction and it is constant inz, the free space accessible to the
center of mass of a point-like particle is 2h(x)Lz, beingh(x) the
half-width of the channel along they-direction andLz the width
along thez-direction. For such a situation, we encode the pres-
ence of the channel and the electrostatic potential in the overall
potentialU(x,y,z) defined as:

U(x,y,z) = U(x+L,y,z)
U(x,y,z) = ψ(x,y), |y| ≤ h(x)& |z| ≤ Lz/2 (2)

U(x,y,z) = ∞, |y| > h(x)or |z| > Lz/2

that is periodic along the longitudinal direction,x, and confines
the particles inside the channel.

In order to find the electrostatic potential,ψ(x,y), inside the
channel, we should solve the, 2D, Poisson equation:

∂2
xψ(x,y)+∂2

yψ(x,y) = −
ρq(x,y)

ε
(3)

0 L/2

E0,λ0

E,λ
σ,ζ

Figure 2. Debye double layer inside a varying-section channel. The

Debye length k−1
0 = λ0 is shown as well as the approximated Debye

length k−1 = λ.

with the boundary condition given by eq. 3, beingρq =
ρ0exp(−βzeψ(x,y)) the, equilibrium, charge density inside the
channel in the absence of tracers. Assuming smoothly-varying
channel walls,∂xh ≪ 1, we can take advantage of the lubrica-
tion approximation,∂2

xψ(x,y) ≪ ∂2
yψ(x,y). In this way we can

reduce eq. 3 to a 1Dequation for the potentialψ(x,y). Such
an approximation introduces an error in the electrostatic field
that can be estimated. In fact we know that, prior to our lubri-
cation approximation, the electrostatic field is perpendicular to
the channel wall. Hence, for varying-section channel, we should
count for the projection of the electrostatic field along the radial
direction as shown in fig. 2 when solving the Poisson equation.
For a smoothly-varying channel amplitude, the projected elec-
trostatic field reads:

E = E0cos(α) (4)

with α = arctan[∂xh(x)]. Due to the smoothness of the variation
of channel amplitude, we have∂xh(x) ≪ 1 hence leading to a
second order correction in∂xh(x) for the electrostatic field

E = E0

[

1−
1
2
(∂xh(x))2

]

. (5)

In the following we will neglect such correction assuming,
E = E0 along the channel. For low salt concentration in the
electrolyte and smallζ potential on channel walls, we can fur-
ther simplify eq. 3 by linearizing the charge densityρq(x,y) ≃
ρ0 (1−βzeψ(x,y)), hence getting:

ψ(x,y) = ζ
cosh(ky)

cosh(kh(x))
(6)

for a channelmade by conducting walls or

ψ(x,y) =
σ
2ε

cosh(ky)
sinh(kh(x))

(7)

for an insulating-walls channel characterized by a constant
surface-density of electric chargeσ, beingε the dielectric con-
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stant of the electrolyte. Such assumption, known as Debye-
Huckel approximation,allows to identify the screening length,
k−1

0 , of the electrostatic potential ask2
0 = βzeρ0/ε. The approx-

imation made for the electrostatic field reflects in the Debye
length. Fig. 2 shows the common origin of the corrections for
both the Debye length and the electrostatic field, provided by
the change in the channel section. Consistently with the choice
for the electrostatic field, we can assume constant Debye length,
k−1 = k−1

0 , along the channel by safely ignoring the second or-
der correction given by eq. 5.

Under the assumption of smoothly varying-section channels,
∂xh ≪ 1, we can approximate the radial profile of the proba-
bility distribution function (pdf),P(x,y, t), of a tracer of charge
q by its profile at equilibrium, i.e we can factorize the pdf by
assuming:

P(x,y,z, t) = p(x, t)
e−βqψ(x,y)

e−βA(x)

e−βA(x) =
Z Lz/2

−Lz/2

Z h(x)

−h(x)
e−βqψ(x,y)dydz. (8)

By integration overdy,dz we obtain:

ṗ(x, t) = ∂xD [βp(x, t)∂xA(x)+∂x p(x, t)] (9)

where we have assumed vanishing small tracers concentration
so not to perturb the equilibrium electrostatic potentialψ(x,y).
Eq. 9 encodes both the confining as well as the electrostatic
potential given by eq. 3 in the free energyA(x). Since all
the quantities of interest are independent ofz, without loss of

generality we can assume
R Lz/2
−Lz/2 dz = 1. Defining the average,

x−dependent, electrostatic energy as:

〈V (x)〉 = eβA(x)
Z h(x)

−h(x)
qψ(x,y)e−βqψ(x,y)dy (10)

from eq. 8 we can define the entropy along the channel as
T S(x) = 〈V (x)〉−A(x) hence getting:

S(x) = ln

[

Z h(x)

−h(x)
e−βqψ(x,y)dy

]

+β〈V (x)〉. (11)

In the linear regimeβqψ(x,y) ≪ 1; we can linearize eq. 11 get-
ting:

S(x) ≃ ln(2h(x))

where the entropy has a clear geometric interpretation, being the
logarithm of the space, 2h(x), accessible to the center of mass
of the tracer. Accordingly, we introduce the entropy barrier,∆S,
defined as:

∆S = ln

(

hmax

hmin

)

(12)

that representthedifference, in the entropic potential, evaluated
at the maximum,hmax, and minimum,hmin of channel aperture.
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βqζ = 3, (blue squares) or negative, βqζ = −3, (red dots) tracers in a

conducting channel characterized by ∆S = 2.2.

RESULTS

In the present work we analyze the motion of charged tracers
in a channel characterized by conducting walls (similar results
have been obtained for the case of insulating channel walls)
whose half section along they-direction is characterized by

h(x) = h0 +h1sin
2π
L

(x+φ) (13)

whereh0 is the, average channel section, andh1 is the, possi-
ble, modulation, while we assume the channel to be flat along
thez-direction. φ controls the channel shape with respect to its
boundaries fixed atx = 0 andx = L. According to eq. 13 we
havehmax = h0 +h1 andhmin = h0−h1.

In order to characterize the geometrically induced contri-
bution to the diffusion of charged tracers at equilibrium, we
choose to analyze the first passage time distribution. In par-
ticular we focus on the mean of such distribution, i.e. the mean
first passage time (MFPT) tracers take to pass through the chan-
nel. Such quantity has a twofold interest. On one hand, the
MFPT captures, even at equilibrium where electrostatic current
vanishes, the role played by the geometrically-induced poten-
tial. On the other hand, it is an interesting quantity for situations
like ion trapping or chemical segregation as happens in nuclear
waste containers. In the following we assume that one of the
ends of the channel, namely the one atx = 0, is in contact with
a reservoir of tracers and we are interested in the MFPT of pos-
itive negative or neutral tracers,t±,0(x), tracers take to diffuse
from x to the other end of channel situated atx = L. Such situ-
ation leads to a reflecting boundary condition on the end of the
channel in contact with the reservoir, i.e atx = 0, and to an ab-
sorbing condition on the other end, atx = L. Taking advantage
of the 1Dprojection, eq. 9, we can calculate thex-dependent
MFPT, t(x), which reads [8]:

βD∂xA(x)∂xt±,0(x)+D∂2
xt±,0(x) = −1 (14)

By numerically solving eq. 14 the MFPT of tracers crossing the
channel is given byT±,0 = t±,0(0). Fig. 3 shows the MFPTs
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Figure 4. A: MFPT, T , normalized by L2/D, as a function of the en-

tropic barrier ∆S for positive (blue squares), βqζ = 3, or negative (red

dots), βqζ = −3, tracers in a channel with khmin = 1. B: ratio of

the MFPTs (red circles), τ = T−/T+, and “current” (green squares),

i = 2L3

σD
|ρ+T−−ρ−T+|

T−T+
, with T± the MFPT of positive (negative) tracers

and σ the charge density on the channel walls as a function of the en-

tropic barrier ∆S for the same parameters as panel A.

for positive (blue squares) as well negative tracers (red dots)
across a varying-section channel normalized by the MFPT of
neutral tracers,T0, whose MFPT does not depend onk−1. When
the Debye lengthk−1 is comparable with the channel minimum
amplitude,hmin, negative tracers, attracted towards the positive
charged walls, benefit from the modulation induced by the cor-
rugation of the channel and their MFPT is smaller than the one
corresponding to neutral tracers. Positive tracers, depleted from
the channel walls, experience an enhanced electrostatic barrier
at the channel bottleneck that increases their MFPT. Interest-
ingly such a modulation in the MFPT for charged tracers van-
ishes forkhmin ≪ 1 as well as forkhmin ≫ 1, underlying the
relevance of the regime,khmin ∼ 1, under study.

The dependence of the MFPTs on the entropy barrier is
shown in fig. 4.A. While for vanishing values of∆S all trac-
ers show the same MFPT, a monotonous increase in the MFPT
for all tracers is registered upon increasing∆S. The increase
in the MFPT even for neutral tracers is of solely entropic ori-
gin. Hence fig. 4.A confirms the enhanced sensitivity of posi-
tive tracers with respect to negative ones upon variation of the
geometry of the channel. The relative behavior of positive with
respect to negative tracers can be useful for application as chem-
ical segregation or particle separation. The ratio of the MFPTs
for positive and negative tracers,τ = T+

T−
is shownin fig. 4.B.

For vanishing values of∆S, positive and negative tracers expe-
rience the same MFPT while for increasing∆S negative trac-
ers can be as faster as an order of magnitude leading to a ra-
tio of the order ofτ ∼ 10−1. The asymmetry in the MFPT
for positive and negative tracers suggest the onset of net cur-
rents as a response to fluctuations in tracers density. In the spirit
of linear response theory, we can define the adimensional cur-
rent i = 2L3

σD
|ρ+T−−ρ−T+|

T−T+
. Fig. 4.B shows that the asymmetry in

tracer motion leads to an effective current, suggesting that en-
tropic rectification can give rise to non-negligible electrostatic
currents with a non-monotonous dependence on channel corru-
gation. This indicates that one can exploit geometrical modula-
tion to tune electrostatic currents. This requires a more detailed
analysis.

CONCLUSIONS

The motion of charge tracers suspended in an electrolyte em-
bedded in a channel with charged walls is strongly affected by
the geometry of the channel. The geometrical confinement in-
troduces an effective potential due to the local bias induced by
the varying section of the channel. Such feature is captured
by neutral tracers whose MFPT is modulated by the channel
shape through the amplitude of the entropy barrier,∆S. The
dependence of the MFPT of charged tracers upon different pa-
rameters, such as the Debye lengthk−1 and the entropy barrier
∆S, allows for a particle-diffusion control mechanism relying
on the geometrical properties of the channel as well as on the
electrolyte properties encoded in the Debye lengthk−1. The
MFPT of charged tracers is very sensitive to tracers chargeq.
According to it, tracers are depleted or attracted to the chan-
nel walls hence experiencing different energetic barriers. Such
a dependence leads to an additional control parameter that can
be exploited to promote/reduce the crossing of the channel by
charged tracers as registered in extensive numerical simula-
tions [9].

The phenomenology we have just described has a twofold
interest. It shows that interesting behavior, such as particle cur-
rent inversion or negative mobility, observed when the system
is drive out of equilibrium [5] can be captured even studying the
properties of the system at equilibrium. By analyzing the MFPT
we have been able to show that when the Debye length matches
the channel bottleneck, i.e.khmin ∼ 1 novel effects can rise to
due the overlap between the geometrically induced local bias
in the diffusion and the geometrically modulated electrostatic
field inside the channel. Such an interplay leads to a non-trivial
behavior of the MFPT upon different parameters. On the other
hand in situations such as cellular signaling, gene regulation or
chemical segregation where many phenomena are triggered by
the capture of few molecules rather than on the steady state con-
centration, one is interested in the time a few tracers reach the
target rather than on the steady values. For such situations our
study shows that in the case in which particles have to diffuse
across an inhomogeneous (porous) media, such inhomogeneity
can lead to significant advances or delays of the typical trigger-
ing time.
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INTRODUCTION 

    Manipulation and generation of fluid flow at the micro-
nanoscale is usually achieved by micropumps exerting 
pressure on the fluid by means of moving solid boundaries, or 
by exerting forces directly onto the fluid, for instance by 
means of an external electric fields. Among the techniques 
belonging to the second category, electroosmotic micropumps 
constitutes a widespread and efficient methodology to drive 
flow, based on the draining effect of dissolved ions in liquids, 
subjected to an external dc field. We use a completely new 
method to pump fluid flow of polar molecules, that requires 
neither any form of intrusive mechanical device into the fluid, 
or any addition of solute carrier charges. The mechanism rests 
on the coupling of the spin angular momentum to linear 
translational motion of a highly confined polar fluid (water as 
one of the most important examples). We have shown that 
ignoring the coupling of spin angular momentum to linear 
translational motion of a highly confined fluid can lead to 
significant overestimation of the predicted flow rates using 
conventional Navier-Stokes treatments. By including spin-
coupling into the extended Navier-Stokes equations, 
hydrodynamic prediction is seen to be very accurate down to 
length scales of a few atomic diameters [1]. We also 
demonstrate how this knowledge, coupled with our knowledge 
of the different behaviour of dipolar liquids when confined 
between hydrophobic and hydrophilic solid surfaces, can be 
used to pump molecular fluids such as water via non-intrusive 
application of a rotating electric field [2,3]. By both 
theoretical modelling and nonequilibrium molecular dynamics 
(NEMD) simulations of such a system we show that a steady 
uni-directional flow can be generated at microwave frequency 
ranges using external rotating electric fields[4]. 
 
 
 

METHODS 
 
    We performed NEMD simulations of N = 270 water 
molecules confined between two planar surfaces, 
distinguishable for the different crystal structure and surface 
charge characteristics. A schematic of the system is reported 
in Fig (1), which represents an asymmetric channel. From a 
mathematical point of view, the asymmetric channel 
reproduce the different velocity boundary conditions near the 
interfaces. The hydrophilic wall implements a BCC (body-
centered-cubic) crystal structure, with the addition of small 
dipole charges (not visible) to enforce the no-slip velocity 
boundary condition at this interface. The hydrophobic wall 
particles are distributed in conformity with the FCC (face-
centered-structure) crystal structure, such that the density is 
larger than the hydrophilic wall. Further details on the 
construction of the channel surfaces are given in [4]. We 
emphasize at this point that the use of the asymmetric channel 
is a necessary condition for having a  net flow production 
along the channel. Fluid volumes confined between  two equal 
hydrophobic or two equal hydrophilic walls result in a zero 
net flow, as we will see in the next section.   

 
Fig. 1. System composed of two planar walls confining water 
molecules. The yellow wall represents a hydrophobic surface while 
the purple wall models the hydrophilic side.  
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ABSTRACT 
We present the first non-equilibrium molecular dynamics results for pumping of water at the nanoscale, utilizing a new, 
completely non intrusive approach. The flow production is sustained by means of a  body force acting on the polar molecules 
in the form of an external, spatially uniform rotating electric field. The theoretical background  relies upon the coupling of the 
spin angular momentum to linear streaming momentum, enhanced when the interaction of the permanent dipole moment of the 
molecules with the external field is significant. By further embedding the small fluid volume between two different planar 
surfaces, one hydrophobic and one hydrophilic, it is possible to generate unidirectional fluid flow. Concomitantly, by properly 
tuning the frequency and strength of the external field,  moderate fluid operational temperatures can be maintained, thereby 
revealing some exciting and potentially useful applications in the field of nanotechnology.  
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Liquid water is modeled with the SPC/E pair potential [5],  
with partial charges qH = 0.4238 e and qO = -0.8476 e for 
hydrogen and oxygen, respectively (e = 1.6x10-19 C is the 
fundamental unit of charge). Bonds and angles are constrained 
with the SHAKE algorithm [6]. Molecule interactions are 
modeled by means of the Lennard-Jones (LJ) pair potential, 
with the addition of the Coulomb term  for the charged 
particles, which reads 
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with the energy scale parameter ε = 0.65 Kj mol-1  and the 
length scale parameter σ = 0.32 nm. The sum extends over the 
total number of the molecules, noting that the indices i and j 
do not belong to the same molecule. The rij term represents the 
distance between the particles, i.e. the sites of different  water 
molecules and between water and wall particles. The Coulomb 
term, representative of the long range electrostatic 
interactions, is incorporated in the Wolf algorithm [7].  The 
simulation box sides are Lx  = 1.9 nm, Ly  = 4.5 nm and Lz = 1.9 
nm, and the vertical separation  between the two plates is 2.25 
nm (y-direction in Fig. (1)). This configuration yields the 
density of water  ρ = 998 Kg/m3. The x axis corresponds to the 
flow direction, i.e.  from the right to the left side of Fig. (1)  
and the z-axis is perpendicular to the other two. Both the x and 
z axes are treated as periodic. To avoid expensive and 
unnecessary force computations, the LJ interaction potential is 
truncated at the distance r = 1 nm.  
    The external rotating electric field, which acts on the sites 
of the water molecule, is spatially uniform ͢and time 
dependent, and can be represented with the vector  E =  
[cos(ωt), sin(ωt), 0], where ω is the angular frequency and t is 
the time.  The resulting electric field is polarized along the 
plane generated from the direction perpendicular to the two 
surfaces (x-axis, see Fig (1)) and parallel to the two plates, 
from the left to the right of the same figure (x-direction). The 
action of the electric field results in the torque exerted on the 
water permanent dipoles  
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with the sum ranging over the three sites of the SPC/E water, 

ir
r

 and CMr
r

 vector positions of the site i and the center of 

mass of the water molecule,  iq  and iE
r

 represent the charge 

attached to the site i and the electric field acting on the 
particle positions. The  torque injected into fluid constrains 
the dipole moments to align with the field. This alignment 
tendency competes with the disordering effect of the thermal 
energy but, with a proper choice of the amplitude and 
frequency of the field,  generates an average rotation of the 
dipoles along the z-direction, which in turn gives rise  to a net 
flow rate production (in the asymmetric channel).  

The leap-frog scheme  was used to integrate the Newtonian 
equations of motion for the fluid and wall particles [8], with 
the time step ∆t = 1.6 fs which yields a good stability of the 
integrator. Full details on the integrator implementation, in 
conjunction with the insertion of the external body force term 
in the algorithm are given in [4]. The work supplied by the 
external field on the fluid results in a thermal energy increase, 

due to the enhanced friction between molecules. The heating 
produced is removed with the Nosé-Hoover thermostat 
applied only to the wall particles [9-11]. To implement this 
technique, the wall atoms are forced to oscillate around their 
equilibrium positions, subjected to an elastic force whose 
strength is tuned to optimize the thermostat efficiency, 
maintaining at the same time the proper stability of the crystal 
wall structure. This approach has the merit to leave the 
rotational degree of freedom of the water molecules unaltered 
[12-15].  

At the beginning of the simulation, the system is allowed to 
equilibrate and typically relaxes in a configuration of 
minimum potential energy approximately after 500 ps. Then 
the field is turned on and after 5-6 ns  achieves steady state, 
which means that all the physical properties of interest, like 
velocity and temperature,  attain approximately constant 
values. Averages are accumulated in the next 7 ns 
implementing standard binning techniques [16], with 200 bins 
of width 0.02 nm. The aforementioned properties are plotted 
against the distance between the two surfaces (y-direction) and 
are evaluated from their microscopic definition. The streaming 
velocity profile  has been computed by means of 
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i.e. the momentum flux density 
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is divided by the mass density  
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where  i ranges over the molecule i, 
im   is the mass of a water 

molecule,  
ixv ,
 represents the velocity component of the i-th  

molecule in the direction parallel to the surfaces and 
ir
r

is the 

center of mass location of molecule i. The angle brackets in 
(3) stand for time averages, to be taken at the end of the 
simulation run. The response of the fluid system to the 
external field is further investigated averaging the molecular 
temperature profile (computed with the aforementioned 
binning technique)  
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with N the total number of water molecules, 
Bk the 

Boltzmann constant and  cmic ,
2r

 the square of the 
thermal velocity of the i-th water molecule center of 
mass. 
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RESULTS 

We plot in Fig. 2 the streaming velocity profile, computed 
from Eq. (3),  for the asymmetric channel depicted in Fig (1). 
The picture overlaps ten independent simulations, with the 
electric field amplitude kept fixed at 1.8 V/nm whereas the 
frequency ranges from 10 to 100 GHz, in steps of 10 GHz. 
The profile with the smallest slope, indicated in the picture 
with the x symbol, corresponds to the frequency of 10 GHz. 
Increasing the frequency from 20 GHz to 90 GHz, (see 
profiles drawn with solid lines in Fig. (2)), coincides with a 
monotonically increasing absolute value of the slope, which in 
turn means a larger value of the absolute streaming velocity 
next to the hydrophobic side. The case with the highest 
frequency, 100 GHz, depicted in Fig (2) with the asterisk 
symbol, gives an absolute streaming velocity adjacent to the 
hydrophobic side (right side of the picture) of approximately 
100 m/s. Note that for frequencies larger than 120 GHz, a 
value which corresponds to the inverse of the dipolar 
relaxation time of water,  the trend reverses and the absolute 
velocities decrease as the frequency increases (not shown)   

 

Fig. 2. Streaming velocity profile of water for the asymmetric 
channel. The hydrophilic wall is located on the left side and the 
hydrophobic wall on the right side. 

To clarify the dependence of the streaming velocity on the 
frequency of the external field, we plot in Fig. (3) the 
maximum (absolute) values of the velocities adjacent to the 
hydrophobic side, as plotted in Fig. (2). For the field 
frequency 10 GHz up to the final value 100 GHz, the absolute 
value of the streaming velocity increases. Moreover, we see 
that the trend is nonlinear and that at the highest frequencies 

the velocity begins to saturate at values close to 
xv = 100 m/s . 

This saturation point also  depends on the amplitude of the 
electric field. In  Fig. (4) we report the maximum (absolute) 
streaming velocity values, next to the hydrophobic wall, for 
the case of fixed field frequency  and varying amplitude. We 
investigate the amplitude range from 1 V/nm up  to 10 V/nm , 
at the same time  keeping the frequency fixed at 20 GHz.  
Again, we see an increase of the absolute streaming velocity 
as the amplitude intensifies from the strength value 0.8 V/nm.  
For amplitude values of the order of  3-4 V/nm the streaming 
velocities saturate again  

 
 

 

Fig. (3). Maximum (absolute) streaming velocity of water  for 
the asymmetric channel. The amplitude is fixed at 1.8 V/nm. 

 

 

Fig. 4. Maximum (absolute) streaming velocity of water  for the 
asymmetric channel. The field frequency is fixed at 20 GHz. 

towards the approximate value 110 m/s. The explanation of  
this tendency relies on Eq. (2), in which a larger amplitude of 
the electric field results in an increase of the torque injected 
into the fluid. Again, the velocities begin to saturate around 3 
V/nm, stabilizing approximately at 100 m/s.                                     
 The work performed by the external electric field on 
the fluid volume is partly converted in translational kinetic 
energy (due to the coupling between the spin angular 
momentum to linear streaming momentum momentum) and  
partly is dissipated in internal energy. In Fig. (5) we show the 
temperature profiles for the  same fluid system and external 
field parameters employed for the results of Fig. (2). The 
lowest temperature, depicted with the cross symbol, relates to 
the lowest frequency used, 10 GHz. Gradually increasing the 
frequency from 10 GHz to 90 GHz,  yields a corresponding 
monotonic increase of the temperature. As the frequency of 
the field increases, the friction between dipoles  is enhanced, 
due to the faster alignment  of the dipole moments. The 
frequency of  100 GHz, the largest used in this work, 
corresponds the maximum heating of the fluid system (the top 
profile).   
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      Fig. 5. Temperature profile of water for the asymmetric channel, 
corresponding to results reported in Fig. 2.   

 
      In Fig. (6) we plot the velocity profile with the field 1.8 

V/nm and frequency 20 GHz for the symmetric channel. In 
this case, both surfaces are modelled with equal hydrophilic 
surfaces. The net flow rate production, i.e. the integrated area 
under the curve with respect the y-coordinate, is zero, since 
the two portion of area situated in the two halves of the 
channel are equal in magnitude but opposite in sign.  

 
 

 
 

 Fig. 6.  Streaming velocity profile of water  for the symmetric 
system. Amplitude and frequency are 1.8 V/nm and 20 GHz.  

  
     Finally, we compare our molecular dynamics results with 

the extended Navier-Stokes equations (ENS), which take into 
consideration the coupling of the spin angular momentum to 
the linear momentum [17-19]. The equations read: 
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 We consider the asymmetric channel, with the amplitude set at 

1.8 V/nm and the frequency at 20 GHz and we solve only Eq. 

(7), with respect to the streaming velocity 
xv . Details on the 

streaming angular velocity solution 
zΩ are given in [4]. The 

velocity boundary conditions, i.e. the streaming velocity 
xv  

next to the two surfaces necessary to solve the second order 
partial differential equations, are 2.7 m/s for the hydrophilic 

wall and -45 m/s for the hydrophobic surface. 
eF is the 

external force, set to zero as the electric field is the only 

external force acting on the system. The quantities
zΓ  , 

0η   

rη  and  ς  represent  the torque per unit mass injected into the 

system,  the shear, vortex and spin viscosity, respectively. 
Note that the electric field enters the ENS by means of the 
torque term, as can be seen in Eq. (2). Specific considerations 
and technicalities are required for the selection of proper 
values for the torque term and for the fluid transport 
properties listed, detailed in [4] and references therein.   As 
can be seen in Fig. (7) the agreement between the ENS 
numerical solutions and the NEMD profile result is excellent. 

  
 

 
 

Fig. 7. NEMD streaming velocity profile of water (points) and 
numerical solution of the ENS (solid line) for the asymmetric 
channe.  

CONCLUSIONS 

    We have demonstrated via nonequilibrium molecular 
dynamics simulations that a significant water flow production 
is attainable at the nanoscale, only exploiting the coupling 
between the spin angular momentum and the linear 
translational momentum. Furthermore, we showed that if the 
external field frequencies and amplitudes are properly tuned, 
then the temperature of the fluid can be maintained at 
reasonable low values. Finally, a good agreement between the 
extended Navier-Stokes equations and the NEMD results has 
been found.  The non-intrusive characteristic of this  water 
pumping method renders it attractive to the experimentalist, 
and may open the road for useful applications in the field of 
nanofluidics.  

 

ACKNOWLEDGMENT 

Computation utilized the Swinburne Supercomputer Centre, 
the Victorian Partnership for Advanced Computing HPC 
Facility and Support Services and an award under the Merit 
Allocation Scheme on the NCI National Facility at the 
Australian National University.  

450



 

REFERENCES 

[1] J. S. Hansen, J. C. Dyre, P. J. Daivis, B. D. Todd, H. 
Bruus, Nanoflow hydrodynamics, Phys. Rev. E, 84, 
036311, 2011.  

[2] J. D. Bonthuis, D. Horinek, L. Bocquet, R. R. Netz, 

Electrohydraulic power conversion in planar 
nanochannels,  Phys. Rev. Lett., 103, 144503, 2009. 

[3] J. S. Hansen, H. Bruus, B. D. Todd, P. J. Daivis, 

Rotational and spin viscosities of water: Application to 
nanofluidic,  J. Chem. Phys., 133, 144906, 2010. 

[4] S. De Luca, B. D. Todd, J. S. Hansen, P. J. Daivis, 
Electropumping of water with rotating electric fields, J. 
Chem. Phys., 138, 154712,  2013. 

[5] H. J. C. Berendsen, J. R. Grigera, T. P. Straatsma, The 
missing term in effective pair potentials, J. Phys. Chem., 
91, 6269,  1987.  

[6] G. Ciccotti, M. Ferrario, J. P. Ryckaert, Molecular 
dynamics of rigid systems in cartesian coordinates: a 
general formulation, Mol. Phys. , 47, 1253,  1982. 

[7] D. Wolf, P. Keblinski, S. R. Phillpot, J. Eggebrecht, 
Exact method for the simulation of the Coulombic 
systems by spherically truncated, pairwise r-1  
summation,  J. Chem.  Phys. , 110, 8254,  1999. 

[8] D. Rapaport, The Art of Molecular Dynamics 
Simulation, 2nd ed.,  Cambridge University Press, New 
York, 2004.  

[9] S. Nosé, A unified formulation of the constant 
temperature molecular dynamics methods,  J. Chem. 
Phys.,  81, 511, 1984.  

[10] S. Nosé, A molecular dynamics method for simulations 
in the canonical ensemble,  Mol. Phys.,  52,  255, 1984.  

[11] W. G. Hoover, G. Canonical dynamics: Equilibrium 
phase-space distributions,  Phys. Rev. A,  31,  1695, 
1985.  

[12] S. Bernardi, B. D. Todd, D. J. Searles, Thermostating 
highly confined fluids, J. Chem. Phys., 132, 244706, 
2010. 

[13] K. P. Travis, P. J. Daivis, D. J. Evans, Computer-
simulation algorithms for molecules undergoing planar 
couette-flow - A nonequilibrium molecular-dynamics 
study, J. Chem. Phys., 103, 1109, 1995. 

[14] K. P. Travis, P. J. Daivis, D. J. Evans, Thermostats for 
molecular fluids undergoing shear flow: Application to 
liquid chlorine, J. Chem. Phys., 103, 10638, 1995. 

 [15] K. P. Travis, P. J. Daivis, D. J. Evans, Erratum: 
Thermostats for molecular fluids undergoing shear flow: 
Application to liquid chlorine, J. Chem. Phys., 105, 
3893, 1996. 

[16] M. P. Allen, D. J. Tildesley, Computer Simulation of 
Liquids, Clarendon Press, Oxford., 1987. 

[17] D. J. Evans, W. B. Streett, Transport properties of 
homonuclear diatomics II. Dense fluids, Mol. Phys., 36, 
161, 1978. 

[18] S. R. de Groot, P. Mazur, Non-Equilibrium     
Thermodynamics, Dover, Mineola, 1984. 

 [19] D. W. Condiff, J. S. Dahler, Fluid mechanical aspects of 
antisymmetric stress, Phys. Fluids, 7, 842, 1964. 

 
 

 

  

 

 

 

451



12th Joint European Thermodynamics Conference
Brescia, July 1-5, 2013

COMPUTING THE EXERGY OF SOLAR RADIATION FROM REAL RADIATION
DATA ON THE ITALIAN AREA

Manuela Neri*, Davide Luscietti, Mariagrazia Pilotelli

Department of Mechanical and Industrial Engineering, University of Brescia, via Branze, Brescia, Italy
*E-mail: m.neri001@studenti.unibs.it

ABSTRACT
The decrease of fossil fuels availability and the consequent increase of their price, has led to a rapidly evolution of renewable
market and policy frameworks in recent years. Renewable resources include solar radiation which is of considerable interest as it
is inexhaustible, free and clean. In order to calculate how much work can be obtained from solar radiation, several methods have
been proposed in the literature. The aim of this work has been to calculate the exergy content of solar radiation in Italy. To do
this, we have analyzed real radiation data and we have treated direct and diffuse radiation separately. We have proposed a single
exergy factor valid on the Italian area, which is to be applied to the total radiation measured on horizontal surface.

INTRODUCTION

Renewable resources include solar radiation which is of con-
siderable interest as it is inexhaustible, free and clean. Since it is
intermittent, diluted and not evenly distributed on the Earth sur-
face, systems that exploit solar energy are almost always cou-
pled with ones that use fossil fuels. This coupling set up the
so called hybrid systems which ensure consistent performance
over time. Solar radiation exploitation is divided into capture,
conversion into another kind of energy (for example electricity
or work) and storage. In this article only the passage through
the atmosphere is analyzed, with the aim to determine the ex-
ergy content of solar radiation. Governments encourage the de-
velopment of hybrid systems through incentives: their payment
is based on the fraction of the produced power that is allocated
to renewable resources, as explained in [1]. One aspect that still
causes uncertainty is the allocation of solar radiation energy,
more precisely the computing of solar radiation exergy content.
Exergy represents the maximum work obtainable from a sys-
tem or a process in a given environment. Unlike energy, exergy
is not conservative, and it gives information about the room for
improvement of a process. In the literature, various models have
been proposed for computing solar radiation exergy: the studies
began considering black-body radiation, then considering the
radiation spectral distribution, up to consider the radiation com-
ponents - direct and diffuse - separately. Also the assumption of
thermodynamic models representative of the phenomena in the
atmosphere to which solar radiation undergoes changed in the
course of scientific research. The aim of this article is to deter-
mine a reference value for computing solar radiation exergy in
Italy.

SOLAR RADIATION

Solar radiation is electromagnetic energy which propagates
in the space at light speed. It is concentrated in the range of
lower wavelengths (0.2µm≤ λ ≤3µm) with the maximum irra-
diance at 0.5 µm. The annual average radiation outside the ter-

Figure 1. Solar radiation scheme.

restrial atmosphere is estimated about 1376 W/m2. The annual
average radiation that reaches the Earth surface is considered
equal about to 1000 W/m2: this value refers to a collecting sur-
face perpendicular to the sun, in clear sky conditions and the sun
at the zenith. However the exact amount in a given place is sen-
sitive to atmospheric composition and to solar rays path: these
factors affect diffusion and absorption phenomena that occurs in
the atmosphere. Analyzing solar radiation that reaches the Earth
surface, it is necessary to distinguish its components, which are
sketched in Fig. 1. Let us consider a surface placed on the Earth
which receives solar radiation. The radiation received directly
from the sun is called direct radiation. The amount of scattered
radiation coming from all the directions is called diffuse radia-
tion. The ratio of radiation which reaches the surface after being
reflected from the ground is called albedo. The sum of all the
components incident on the surface is called total radiation.

THE SOLAR EXERGY ON THE EARTH

According to the first and second laws of thermodynamics,
energy can not be created or destroyed. However, a process can
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diminish the capacity of energy to perform work due to the gen-
eration of entropy by irreversibility. In order to take into account
this latter feature, exergy has been defined. Exergy represents
the maximum work that can be extracted from a system in a
given environment, that is carrying the system to its dead state.
The dead state is the condition in which the system is in mutual
equilibrium with the environment and so no more work can be
extracted from it.

In order to determine the solar radiation exergy on the Earth,
let us consider a cyclic machine placed on the terrestrial sur-
face, as represented in Fig. 2. The machine extracts the max-
imum work Wmax obtainable from the energy source Es (solar
energy) and it delivers heat Q0 to the environment at temper-
ature T0. The machine also emits the energy by radiation Ee.
The maximum work Wmax = Exs is the exergy of the solar en-
ergy Es. This scheme is quite general and it permits to obtain all
the three most famous expressions for the solar exergy. In the
scheme energies and entropies are per unit of time (indicated
by a dot over the respective symbol) and per unit of area of the
device represented by the cyclic machine: then the equations of
balance involve specific fluxes of energy and of entropy.

Without emission by radiation from the cyclic machine

In this case the energy balance Ės − Ėxs − Q̇0 = 0 and the
entropy balance Ṡs − (Q̇0/T0) = 0 lead to the expression for the
specific exergy flux

Ėxs = Ės −T0Ṡs (1)

Solar energy is transferred by heat interaction If it is con-
sidered that the solar energy is transferred by a heat interaction
at sun temperature Ts, Ṡs = Ės/Ts and it is obtained the specific
exergy flux

Ėxs = Ės(1−
T0

Ts
) (2)

and the efficiency

ηJ =
Ėxs

Ės
= 1− T0

Ts
(3)

This efficiency is always positive and lesser than the unity as
long as T0 < Ts. This formula was proposed by Jeter [2]. Zam-
firescu [3] adopted Eq. (3) but he introduced a lower tempera-
ture of the radiation on the terrestrial surface, in order to take
into account the atmospheric filter.

Solar energy is a radiation flux If the source is radiation,
some particularities should be taken into account: these regard
the difference between black-body radiation and diluted black
body radiation, more precisely the entropy transported by the
two kinds of radiation.

It is known that a black-body radiation flux transports the
specific energy flux

Ė = σT 4
s (4)

and the specific entropy flux

Ṡ =
4
3

σT 3
s (5)

where σ represents the Stefan-Boltzman constant, as reported
for example in [4, 5].

Figure 2. The cyclic machine.

Therefore, if the source is black-body radiation, specific en-
ergy and exergy fluxes are represented by Eq. (4) and Eq. (5)
and the specific exergy flux of Eq. (1) become

Ėxs = Ės

(
1− 4

3
T0

Ts

)
= σT 4

s

(
1− 4

3
T0

Ts

)
(6)

whereas the efficiency obtained is

ηS =
Ėxs

Ės
= 1− 4

3
T0

Ts
(7)

This formula was determined by Spanner [6].
Pons [7] used the expression Eq. (1) for computing the spe-

cific exergy flux of the solar radiation, but he used for Ės and Ṡs
the values measured on the Earth in some locations.

With emission by radiation from the cyclic machine

In this case the energy balance Ės − Ėxs − Q̇0 − Ėe = 0 and
the entropy balance Ṡs−(Q̇0/T0)− Ṡe = 0 lead to the expression
for the specific exergy flux

Ėxs = (Ės −T0Ṡs)− (Ėe −T0Ṡe) (8)

If the machine is considered a black-body at the same tem-
perature of the environment T0 , the second term in Eq. (8) be-
comes

(Ėe −T0Ṡe) =−1
3

σT 4
0 (9)

Solar energy is a radiation flux If the solar energy is a
black-body radiation flux at temperature Ts, the specific energy
and entropy fluxes are represented by Eq. (4) and Eq. (5) and
the specific exergy flux of Eq. (8) become

Ėxs = σT 4
s

(
1− 4

3
T0

Ts
+

1
3

T 4
0

T 4
s

)
(10)

whereas the efficiency obtained is

ηP =
Ėxs

Ės
= 1− 4

3
T0

Ts
+

1
3

T 4
0

T 4
s

(11)

This formula was proposed by Petela [8].
Eq. (3), Eq. (7) and Eq. (11) were far discussed by various

authors over the years, included Bejan [9] and Petela [5].
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THE SOLAR ENERGY: FROM THE SUN TO THE
EARTH SURFACE

Solar radiation undergoes to dissipation phenomena passing
through the atmosphere: terrestrial solar radiation has lower ir-
radiance than the extraterrestrial one.

The DBR model

Landsberg and Tonge [10, 11] took into account the losses
suffered by radiation in the atmosphere by means of the DBR
(diluted black-body radiation) model: they introducted a dilu-
tion factor ε, ranging between 0 and 1, independent of both the
direction and the wavelength. If the sun is considered a diluted
black-body, the specific energy and entropy fluxes are

Ės = εσ(Ts)
4 (12)

Ṡs = χ
4
3

εσ(Ts)
3 (13)

where the χ function is

χ =
45
4π4

1
ξ

∫
∞

0
y2[(1+nν)ln(1+nν)−nνln(nν)]dy (14)

where y = (νh)/(kTs) represents a dimensionless frequency and
nν is the mean occupation number of frequency ν.

For a more detailed analysis, it would be necessary to take
into account the radiation spectral distribution of the radiation
on the Earth surface, because the atmospheric absorption is not
equal on all frequencies. Chu and Liu [12] investigated on the
difference between extraterrestrial and terrestrial solar radiation
and on the difference between direct and diffuse solar radiation:
they do not used measured data, but a model for the spectrum
of the solar energy on the Earth surface.

Exergy of diffuse and direct beam according to Pons

As already mentioned in the introduction, the passage of so-
lar radiation through the atmosphere involves the splitting of
solar radiation into direct and diffuse beams. Since these two
components are subjected to different processes, in a deeper
analysis it is not possible to unify them into a single entity.

Pons [7] treated the two components separately using rep-
resentation illustrated by Eq. (6) and applying the correction
factor χ proposed by Landsberg and Tongue [10, 11] to the di-
rect and to the diffuse component separately. He analyzed real
data of direct Ėdr and diffuse Ėd f specific fluxes of solar radi-
ation relative to Saint-Pierre de la Reunion, Odeillo and Oua-
gadougou. In Odeillo data was measured with a time step of 1
second and averaged over 5 minutes, in Saint Pierre de la Re-
union data was measured with a time step of 6 seconds and av-
eraged over 5 minutes, while data for Ouagadougou was calcu-
lated every hour by means of a software. The data was measured
on a horizontal surface, and thus only the vertical component of
direct radiation was determined. For computing the ε factor, it
is necessary to divide the overall direct radiation on the Earth
surface (not only the vertical component) by the extraterrestrial
radiation. To calculate the direct radiation from its vertical com-
ponent, the measured value Edr was devided by the cosθ. θ is
the angle between direct radiation and vertical direction and it
depends on the latitude of the considered location and on the

time. The atmospheric attenuation factor for direct and diffuse
radiation was determined as follows

εdr =
Ėdr/[cosθωs]

σT 4
s /π

(15)

εd f =
Ėd f /π

σT 4
s /π

(16)

where ωs is the Sun solid angle, that is the solid angle occupied
by the direct radiation, while diffuse radiation occupies a solid
angle equal to 2π. Regarding the χ functions for the diffuse and
the direct radiation, Pons proposed the following functions

χdr(εdr) = (0.973−0.275lnεdr +0.0273εdr) (17)

χd f (εd f ) = (0.9659−0.2776lnεd f ) (18)

Then, the specific entropy fluxes Ṡdr and Ṡd f were determined
as follows

Ṡdr = χdr
4
3

Ėdr

Ts
(19)

Ṡd f = χd f
4
3

Ėd f

Ts
(20)

The specific exergy flux was determined applying Eq. (1) for
the two components

Ėxdr = Ėdr −T0Ṡdr (21)

Ėxd f = Ėd f −T0Ṡd f (22)

where T0 is the yearly air temperature average. The author [13]
stated that for exergy computing T0 has to be taken constant, in
order to guarantee that exergy can be conserved in a reversible
process. These formulas were integrated over a periodic time
equal to the day (from sunrise to sunset). As the solid angles of
direct and diffuse radiation are complementary, the total specific
exergy flux was calculated as ExS = Exdr +Exd f

SOLAR EXERGY FROM REAL SOLAR DATA ON THE
ITALIAN AREA

Referring to the cyclic machine in Fig. (2), it could represent
any sort of device that performs some useful effect by means
of solar radiation. The aim of this work is the evaluation of
the exergy of the solar radiation on the Italian area: this value
should represent the maximum obtainable work and it should
not be dependent on the device.

The device surface can absorb only a fraction of the short
wave-length radiation coming from the sun, depending on its
emissivity. Moreover, it can emit long wave-length radiation,
because its temperature is rather close to the environmental one.
The surface temperature and its emissivity are unknown and
some authors supposed that it behaves like a black-body at envi-
ronmental temperature T0. For example, this hypothesis permits
to obtain Eq. (10) and Eq. (11).

Since emissivity could assume different values on varying
of the wave-length of the radiation, we imagine an ideal sur-
face which absorbs all the solar radiation Ės and which does not
emit radiation Ėe. In this way it is possible to determine the
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Figure 3. Italian location analyzed : AG, AL, AN, AO, AP, AQ, BA, BL,
BN, BO, BR, BZ, CA, CB, CL, CO, CS, CZ, EN, FE, FG, FI, FO, FR, GR,
GE, GO, LI, MC, ME, MI, MN, NA, OR, PE, PG, PR, PT, PZ, RI, RM, RN,
SO, SP, TA, TO, TN, TP, TR, VA, VE, VI

exergy of the solar radiation independently from the device sur-
face. The characteristics of the device surface should be taken
into account in a subsequent step.

Then, we have utilized the expression for the specific exergy
flux of Eq. (1). For the calculation of Ės and Ṡs, we have fol-
lowed the approach proposed by Pons [7]: the direct and the
diffuse components have been considered separately by means
of the DBR model of Landsberg and Tonge [10, 11], and the χdr
and χd f functions have been calculated respectively by means
of Eq. (17) and Eq. (18).

For the solar energy Ės, we have started from the data re-
ported in the UNI EN 10349 standard [14]. The standard [14]
reports the monthly day average air temperature, the monthly
daily average of specific direct and diffuse solar radiation on
a horizontal surface Edrh and Ed f , for all the Italian provin-
cial capitals. We have chosen a subgroup of location shown
in Fig. 3, in order to cover all ranges of latitude, longitude and
altitude relative to Italy.

Data reported in the standard [14] are the average of ten years
of measurements: the influence of any daily weather condition
(for example cloudy sky) was spread on a large number of mea-
surements.

In order to apply the approach proposed by Pons [7] we
needed to spread the daily average monthly specific radiation
during the day. The diffuse radiation can be considered constant
during the day, but this is not possible for the direct radiation on
a horizontal surface. Therefore we have represented the specific
direct radiation on a horizontal surface by means of a sine fun-
cion, whose area below is equal to the daily average monthly

direct radiation. The sine function is the following

Ėdrh =

(
π

2
Edrh

hs

)
sin

(
t

π

hs

)
(23)

where hs represents the monthly average of the daylight dura-
tion in the considered location and t is the time interval from
sunrise up to the instant considered. We have determined the
specific direct radiation flux on horizontal surface every hour.

In order to calculate the dilution factors, we have determined
the specific direct radiation that reaches the Earth every hour
considering the angle θ between the direct radiation and the ver-
tical direction. For computing the angle θ, first we have calcu-
lated the solar declination δ for each month

δ = 0.40928sin
[

2π

(
284+n

365

)]
(24)

where n is the number of the considered day. δ is the angle be-
tween incident radiation and the equatorial plane at noon on the
considered meridian. Then we have calculated the hour angle h,
which is the angular distance between the sun and its position at
noon, along its apparent trajectory: h is zero at noon and varies
of π/12 per hour (positive values in the morning hours and neg-
ative in the afternoon hours). The angle α between direct radi-
ation and the horizontal surface, that is the complementary to θ

angle, has been calculated as follows

sinα = sinLsinδ+ cosLcosδcosh (25)

where L is the latitude of the given location. The angle α has
been calculated for each time instant and for each month. Direct
radiation Ėdr, that is the radiation that would be captured by a
sun tracking device, has been calculated as follows

Ėdr =
Ėdrh

cos(π/2−α)
(26)

Solar radiation reaches the Earth surface only for a certain
number of hours per day depending on the location and on the
day. We have calculated daylight length average hs for each
month. The dawn time ha and the sunset time ht were calculated
as follows:

ha =−ht = acos(− tanLtanδ) (27)

and the difference between ha and ht represents the daylight
length hs. From the monthly average air temperatures reported
in [14], we have calculated the yearly average air temperature
T0. For each location, we have considered the same temperature
in order to obtain comparable exergies.

As done by Pons [7], we have assumed the sun temperature
Ts equal to 5770 K, the sun solid angle ωs equal to 6.79 10−5 sr
and we have applied Eq. (15) - Eq. (22).

We have calculated the exergy factors of direct and diffuse
solar radiation

ηdr =
Exdr

Edrh
(28)

ηd f =
Exd f

Ed f
(29)

ηdr represents the ratio of the exergy of the direct radiation
and the vertical component of the direct radiation. ηd f repre-
sents the ratio of the exergy of the diffuse radiation and the dif-
fuse radiation. As can be seen in Fig. 4 and Fig. 5, ηdr ranges
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Figure 4. Exergy factor of direct solar radiation

Figure 5. Exergy factor of diffuse solar radiation

Figure 6. Exergy factor of total solar radiation

between 0.912 and 0.923, while ηd f ranges between 0.688 and
0.699. We have calculated the total exergy factor for each con-
sidered location as follows

ηtot =
Extot

Etoth
(30)

where Extot = Exdr +Exd f is the yearly solar radiation exergy
and Etoth = Edrh +Ed f is the yearly solar radiation that reaches
an horizontal surface. In Fig. 6, ηtot is shown and it ranges
between 0.820 and 0.864.

Fig. 7 shows the trend of total exergy factor as a function of
altitude (without distinction for latitude). The more the altitude,
the lower the thickness of the atmospheric layer that solar radia-
tion has to pass through for reaching the Earth surface (latitude

Figure 7. Total exergy factor as function of altitude

Figure 8. Total exergy factor as function of latitude

being equal). In Fig. 7 there is no any identifiable trend: latitude
does not affect the exergy factor predominantly.

Fig. 8 shows the trend of total exergy as function of latitude.
Increasing latitude increases the thickness of the atmospheric
layer that solar radiation has to pass through for reaching the
Earth surface. It is noted that with increasing latitude, the total
exergy factor decreases.

The exergy calculation involves the environment temperature
T0 as shown in Eq. (1) and, if the latitude incrases, the average
annual temperature T0 decreases: for example, in Messina (lati-
tude 38◦11’) T0 is equal to 291.55 K, while in Belluno (latitude
46 ◦08’) T0 is equal to 282.96 K. Fig. 9 shows the total exergy
factor as function of the yearly air temperature average. Increas-
ing T0, total exergy factor increases. This is probably due to
the fact that in locations with high temperature the radiation is
stronger. This indicates that solar radiation exergy is more af-
fected by the quantity of solar radiation than by the environment
temperature.

Fig. 10 shows that increasing the ratio between direct and
diffuse solar radiation, the total exergy factors increases.

We have also applied our procedure on the three location ana-
lyzed by Pons [7] (Ouagadougou, Odeillo and Saint Pierre de la
Reunion), using direct and diffuse solar radiations on horizontal
surface calculated by means of a software. We have calculated
the ratio Exdr/Etoth and ηtot = Extot/Etoth: Tab. 1 shows that
we have found different, but comparable data.

It is also interesting to see the trend of the total exergy factor
as function of the ratio of specific vertical direct radiation and
specific diffuse radiation. In Fig. 10 it can be noted that increas-
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Figure 9. Total exergy factor as function of yearly air temperature aver-
age

Table 1. Total exergy factor: comparison between data calculated by
Pons and data that we calculated

Figure 10. Total exergy factors as function of the ratio between direct
and diffuse radiation

ing the percentage of this ratio the total exergy factor increases.
This trend is also followed by the three locations analyzed by
Pons [7].

At the end, as ηtot values are very similar for all the Italian
locations, it was decided to determine a single value ηIT valid
for Italy, by means of which to determine the solar radiation
exergy. This factor has been determined as average of the values
obtained for the analyzed locations and it is

ηIT = 0.839 (31)

In this way, it is possible to calculate solar radiation exergy
multiplying this factor for the total solar radiation measured in
an Italian location.

CONCLUSIONS

The aim of this work has been the evaluation of the exergy of
the solar radiation on the Italian area: this value should repre-
sent the maximum obtainable work and it should not be depen-
dent on the characteristics of the device surface. Then we have
imagined an ideal surface which absorbs all the solar radiation
Ės and which does not emit radiation Ėe. Following the analy-
sis proposed by Pons, we have analyzed real radiation data and
we have treated direct and diffuse radiation separately. We have
proposed a single exergy factor valid on the Italian area, which
is to be applied to the total radiation measured on horizontal
surface.
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ABSTRACT
Efficiency of hydrogen fuel cells is analyzed using a non-equilibrium theory of mixtures based on classical irreversible ther-
modynamics. The efficiency is expressed in terms of processes taking place inside the fuel cells revealing which processes are
responsible for efficiency losses. This provides a new method of optimization. It is shown that efficiency losses are not only
given by entropy production rate but also by some additional terms, which become important if steep gradients of temperature
are present. Consequently, we compare the new theory with the standard entropy production minimization approach. Finally, we
discuss effects of the additional terms in polymer electrolyte membrane fuel cells and in solid oxide fuel cells showing that the
new theory gives the same results as the standard theory in the former case while it becomes important in the latter case.

1 INTRODUCTION

In this work we present a method of evaluation of fuel cell
efficiency which is alternative to the approach of entropy pro-
duction rate minimization based on the Gouy-Stodola theorem,
see Refs. [4, 13, 34, 19]. The method has already been pub-
lished in Ref. [28], and it is, from a point of view, more suitable
for fuel cells than the standard approach, see section 4.

Our analysis is formulated within classical irreversible ther-
modynamics (CIT), which is very well presented for example in
Refs. [29, 10, 24, 17, 18]. CIT has already proven very useful
in fuel cell modelling. For example, Kjelstrup and Røsjorde de-
veloped in article [20] a comprehensive non-isothermal model
of polymer electrolyte membrane fuel cells (PEMFC) based on
CIT, where even coupling effects between heat flux and dif-
fusion fluxes were taken into account. Sciacovelli used the
method of entropy production rate minimization to optimize a
solid oxide fuel cell (SOFC), see Refs. [31, 32].

2 CLASSICAL IRREVERSIBLE THERMODYNAMICS

The analysis of efficiency is formulated within the frame-
work of CIT. Since the system we consider is composed of
multiple species, it is necessary to use a theory of mixtures.
Many theories of mixtures have been published so far, see Refs.
[10, 35, 26, 36, 6, 8, 15, 7, 25, 21, 16, 17, 28]. We chose the
theory presented by Jou et al. in chapter 1 of book [17] in the
form introduced in paper [28]. We also have to mention that
the theory is quite limited since it can be rigorously justified
only for a mixture of fluids in local thermodynamic equilibrium
while various parts of fuel cells are usually porous media. How-
ever, Lebon et al. in article [23] and del Rı́o et al. in article
[11] showed that porous media can be described by means of
Extended Irreversible Thermodynamics (EIT), see Ref. [17],

which can be seen as a direct extension of CIT. Therefore, we
take the theory of mixtures formulated within CIT as the first ap-
proximation of a more complex model formulated within EIT.
However, probably the most promising approach is the frame-
work of GENERIC, see Refs. [12, 14, 27], since it is capable
to take into account the complexity of multi-level description
necessary in modeling mixtures containing polymers, see for
example Ref. [1]. Let us now turn to the theory of mixtures
itself.

Balance of mass can be formulated as

∂ρα

∂t
=−div(ραvα)+ ρ̂α, ∑

α

ρ̂α = 0 (1)

where ρα, vα and ρ̂α are density, velocity and production of
species α, respectively. Mass fractions are denoted by wα = ρα

ρ

where ρ is the total density ρ = ∑α ρα. Diffusive velocity and
diffusive flux of the species are defined as

vDα = vα−v, jDα = ραvDα (2)

respectively where v stands for the center of mass or barycentric
velocity v = ∑α vαwα.

Balance of linear momentum of species α can be formulated
as

∂ραvα

∂t
=−div(ραvα⊗vα)+divtT

α +ραFα + p̂α (3)

where tα, Fα and p̂α stand for partial Cauchy stress tensor of
species α, external force exerted on species α and internal trans-
fer of momentum from other species, also called momentum
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production rate, respectively. Since no momentum is created by
interactions between species, we have ∑α p̂α = 0. We suppose
that external forces are potential, i.e. Fα = −∇ϕα. The total
Cauchy stress tensor and the total force are defined as

t = ∑
α

tα−∑
α

ραvDα⊗vDα, F = ∑
α

wαFα (4)

respectively. Partial Cauchy stress tensors are assumed to be
symmetric, i.e. tT

α = tα. Dissipative part of the Cauchy stress
tensor is defined as tdis = t+ pI where p is pressure.

Balance of total energy can be formulated as

∂

∂t ∑
α

ρα

(
v2

α

2
+ εα +ϕα

)
=

−div
(

∑
α

ραvα

(
v2

α

2
+ εα +ϕα

))
−

−div
(

jq−∑
α

tT
α ·vα)

)
+∑

α

ρα

∂ϕα

∂t
(5)

where εα is internal energy of species α in the frame of refer-
ence of the species itself. The last term in the latter equation
represents the change of energy of the material point caused by
variation of external force fields. Flux of total energy is then

jen = jq +∑
α

ραvα ·
((

1
2

v2
α + εα +ϕα

)
I− tα

ρα

)
(6)

Internal energy is defined as

ρu = ∑
α

ραεα−
1
2

ρv2−∑
α

ραϕα (7)

and it’s balance equation can be obtained straightforwardly
from the previous balance equations, see Ref. [28] for details.

Gibbs relation can be expressed as

Ds
Dt

=
1
T

Du
Dt

+
p
T

D
Dt

1
ρ
−∑

α

µα

T
Dwα

Dt
(8)

where temperature, pressure and chemical potentials were iden-
tified as the corresponding derivatives of local equilibrium en-
tropy.

Combining Eq. (8), balance of internal energy and some
equilibrium thermodynamic relations following from the as-
sumption of local thermodynamic equilibrium, see Ref. [28]
for details, we arrive at the balance of entropy

∂ρs
∂t

=−divjs,tot +σs (9)

where entropy flux and entropy production rate are

js,tot = ρsv+ js (10)

js =
jq

T
+∑

α

jDαsα−
1
T ∑

α

(tT
α + pvαραI) ·vDα (11)

σs = −
1
T

js ·∇T −∑
α

1
T

jDα ·∇µ̃α +

+
1
T

tdis : d+∑
r

1
T

ξ̇rÃr (12)

C
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D
L
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C
C
L
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A
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membrane

A

e− system

Figure 1. A scheme of a PEM fuel cell for better understanding of the
acronyms.

where µ̃α and Ãr are electrochemical potential of species α and
electrochemical affinity of reaction r, respectively, defined as

µ̃α = µα +ϕα Ãr =−∑
α

ναrµ̃α (13)

where ναr is the stoichiometric coefficient of species α in reac-
tion r. ξ̇r in Eq. (12) is the rate of reaction r. The second law of
thermodynamics is expressed as

σs ≥ 0 (14)

For a mixture of ideal gases subject to external forces and for
a single-species non-viscous continuum the total flux of energy
(6) can be simplified to

jen = jq +∑
α

ραvα

(
1
2

v2
α +hα +ϕα

)
(15)

where hα is partial specific enthalpy1. Moreover, for such mix-
tures entropy flux (11) simplifies to

js =
jq

T
+∑

α

jDαsα (16)

From the assumption of local thermodynamic equilibrium it
follows that

hα =

(
∂H
∂mα

)
T,p,mβ6=α

= uα + pvα = T sα +µα (17)

3 EFFICIENCY OF FUEL CELLS

For clarity of terminology the thermodynamic analysis is for-
mulated for PEMFC. The results, however, hold also for other
kinds of fuel cells, e.g. SOFC. In figure 1 we show a scheme
of a PEM fuel cell. The fuel cell is composed of the follow-
ing parts: anode gas diffusion layer (AGDL), through which

1Of course, in case of single-species continuum the summation is not
present.
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hydrogen and water flow, cathode gas diffusion layer (CGDL),
through which oxygen and water flow, an anode, where hydro-
gen splits into protons and electrons, a cathode, where oxygen
reacts with protons and electrons forming water, and a mem-
brane, through which protons are transported from the anode to
the cathode. Hereafter, these parts together, represented by the
area enclosed in the dashed frame in figure 1, are referred to as
the system. The system is denoted by V and it’s boundary by
∂V . We assume that the fuel cell is in a stationary state.

In order to evaluate efficiency of the fuel cell, fluxes of en-
ergy and entropy into and out of the system are analyzed. En-
ergy and entropy flow into and out of the system through AGDL,
CGDL, through the conductive part of the anode (CA) from
which electrons leave the system and through the conductive
part of the cathode (CC) where electrons re-enter the system.

Fluxes of enthalpy, Gibbs energy and conductive heat into
the system are defined as

∆H = −
∫

∂V
∑

α6=e−
hαραvα ·dS (18)

∆G = −
∫

∂V
∑

α6=e−
µαραvα ·dS (19)

∆Q = −
∫

∂V
jq ·dS (20)

respectively. The fluxes are positive when flowing into the sys-
tem. Note that electrons are excluded from the fluxes. They are
analyzed separately since they are closely related to electrical
work.

Electrical work extracted from the fuel cell ∆Wel is the flux of
total energy carried by electrons through boundary of the sys-
tem, i.e. through AC and CC. Therefore, from Eqs. (15) and
(17) it follows2 that the electrical work can be expressed as

∆Wel =
I
F

Me−(µ
a
e− −µc

e−)+ I(Φc−Φ
a)+

+
I
F
(T asa

e− −T csc
e−) (21)

where I denotes the total electric current flowing from the cath-
ode to the anode. Obviously, the first two terms on the right
hand side of the latter equation represent the standard electrical
work. The last term is related to thermoelectric power caused
by possibly different temperatures at AC and CC. However, it
was shown in Ref. [28] that the term is usually quite negligible.

Stationary balance of total energy3 gives

0 =
∫

∂V
jen ·dS (22)

Using definitions (18), (20) and (21) and expression for energy
flux in Eq. (15), we obtain

∆Wel = ∆Q+∆H (23)

which is a well known formula, used for example in Ref. [3].

2We assume that electrons can be described with the electron gas approxi-
mation, see §57 in book [22].

3We neglect kinetic energy since it is negligible compared to other kinds of
energy flowing into the system.

In the stationary state local balance of entropy (9) gives

divjs,tot = σs (24)

Flux of entropy can be generally expressed, according to Eq.
(11), as

js =
1
T

jq +∑
α

sαjDα + j′s (25)

where j′s disappears at ∂V in our case. Therefore, Eq. (16) de-
scribes entropy flux at the boundary. Hence, we get for the flux
of heat into the system

∆Q =
∫

∂V

(
−T js,tot +T ∑

α

ραvαsα

)
·dS

= ∆G−∆H +
∫

∂V
−T js,tot ·dS+

+
I
F
(T asa

e− −T csc
e−) (26)

where Eq. (17) was used. From the stationary balance of en-
tropy (24) we get

∫
∂V
−T js,tot ·dS = −

∫
V

div(T js,tot)dV =

=
∫

V
−js,tot ·∇T dV −Π (27)

where dissipation in the system was introduced as

Π =
∫

V
T σsdV (28)

Using relations (23), (26) and (27), we obtain the final for-
mula for electrical work

∆Wel = ∆G−Π+
I
F

Me−(T
asa

e− −T csc
e−)−

−
∫

V
js,tot ·∇T dV (29)

The first term on the right hand side of the latter equation ex-
presses that electrical work is produced from flux of Gibbs en-
ergy into the system. The second term expresses that entropy
production rate inevitably lowers the electrical work produced.
The next to last term shows a direct contribution of thermoelec-
tric effects and the last term contains dissipation due to temper-
ature gradient, see the formula for entropy production rate (12),

∫
V
−js ·∇T dV (30)

Therefore, this part of entropy production rate does not reduce
the produced electrical work since it cancels with the same term
in the dissipation term.

Efficiency of fuel cells is defined as, see for example Ref.
[3],

η =
∆Wel

∆H
(31)
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Therefore, using the formula for electrical work (29), we obtain

η =
∆G
∆H

∆Wel

∆G
=

= ηc

(
1− Π

∆G

)
− ηc

∆G
(T csc

e− −T asa
e−)

I
F

− ηc

∆G

∫
V

js,tot ·∇T dV = (32)

= ηc

(
1−ηe− −

1
∆G

∫
V

(
ρsv ·∇T−

−∑
α

jDα ·∇µ̃α + tdis : d+ +∑
r

ξ̇rÃr

)
dV

)
(33)

where the conversion efficiency and change of efficiency due to
entropy of electrons were defined as

ηc =
∆G
∆H

, ηe− =
(T asa

e− −T csc
e−)

I
F

∆G
(34)

respectively.
Conversion efficiency ηc can be calculated from definitions

(19) and (18) using thermodynamic tables, see for example
book [33]. It can be approximated as 80% at 80◦C and stan-
dard pressure as shown in Barbir’s book [3]. The last three
terms in Eq. (32) are not standard and they are referred to as
the new terms later in this work. Their effects on efficiency are
discussed in section 5.

The second law of thermodynamics, see Eq. (14), dictates
that Π≥ 0. Therefore, dissipation inevitably reduces efficiency
of fuel cells.

4 COMPARISON OF THE STANDARD AND THE PRO-
POSED THEORY

The standard theory is based on the Gouy-Stodola theorem
as has been already said in the introduction. The purpose of this
section is to clarify the possible advantages of the new theory.

What does optimization of fuel cells mean, in fact? Recall-
ing the definition of efficiency (31), the optimization is a way of
maximization of the electrical work obtained from conversion
of the fuel to the exhausts, i.e. in hydrogen fuel cells from com-
bustion of hydrogen. From the thermodynamic point of view,
the conversion can characterized by ∆H and ∆G. Therefore, the
optimization means maximizing the gained electrical work for
given ∆H and ∆G or, recalling Eq. (32), maximizing η keeping
∆H and ∆G constant.

Let us now have a closer look at formula (32). Obviously,
entropy production rate reduces the efficiency since if it were
zero everywhere in the system, the dissipation term, which is
always non-negative, would disappear. This is a common point
of both the standard and the new theory.

However, as has been said above the optimization means
maximizing η while keeping ∆G and ηc constant4. If we set
the dissipation to zero, there is still the last term in (32), which
affects the efficiency. Hence, the efficiency could be further en-
hanced by optimization of this term. Moreover, the same holds
for the next to last term in Eq. (32) as well but since it is negli-
gible, we do not take it into account.

4Recall that ηc is a function of ∆G and ∆H, see Eq. (34).

Hence, from Eq. (33) it follows that if we neglect the ηe−

term and the term with barycentric velocity, we should mini-
mize the functional

∫
V
−∑

α

jDα ·∇µ̃α + tdis : d+∑
r

ξ̇rÃrdV (35)

rather than entropy production rate itself.
Of course, this functional should be understood as the first

approximation of a more precise expression since we are re-
stricted to the area of validity of CIT and the theory of mix-
tures formulated within. More microscopic levels of description
should be, therefore, taken into account to obtain more accu-
rate results for the efficiency. Hence, optimization of fuel cells
is an area where a more precise framework, for example the
GENERIC framework in Ref. [1], is needed.

5 POSSIBLE ENHANCEMENTS OF EFFICIENCY

In this section we analyze influence of the new terms on
efficiency of PEMFC and SOFC. To avoid repetition we only
summarize results of a previous analysis provided in Ref. [28],
where details can be found. Estimates of effects of the new
terms in Eq. (32) on efficiency of fuel cells are based on the ther-
modynamic analysis of Kjelstrup and Røsjorde in article [20].
We also evaluate the effects for a concrete set of conditions con-
sidered in the paper. For SOFC our analysis is based on works
of Sciacovelli [31, 32].

5.1 PEM FC

The first new term in formula for efficiency (32)

−ηc

I
F (T

csc
e− −T asa

e−)

∆G
(36)

describes contribution of entropy of electrons transported along
when electric current leaving and re-entering the fuel cell. It’s
contribution to the final efficiency is, however, negligible5 as
has been shown in Ref. [28].

The second new term6 in (32) is

−
∫

V
jq
T ·∇T dV

∆G
−

∫
V ∑α ραsαvα ·∇T dV

∆G
(37)

Conductive heat flux affects the efficiency by 0.2%. Calculating
partial specific entropy of gaseous oxygen, hydrogen, water and
protons at 80◦C, the effect of flux of entropy in gradient of tem-
perature in Eq. (37) to the efficiency can be estimated as 0.1%,
see Ref. [28] for details.

In summary, the new terms in (32) are quite negligible in
PEM fuel cells compared to the dissipation term. Therefore,
entropy production rate is the main cause of efficiency losses in
PEM fuel cells and the new method and the standard method
are equivalent in this case. This is not true for SOFC anymore
as we show in section 5.2.

5approximately 10−3%
6For simplicity, the additional entropy flux j′s is neglected.
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5.2 SOFC

In this section we summarize effects of the new terms in
Eq. (32) on efficiency of SOFC. Generally, the effect is higher
than in PEMFC because temperature gradients are steeper in
SOFC. Thermodynamic quantities will be evaluated at tempera-
ture 880◦C to correspond with [31]. At that temperature the cor-
responding conversion efficiency becomes approximately ηc ≈
74%.

Usually, the biggest part of a SOFC is the anode. Let us now
summarize effects of the new terms in the anode. Contribution
of oxygen to the last term in Eq. (37) was estimated as 2%. The
analogical contribution of hydrogen was estimated as 3% and
the contribution of water vapor as 4%. Moreover, oxygen anions
diffuse through the solid part of the anode. Partial molar entropy
of oxygen anions in the anode was estimated using Refs. [9, 2,
18, 30]. Effect of oxygen anions on the efficiency was then
estimated as 0.7%. The effect of conductive heat flux in Eq.
(37) was estimated using Refs. [5, 31] as 0.1%. See Ref. [28]
for details.

As well as in PEMFC the effect of entropy of electrons ηe−

is negligible in SOFC.
In summary, the new terms in (32) affect the total efficiency

by several per cent. Therefore, the new method of evaluation
of fuel cell efficiency differs from the standard method in case
of SOFC, and we suggest that the new method should be used
instead of the standard method in that case, i.e. functional (35)
should be minimized instead of entropy production rate.

6 CONCLUSIONS

In this work we discussed the meaning of optimization of
hydrogen fuel cells, see section 4. A formula for efficiency
compatible with the meaning of optimization, which has been
derived in Ref. [28] using classical irreversible thermodynam-
ics of mixtures, was presented in sections 2 and 3. The for-
mula was then compared with the standard theory based on the
Gouy-Stodola theorem, which leads to the procedure of entropy
production rate minimization.

The new theory gives different results than the standard the-
ory in case of solid oxide fuel cells while it is equivalent to the
standard theory in case of polymer electrolyte membrane fuel
cells, see section 5. In summary, we propose that the new theory
should be used in optimization of solid oxide fuel cells instead
of the standard theory. In other words, functional (35) should be
minimized instead of entropy production rate in the fuel cells.
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NOMENCLATURE

A cross section area of the anode [m2]
Ãr electrochemical affinity of reaction r [Jkg−1]
d symmetric velocity gradient [s−1]
F total external body force [Nkg−1]

F Faraday constant [Cmol−1]
Fα external body force exerted on species α [Nkg−1]
hα partial specific enthalpy [Jkg−1]
I total electric current passing through the system [A]
jDα diffusion flux of species α [kgm−2s−1]
jen flux of total energy [Jm−2s−1]
js flux of entropy [JK−1 m−2s−1]
js,tot total flux of entropy [JK−1 m−2s−1]
jq conductive heat flux [Jm−2s−1]
D•
Dt material time derivative [s−1]
p pressure [Pa]
pα partial pressure of species α [Pa]
p̂α production of momentum of species α due to interactions

with other species [kgm−2 s−2]
s specific entropy [JK−1kg−1]
sα partial specific entropy of species α [Jkg−1K−1]
sa

e− partial specific entropy of electrons in the anode
[JK−1mol−1]

sc
e− partial specific entropy of electrons in the cathode

[JK−1mol−1]
V total volume [m3]
vα velocity of species α [ms−1]
v barycentric velocity [ms−1]
vα partial specific volume of species α [m3kg−1]
vDα diffusive velocity of species α [ms−1]
T temperature [K]
t total Cauchy stress tensor [Jm−3]
tdis dissipative part of the Cauchy stress tensor [Pa]
tα partial Cauchy stress tensor of species α [Jm−3]
u total specific internal energy [Jkg−1]
uα partial specific internal energy of species α [Jkg−1]
wα mass fraction of species α [1]
∆G total flux of Gibbs free energy into the system [Js−1]
∆H total flux of enthalpy into the system [Js−1]
∆Q total flux of heat into the system [Js−1]
∆Wel electrical work extracted from the system [Js−1]
εα specific internal energy of species α with respect to it’s

own frame of reference [Jkg−1]
εF Fermi energy [J]
η total efficiency [1]
ηc conversion efficiency [1]
ηe− change of efficiency due to entropy of electrons [1]
µα chemical potential of species α [Jkg−1]
µ̃α electrochemical potential of species α [Jkg−1]
ναr stoichiometric coefficient of species α in reaction r [1]
ξ̇r rate of chemical reaction r [kgm−3s−1]
Π total dissipation [Js−1]
ρ overall density [kgm−3]
ρα density of species α [kgm−3]
ρ̂α production of species α [kgs−1m−3]
∑α sum over all species
σs entropy production rate [JK−1m−3s−1]
Φ electric potential [V]
ϕα potential of external force Fα [Jkg−1]
χg characteristic function of gas phase [1]
χl characteristic function of liquid phase [ 1]
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INTRODUCTION 

Combined Cycle Power Plants (CCPPs) are well proven and 
reliable technology for electricity production. CCPPs are 
widely used in the Italian grid network and their design and 
optimization are today more and more relevant. 

This paper presents an original implementation of the 
Thermoeconomics framework for the optimal design analysis 
of a 320 MW Dual Pressure CCPP. The purpose of the study is 
to identify the possible optimal design configuration of this 
system, including thermodynamic, economic and 
environmental perspectives. 

As a first step, modelling and simulation of the system is 
performed. Secondly, economic and environmental 
perspectives are assessed performing exergy based specific 
analyses. Exergy analysis (EA) is used to determine the second 
law efficiency of the system, whereas Thermoeconomic 
framework is used to assess both the economic and the 
environmental costs of the product. In the case study electricity 
is considered as the unique product of the system. Economic 
optimal cost of product is assessed with the Thermoeconomic 
analysis (TA-ECO), finding the best trade-off between 
investment and operative economic costs [1]. On the other 
hand, Thermoeconomic analysis is also used to assess, in an 
environmental cost perspective, the primary exergy consumed 
in order to produce the system product (TA-EXER). The 
primary exergy may represent the natural resources consumed 
[2]. 

As will be shown, the optimal design configuration is strictly 
dependent on the considered objective cost function. The paper 
shows how changing the objective function of the analysis 

(efficiency, monetary cost or primary exergy cost) can 
influence the optimal design of the system, and proposes a key 
to understanding the relationship between economic and 
environmental costs of energy systems. 
 
CASE STUDY: DUAL PRESSURE COMBINED CYCLE 
POWER PLANT 

Plant layout and simulation 

As a case study, the Neka CCPP power plant operative data 
have been used [3]. The main components of this combined 
plant are two gas turbines, two air compressors, two HRSGs 
with a supplementary fired unit (duct burner), one steam turbine 
and one surface condenser with a seawater cooling system. The 
total output power is 320 MW, 130MW produced by the steam 
turbine and 190 MW two gas turbines. 

 
Table 1. CCPP fixed operative parameters. 

Parameter u. m. Value  
Outlet Power MW 160 

Gas Turbine Adiabatic Efficiency % 87.7 
Compressor Adiabatic Efficiency % 88.0  
Steam Turbine Efficiency % 78.0 
Condenser inlet pressure kPa 14  
HRSG Low Pressure kPa 1029 
HRSG High Pressure kPa 11425 
Turbine Inlet Temperature K 1383 
Plant Availability h/y 2628 

 

 
EXERGY BASED METHODS FOR ECONOMIC AND ENVIRONMENTAL 
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ABSTRACT 
 
In the last decades, the growing scarcity of non-renewable resources led analysts and researchers to sharpen Second Law analysis 
methods in order to understand how to minimize the consumption of natural resources on the part of energy conversion systems.  
Thermoeconomics demonstrates to be a proper and promising framework to evaluate and optimize exergetic and economic costs 
of energy systems products. Understanding the relation between the economic cost and its natural resource counterpart is likely 
to be a key factor in future research activities. 
This paper presents an Exergy and Thermoeconomic analysis of a 320 MW Dual Pressure Combined Cycle Plant, aimed to 
identify the optimal design configurations of the system with respect to its specific objective functions: second law efficiency, 
economic cost and natural resource consumption cost of the generated unit of electric energy. The natural resource consumption 
of the system is computed according to the Cumulative Exergy Consumption (CExC) method. 
The CCPP plant simulations have been performed by using CAMEL-Pro™ Process Simulator and the sensitivity study of the 
plant behaviour and its optimization as a function of the selected parameters have been developed by using the Proper Orthogonal 
Decomposition procedure. Our results confirm that the optimal design configuration is strictly dependent on the considered 
objective function, and helps to investigate the relationship between the thermodynamics, the economics and the resource 
consumption of the system, thus giving a more comprehensive understanding of its performance from different perspectives. 
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 The power plant was modeled with CAMEL-Pro™ process 
simulator [4]; its layout consist in two identical blocks, each 
generating half of the total output: all simulations were 
performed accordingly for one single block with an output net 
power of 160 MW. The layout of the simulated plant is reported 
in Figure 1 and the operative conditions (steady state operation 
being assumed throughout) are reported in Table 1. The low 
Load Factor (2628 hours per year) reflects the actual operative 
conditions of the average Italian CCPPs. 

 
Table 2. Selected design variables and their respective ranges. 

Process variables Symbol [u. m.] 
Min. 
value 

Max. 
value 

Air pressure ratio βC [-]  10 21 

Post-Firing fuel ṁ14 [kg/s] 1 2 
 

To proceed with the optimization of the plant, two process 
variables have been selected: the gas turbine pressure ratio βC 
and the duct burner fuel mass flow rate ṁNG,pf (ṁ14) Their 
respective possible ranges of variation are reported in Table 2. 
 
Determination of the plant behavior: Proper Orthogonal 
Decomposition method (POD) 

The sensitivity study of the plant behavior and the 
optimization with respect to the selected process variables and 
the objective functions have been developed by using the 
Proper Orthogonal Decomposition mathematical procedure 
(POD – RBF). The POD Method is a is a statistical method that 
aims to provide a compact representation of the data by 
projecting the data set into a lower dimensional space. The 
POD-RBF procedure has been previously tested on the 
optimization of a simple MSF desalination plant [5] and of a 
single pressure CCGT [6] plant and the very satisfactory results 
obtained for these plants suggested extending its application to 
more complex configurations and to different processes. 
Moreover, the POD enables designers to extrapolate functions 
linking the variables to be optimized with the selected process 
variables. 

More details about POD as well as an introductory 
mathematical explanation of its conceptual basis are provided 
in [7]. In the case study here presented the objective functions 
are minimized considering the constraints listed in Table 3. 

 

Table 3. Constraints for plant operation. 

Parameter [u. m.] 
Device / 
Pipe no. 

Lower 
limit 

Higher 
limit 

∆Tpp,LP [°C] 16 5 35 

∆Tpp,HP [°C] 18 5 35 

∆Tap,LP [°C] 16,30 10 - 

∆Tap,HP [°C] 17,18,12 10 - 

T40 [°C] 40 100 - 
 
 

EXERGY BASED METHODS ANALYSES AND 
OPTIMIZATION 

Thermodynamic evaluation: exergy analysis 

As stated in [2], in order to perform the exergy analysis for a 
generic energy system, it is convenient to set up its productive 
structure, or functional diagram. Using the physical model of 
the system as reference and grouping all the energy and 
material flows for every component of the system, and 
therefore for the whole system, the productive structure is 
completed according to the Resources–Product–Wastes (R/P/I) 
criterion. For the generic j-th system component, exergy 
balance is: 

 

, , , ,R j P j I j D j= + +E E E E& & & &   (1) 

 
For every system consisting of n components connected by 

m streams, the exergy balance system can be expressed in 
matrix form by (2), where A is the n×m incidence matrix of the 
system, defined in [2]: 

 

(n×m) (m×1) ,(n×1)⋅ = DA E E   (2) 

 
For each component of the system, exergy efficiency is 

defined as the ratio between exergy of products over exergy of 
the resources and it represents a criterion for evaluating the 
thermodynamic performance of the component. The objective 
of the exergy analysis is to find the combination of the selected 
process variables βC and ṁ14 that provides the highest exergy 
efficiency for the whole system, defined as (3). 
 

 

Figure 1. Plant layout. 
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This goal has been reached applying the POD procedure on 

simulated plant results, which allows extrapolating the exergy 
efficiency (3) as a function of the selected process variables βC 
and ṁ14. Figure 2 shows the exergy efficiency as function of 
these process variables, normalized within their own range. 

 

 
Figure 2. Overall plant exergy efficiency map. 

 
For the plant given in the case study, the best exergy 

efficiency results around 44.8 %, corresponding to βC = 14.36 
and ṁ14 = 1.6 kg/s. 

 
Thermoeconomic design analysis for Economic cost 
evaluation and optimization (TE-ECO) 

According to productive structure adopted for exergy 
analysis, the economic cost rate balances for the i-th plant 
component is:  

 

, , , , , , ,eco R i eco i eco P i eco I iC Z C C+ = +& & &&   (4) 

 
Where Ċeco,i represent the economic cost rate associated with 

each exergy transfer, and Żeco,i represents the sum of capital 
investment, operating and maintenance cost rates for the i-th 
system component. Exergy costing principle (5) allows to 
compute the economic cost rate of every j-th material or energy 
flow entering the i-th system component as the product between 
its average monetary cost per unit of exergy ceco,j (in €/kJ) and 
its exergy content: 

 

, ,eco j eco j jC c= ⋅E& &   (5) 

 
The complete thermoeconomic system can be rewritten in 
matrix form as follows: 
 

(n×m) eco,(m×1) eco,(n×1) (n×1)⋅ + =A C Z 0   (6) 

 
If the considered system has n components and m streams, 

Ceco is the m×1 economic cost rates vector and Zeco is the n×1 
investment cost rates vector of system components. In order to 
close the equations system, it is therefore necessary to write 

other m-n auxiliary monetary costs equations [1]: some of them 
depends on the adopted branchings and cost allocation criteria 
[2], whereas the others are defined by the boundary conditions, 
such as market prices. In the case study the following auxiliary 
equations were adopted: 
 

,6 ,14 ,eco eco eco NGc c c= =   (7) 

,3 0ecoc =   (8) 

,40 0ecoc =   (9) 

 
The specific cost of the natural gas (7) was computed on the 

base of the Italian market average price, and it was considered 
constant for the entire lifetime of the plant. With the auxiliary 
equation (9) it comes out that all the economic costs of exiting 
flue gases are charged to the HRSG, thus on the cost of the 
product. Other standard assumptions have been made to 
distribute costs among internal streams [8]. 

 
Table 4. Economic parameters. 

Parameter Symbol [u. m.] Max. value 
Interest rate i [%]  5 

Plant lifetime t [years] 30 

Natural gas cost ceco,NG [€/Nm3] 0.35 
 

The main parameters of the economic analysis are reported 
in Table 3. To calculate equipment costs as a function of the 
main plant operation parameters, the Frangopoulos capital 
costing equations have been used: values obtained with these 
equations could be considered acceptable approximations of 
real values which usually are not given by industry as a function 
of components parameters [9]. 

The main result of the thermoeconomic plant optimization, 
obtained by the application of the POD-RBF procedure, is the 
combination of the process variables which lead to the 
attainment of the most convenient compromise between plant 
efficiency and economic costs. 

 

 
Figure 3. Economic cost map of the system product. 

 
Figure 3 shows the economic cost map of electricity as a 

function of the normalized selected process variables βC and 
ṁ14. For this plant, the minimum cost results 5.90 €/s, 
corresponding to values of βC = 13.32 and ṁ14 = 1.84 kg/s. 
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Thermoeconomic design analysis for Environmental cost 
evaluation and optimization (TA-EXER) 

According to literature [10], the impact of energy systems on 
environment is mainly related to: natural resource consumption 
in the whole life cycle of the system (a) and polluting effect of 
all the waste emissions in water, atmosphere and soil (b).  

Exergy is widely accepted as a common measure of natural 
resources consumption and it can be therefore used as an 
indicator for the environmental impact [11, 12]. Indeed, several 
attempts have been made to combine exergy analysis and Life 
Cycle Assessment (LCA) to quantify the natural resources 
consumption (a) of industrial processes [13, 14]: such as 
Cumulative Exergy Consumption (CExC) [15], Thermo - 
Ecological Cost (TEC) [16], Exergetic Life Cycle Analysis 
(ELCA) [17], Cumulative Exergy Extraction From Natural 
Environment (CEENE) [18] and so on. All these indicators are 
development of the “embodied energy” paradigm, well 
explained in [19]: they differ from each other in the definition 
of the resource cost factors included into the accounting and in 
the analysis time window.  

On the other hand, one of the main weakness of exergy 
analysis is that the exergy of waste emissions hardly reflects the 
magnitudes of the environmental impact [20]. For this reason, 
some authors propose to evaluate the waste emissions polluting 
effect (b) as the additional natural resource consumption 
needed to reduce the exergy content of the effluents to zero: 
CExCT [21], Zero-ELCA [22] and Extended Exergy 
Accounting [14] are examples of this approach. 

In this paper the authors propose the adoption of the 
Cumulative Exergy Consumption (CExC) indicator for 
evaluating the natural resource consumption of the system as 
partial evaluation of the environmental cost of energy systems. 
This approach accounts only for energy and materials resources 
(renewables and non-renewables), as well as human labour, 
involved in the production of a unit of energy or material 
products [16]; it does not includes other externalities. 

The thermoeconomic cost rate balance (4) for each i-th plant 
component is rewritten according to the same productive 
structure and input data adopted in 0, replacing economic costs 
rates of Resources, Products, Wastes and Plant components 
with their respective exergetic costs: 
 

, , , , , , ,ex R i ex i ex P i ex I iC Z C C+ = +& & &&   (10) 

 
Where Ċex,i represent the resource cost rate embodied in each 

exergy transfer, and Żex,i represents the resource cost embodied 
in the i-th system component. Exergy costing principle (11) 
allows to compute the resource cost rate for every j-th material 
or energy flow entering the i-th system component as the 
product between its exergy content and its CExC (represented 
here by cex,j, in kJ/kJ): 

 

, ,ex j ex j jC c= ⋅E& &   (11) 

 
In a dual way of paragraph 0, the complete thermoeconomic 
system can be rewritten in matrix form (12). 
 

(n×m) ex,(m×1) ex,(n×1) (n×1)⋅ + =A C Z 0   (12) 

 
Where Cex is the m×1 thermoeconomic costs vector and Zex 

is the n×1 investment cost rates vector of system components. 

Here, the same rules for branchings and cost allocations 
adopted in 0 were used, and auxiliary relations necessary to 
close the equation system were computed relying to Simapro 
7.3.3 software [23] and Szargut database [15].  

 

,6 ,14 ,ex ex ex NGc c c= =   (13) 

,3 0exc =   (14) 

,40 0exc =   (15) 

 
CExC of the Ecoinvent unit process “Natural gas, high 

pressure, at consumer/RER U” is 1.069 MJ/MJ and was 
adopted as specific exergy cost of the natural gas (13). Like 
TE-ECO analysis, with the auxiliary equation (15) comes out 
that all the exergetic costs are charged to the HRSG, thus on the 
cost of the product. Exergy cost functions for plant and O&M 
costs (Żex,i) have been extrapolated from Ecoinvent database as 
a function of the size, weight and the operative parameters of 
the plant components [24]. In case of data scarcity, average 
value for primary exergy consumption of European Machinery 
and Equipment production sector have been extrapolated from 
European Input-Output tables (year 2003) and result to be 50.21 
MJ/kg [25]. Like the investment economic cost functions, the 
exergy cost functions could be considered acceptable 
approximations of real values. 

Exergy costs of system product were obtained as a function 
of the selected process variables βC and ṁ14 by applying the 
POD-RBF procedure. 

 

 
Figure 4. Exergetic cost map of the system product. Values 

in x and y axes are normalized between 0 and 1. 
 

Figure 4 shows the exergetic cost map of electricity as a 
function of normalized process variables βC and ṁ14. For this 
plant, the minimum resources consumption results to be 434.5 
MJ/s, corresponding to values of βC = 14.29 and ṁ14 = 1.75 
kg/s. It is noteworthy that, starting from this thermoeconomic 
analysis, an extension of the traditional second law efficiency 
can be introduced: 

 

P,tot
CExC,

, ,to
o

t
t t

,

η =
ex R ex totC Z+

E&

& &
  (16) 

 
Since it takes into account also for the production processes 

of the fuel and the plant equipment, efficiency defined in (16) is 
an extended insight of the overall energy conversion process. 
For this plant, best CExC-efficiency is about 0.36, obtained in 
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correspondence with the minimum resource consumption as 
previously described. 

 
RESULTS AND DISCUSSION 

Exergy based methods results 

As previously explained, three different exergy based 
optimization criteria have been applied to the specific case 
study. For each identified optimal configuration, it is therefore 
possible to calculate all the corresponding process variables, 
summarized in Table 5. As expected, the three couples of βC 
and ṁ14 variables that define each optimal configuration are 
different; therefore, also the other operative parameters such as 
efficiency, exergetic and economic costs differ. 

Considering a plant availability of 2628 hours per year, the 
minimization of the economic cost of electricity (Ċeco,opt) 
allows to reduce the annual cost of electricity by 336 k€/year 
with respect to the optimal efficiency configuration (ηII,opt), and 
by 219 k€/year with respect to the optimal exergy cost 
configuration (Ċex,opt). 

On the other hand, considering as design point the optimal 
exergy cost of electricity (Ċex,opt), the global resource 
consumption of the plant is reduced by 84,5 toe/year and 1070 
toe/year if compared respectively with the optimal efficiency 
(ηII,opt) and economic (Ċeco,opt) configurations. 
 

Table 5. Results of CCPP exergy based optimizations. 
Parameter u. m. ηII,opt Ċeco,opt Ċex,opt 
βC - 14.36 13.32 14.29 
ṁNG,pf kg/s 1.60 1.84 1.75 
ṁNG,tot kg/s 9.24 9.41 9.25 
ṁAir  kg/s 282.76 280.47 282.70 
ηII - 0.448 0.438 0.449 
ηCExC - 0.358 0.353 0.36 
Ċeco,el €/h 21373 21245 21328 
Żeco €/h 6149 5712 6106 
Ċeco,NG €/h 15305 15586 15315 
Ċex,el toe/h 37.39 37.76 37.36 
Żex toe/h 4.27 3.97 4.24 
Ċex,NG toe/h 33.51 34.12 33.53 

 
To comprehensively evaluate the relationship between the 

three optimisation functions it is therefore necessary to 
investigate the relation between thermodynamic, economic and 
environmental costs of the product. 
 
Coupling procedure for global optimization 

Figure 5 depicts a general simplified 2-D representation of 
this optimization problem: the economic optimization of the 
plant design (Eco,opt) leads to an additional consumption of 
resources (∆Ċex,P = 0.41 toe/h) while the resource cost 
optimization (Ex,opt) causes an increment of the economic cost 
of the product (∆Ċeco,P = 83.63 €/h). 

The subsequent question that arises is whether it is possible 
to link these two aspects. Referring to Table 5 data, and 
assuming an average oil barrel market price of 623 €/toe (2011) 
[26] as a proxy for the primary exergy market price, the CCPP 
operating in the optimal economic cost design absorbs 0.407 
toe/h more with respect to the exergy optimal design. This 
primary energy surplus purchased by society at its market price 
would results in 253.76 €/h which is grater then the difference 
of costs between the economic optimal design and the exergy 

optimal design (∆Ċeco,P = 83.63 €/h). Therefore, this CCPP 
plant “pays” the primary exergy less than the commercial price: 
for the societal niche in which this CCPP operates, it is 
convenient to invest (perhaps by means of a specifically aimed 
incentive policy) in systems designed to minimize the exergetic 
primary resources rather than the economic costs: saving 
resources costs globally less than producing them. 

Even if today we still live in world where the objective 
function is the monetary cost, and therefore the most probable 
configuration chosen at the end of the process would be the 
optimal economic cost configuration (Eco,opt), the current 
analysis open a window over a new chance for evaluating 
resource consumption as an environmental cost for the society. 
The evaluation of the optimal exergy cost configuration 
(Ex,opt) add another set of information to Decision Makers for 
having a more comprehensive understanding of the overall 
impact of the total system for the whole society. 

  

 
Figure 5. 2-D schematic comparison among economic and 

exergetic cost function of product. 
 

CONCLUSION 

Results of the presented exergy based analyses confirm the 
existence of substantial differences in designing the CCPP plant 
considering the optimization of second law efficiency, 
economic or exergy costs of system product. 

Thermoeconomics proved to be an appropriate framework to 
evaluate both economic and exergy cost of system product. In 
particular, exergy cost evaluation was expanded in order to 
include the embodied exergy of resources and equipment into 
the analysis, as shown by eq. (12), according to CExC method. 
This improvement gives a better insight of the overall energy 
conversion process with respect to a standard exergy analysis. 
Moreover, it has been proposed a criterion for determining the 
relation between the economic and the environmental costs of 
the product linked to the consumption of resources (i.e. cost of 
the primary exergy), giving therefore different perspectives to 
Decision Makers. In the current economic asset, the optimal 
economic cost configuration will be probably selected but a 
number of information can be obtained by comparing the 
optimal efficiency configuration and the optimal exergy cost 
configuration. 

On the other hand, some drawbacks can be identified and 
they indicate possible further research directions to improve 
Thermoeconomic analysis from practical point of view. They 
fall under two major categories: need for standardization, 
refinement and extension of the CExC database, and a more 
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accurate socio-economic model to compute the primary exergy 
market price. 

NOMENCLATURE 

Symbol Quantity SI Unit 
   
c Specific cost €/J – J/J 
Ċ Cost rate €/s – J/s 
e Specific exergy J/kg 
Ė Exergy rate J/s 
i Interest rate % 
m Total system streams - 
ṁ Mass flow rate kg/s 
n Total plant components - 
T Temperature °C 
t Plant lifetime years 
Ẇ Work J/s 
Ż Investment cost rate €/s – J/s 
βC Air pressure ratio - 
η Efficiency - 
 
Subscripts 
 
adim Adimensional 
D Destruction 
eco Economic  
el Electricity 
ex Exergetic  
i Plant component no. 
I Waste 
II Second Law 
j Material / Energy flow no. 
P Product 
pf Post-firing 
R Resource 
tot total 

 

REFERENCES 

[1] A. Bejan, G. Tsatsaronis, M.J. Moran. Thermal Design and 
Optimization: Wiley, 1996. 
[2] E. Querol, B. González-Regueral, J.L.P. Benedito. Practical 
Approach to Exergy and Thermoeconomic Analyses of 
Industrial Processes: Springer, 2012. 
[3] P. Ahmadi, I. Dincer. Thermodynamic analysis and 
thermoeconomic optimization of a dual pressure combined 
cycle power plant with a supplementary firing unit. Energy 
Conversion and Management. 2011;52(5):2296-308. 
[4] Università di Roma "La Sapienza", CAMEL-Pro Users 
Manual, v.4. wwwturbomachineryit. 2008. 
[5] R. Melli, E. Sciubba, C. Toro, A. Zoli-Porroni. An 
Improved POD technique for the optimization of MSF 
processes. International Journal of Thermodynamics. 
2012;15(4):231-8. 
[6] R. Melli, E. Sciubba, C. Toro, A. Zoli-Porroni. An example 
of Thermo-Economic optimization of a CCGT by means of the 
Proper Orthogonal Decomposition Method. Proceedings of the 
ASME IMECE2012 November 9-15, 2012, Houston, TEXAS, 
USA. 

[7] V. Buljak. Proper Orthogonal Decomposition and Radial 
Basis Functions for Fast Simulations.  Inverse Analyses with 
Model Reduction: Springer Berlin Heidelberg; 2012. p. 85-139. 
[8] A.a.T. Lazzaretto, G. . On the quest for objective equations 
in exergy costing. in ML Ramalingam, JG Lage, Vc Mei, and 
JN Chapman (eds), Proceedings 'if the ASME Advanced Energy 
Syrems Devision, 37, ASME, New York, 197-210. 1997. 
[9] C.A. Frangopoulos. Comparison of thermoeconomic and 
thermodynamic optimal design of a combined-cycle plant. in: 
DA Kouremenos (Ed), Proceedings of the International 
Conference on the Analysis of Thermal and Energy Systems, 
Athens. 1991. 
[10] S.E. Jorgensen, B. Fath. Encyclopedia of Ecology, 
Five-Volume Set: Elsevier Science, 2008. 
[11] G. Wall. Conditions and tools in the design of energy 
conversion and management systems of a sustainable society. 
Energy Conversion and Management. 2002;43(9–12):1235-48. 
[12] M.A. Rosen, I. Dincer. On Exergy and Environmental 
Impact. International Journal of Energy Research. 
1997;21(7):643-54. 
[13] J.-F. Portha, S. Louret, M.-N. Pons, J.-N. Jaubert. 
Estimation of the environmental impact of a petrochemical 
process using coupled LCA and exergy analysis. Resources, 
Conservation and Recycling. 2010;54(5):291-8. 
[14] E. Sciubba. Can an Environmental Indicator valid both at 
the local and global scales be derived on a thermodynamic 
basis? Ecological Indicators. 2013;29(0):125-37. 
[15] J. Szargut, D.R. Morris, F.R. Steward. Exergy analysis of 
thermal, chemical, and metallurgical processes: Hemisphere, 
1988. 
[16] J. Szargut. Exergy Method: Technical And Ecological 
Applications: WIT Press, 2005. 
[17] R.L. Cornelissen, G.G. Hirs. The value of the exergetic life 
cycle assessment besides the LCA. Energy Conversion and 
Management. 2002;43(9–12):1417-24. 
[18] B. De Meester, J. Dewulf, S. Verbeke, A. Janssens, H. Van 
Langenhove. Exergetic life-cycle assessment (ELCA) for 
resource consumption evaluation in the built environment. 
Building and Environment. 2009;44(1):11-7. 
[19] S. International Federation of Institutes for Advanced. 
IFIAS Workshop Report, energy analysis and economics. 
Resources and Energy. 1978;1(2):151-204. 
[20] R.U. Ayres, L.W. Ayres, K. Martinás. Exergy, waste 
accounting, and life-cycle analysis. Energy. 
1998;23(5):355-63. 
[21] P. Zhu, X. Feng, R.J. Shen. An Extension to the 
Cumulative Exergy Consumption Applied to Environmental 
Impact Analysis of Industrial Processes. Process Safety and 
Environmental Protection. 2005;83(3):257-61. 
[22] G. Hirs. Thermodynamics applied. Where? Why? Energy. 
2003;28(13):1303-13. 
[23] Simapro 7.3.3, site: http://www.pre.nl/simapro/. Pré 
Consultants. 
[24] X. Feng, G. Zhong, P. Zhu, Z. Gu. Cumulative exergy 
analysis of heat exchanger production and heat exchange 
processes. Energy & fuels. 2004;18(4):1194-8. 
[25] S. Suh. Handbook of Input-output Analysis Economics in 
Industrial Ecology: Springer London, Limited, 2009. 
[26] B. Petroleum. Statistical Review of World Energy. 2012. 

 
 

469



12th Joint European Thermodynamics Conference
Brescia, July 1-5, 2013

PHASE TRANSITIONS IN MULTICOMPONENT SYSTEMS AT THE NANO-SCALE:
THE EXISTENCE OF A MINIMAL BUBBLE SIZE

Øivind Wilhelmsen*, Dick Bedeaux*, Signe Kjelstrup*, David Reguera **

* Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway
** Department of Fundamental Physics, University of Barcelona, Barcelona, Spain

ABSTRACT
The formation of nanoscale droplets/bubbles from a metastable bulk phase is still connected to many unresolved scientific ques-
tions. In this work, we analyze the stability of multicomponent liquid droplets and bubbles in closed Ntot,i, Vtot, T systems (total
mass of components, total volume and temperature). To investigate this problem, square gradient theory combined with an accu-
rate equation of state is used. To give further insight into how the state of the fluid affects the formation of droplets and bubbles,
we compare the results from the square gradient model to a modified bubble/drop model which gives a macroscopic capillary
description of the system. We discuss under which conditions the square gradient model or the modified bubble models predict
a finite threshold size for bubbles and their stability in terms of the reversible work of bubble formation. The work reveals a
metastable region close to the minimal bubble radius. We find that the liquid compressibility is crucial for the existence of this
minimum threshold size for bubble formation in Ntot,i, Vtot, T systems.

INTRODUCTION

Small systems receive now increasing attention, not only in
academia, but also in industry. Fabrication of novel nano mate-
rials for instance, requires insight into phase transitions such as
condensation, evaporation and crystallization at the nanoscale
[1; 2]. The first and important step in a typical phase transi-
tion is the formation of a nucleus from a metastable bulk phase.
Recent experimental developments have made it possible to ob-
serve formation of tiny droplets and crystals consisting of only a
few molecules. The experiments have evidenced the limitations
of current theories, including classical nucleation theory, to de-
scribe some of the observations [3]. These systems challenge
our current understanding and they motivate the development
and use of new tools. In this work, we will give insight into the
stability of multicomponent bubbles/droplets in systems with
constant Ntot,i, Vtot, T (total mass of components, total volume
and temperature). Special attention will be given to the con-
ditions under which very small stable or critical-sized bubbles
cannot be formed [4].

For nanoscale bubbles or droplets, the thickness of their in-
terfaces can be of the same order of magnitude as their size.
Models which do not specifically take into account surface gra-
dients, such as classical nucleation theory and discontinuous
excess formulations, might then be insufficient. We will thus
use a square gradient theory for curved systems coupled with a
qualitatively accurate cubic equation of state [5; 6] to investi-
gate the system. In the square gradient theory, the Helmholtz
energy density has contributions up to second order in the gra-
dients of the densities. The functional minimization of the total
Helmholtz energy keeping Ntot,i and T constant, gives the equi-
librium density and concentration distributions in the canonical
ensemble [7]. The advantage of this approach is that continu-
ous profiles across the interface can be found. Square gradient
theory combined with an accurate equation of state and suitable
models for the pure components has been able to reproduce ex-

perimental results for the surface tension of planar interfaces of
multicomponent mixtures [8]. We will use it here to describe the
formation of bubbles and liquid droplets. To give further insight
into how the size of the system and the composition of the fluid
affect the formation of small bubbles and drops, we will com-
pare the results from the square gradient model to a modified
bubble model which gives a macroscopic capillary description
for different models of the bulk phases [9]. While previous work
on this topic has focused on single-component systems [4], we
formulate our problem for several components. In addition, we
show that a thermodynamic stability analysis is crucial to cap-
ture the behavior of the system near the threshold size, an asset
which was not discussed in detail earlier [4].

The paper is structured as follows. First, the theoretical
framework used will be presented. A short introduction will
be given to the use of a quantitatively accurate cubic equation of
state coupled with either the square gradient theory (mesoscopic
approach), or the capillary approach (macroscopic approach) to
describe the formation of bubbles and liquid droplets of inter-
est for nucleation processes. We will then show that the capil-
lary approach is able to reproduce results from the square gradi-
ent theory remarkably well for a binary mixture, using hexane-
cyclohexane as an example. This observation is used to explain
the behavior of very small bubbles, based on a thermodynamic
stability analysis. Both approaches will be used to analyze the
stability of small bubbles and the existence of a threshold size
below which no stable or critical-sized bubbles can be formed.
Finally, some concluding remarks are provided.

THEORY

We consider a spherical container with volume, Vtot, temper-
ature T and a fixed number of molecules of each component i,
Ntot,i. We assume that a perfectly spherical bubble or droplet is
placed at the center of the container. At equilibrium, we know
that the state of this system should be at a global minimum in the

470



total Helmholtz energy. Both the square gradient model and the
capillary approach rely on an equation of state which is capable
of capturing the thermodynamic behavior of both the liquid and
the vapor at different compositions. In this work, we will use
the cubic equation of state, Peng Robinson, which has proven
to give accurate predictions of the density in both gas and liq-
uid regions for non-polar mixtures. In addition, it captures the
vapor-liquid equilibrium behavior of multicomponent mixtures,
if proper interaction parameters are used, as demonstrated for
CO2-rich fluids by several authors [5; 6]. In general, most two-
parameter cubic equation of state may be represented as:

P =
RgT
v−b

+
aα(T )

(v−bm1)(v−bm2)
(1)

Here, P is the pressure, Rg the universal gas constant, v the mo-
lar volume, and a, α, and b are parameters of the equation of
state. The constants m1 and m2 represent the biggest difference
between the various two-parameter cubic equations of state. For
the Peng-Robinson equation of state, m = −1±

√
2. Provided

that m1 6= m2, Eq. 1 can be integrated with respect to the vol-
ume to give the residual Helmholtz energy (i.e. the difference
between the Helmholtz energy of the homogeneous phase and
that of an ideal gas) :

Feos,res

RgT
= N ln

(
v

v−b

)
− aα(T )

(m1−m2)bRgT
ln
(

v−m2b
v−m1b

)
(2)

This expression can be differentiated to give the first and sec-
ond order derivatives of the Helmholtz energy, which are the
building blocks for residuals of the other thermodynamic vari-
ables such as the chemical potentials, the entropy, the enthalpy
and the internal energy. To obtain a complete thermodynamic
description of the system, the residual values must be linked
to the ideal gas state. Accurate heat capacity polynomials
for each component, standard values for enthalpy of formation
and entropy have been used to create a thermodynamic frame-
work which gives values for the state functions that follow SI-
standards. To verify that the framework is indeed thermody-
namically consistent and correctly implemented, a comprehen-
sive consistency check as described by Michelsen and Mollerup
was applied [10].

The square gradient model

A rigorous introduction to the square gradient model both
at equilibrium and outside equilibrium has been given by
Glavatskiy [7]. The functional minimization of the total
Helmholtz energy of the square gradient model keeping the total
mass of each component constant gives the equilibrium molar
concentration distributions, ci, in the canonical ensemble. The
local specific Helmholtz energy is given by:

Fsgm = Feos +
Nc

∑
i, j

κi j

ci
∇ci ·∇c j (3)

Where the subscript "sgm" refers to the square gradient model.
Assuming that the square gradient parameters κi j are constant
and symmetrical, the chemical potentials of the multicomponent

square gradient model are:

µsgm,k = µeos,k−
Nc

∑
i=1

κik∇ ·∇ci

= µeos,k−
Nc

∑
i=1

κik

(
2
r

∂ci

∂r
+

∂2ci

∂r2

) (4)

Here, the second line is a simplified expression valid for a sys-
tem with spherical symmetry around the center, Nc is the num-
ber of components and r is the distance from the center. This
can be rewritten in matrix form:

Mκ∇ ·∇c = µµµeos−µµµsgm,k (5)

The matrix Mκ is such that each index (i, j) equals κi j. Bold face
variables refer to tensors of rank > 0. If the mixing rule for the
square gradient constants is defined according to the most com-
mon expression κi j =

√
κiκ j, the matrix is singular with row

rank 1, since row i equals row j times
√

κi/κ j. This allows us
to define the variables from the multicomponent square gradi-
ent model using the structure parameters κ, εi and q. We then
define the following variables:

κ = κs (6)

εi =

√
κi

κ
(7)

q =
Nc

∑
i=1

εici (8)

We choose the component with subscript s, as the one with the
largest Ntot,i. Moreover, by introducing the definitions of κ, ε

and q in Eq. 5 one obtains the following system of partial dif-
ferential equations:

µeos,k−µsgm,k = κεk ∇ ·∇q (9)

Since the coefficient matrix Mκ has row rank 1, the system of
differential equations above can be reduced to one second order
differential equations and (Nc-1) algebraic equations:

(
µµµeos−µµµsgm

)
− εεε
(
µeos,s−µsgm,s

)
= 0 (10)

In terms of the new order parameter, q, the state functions and
pressures can be represented as follows:

Fsgm = Feos +
κ

2c
(∇q)2 (11)

Usgm =Ueos +
κ

2c
(∇q)2 (12)

Ssgm = Seos (13)

Hsgm = Heos−
κq
c

∇
2q (14)

Gsgm = Geos−
κq
c

∇
2q (15)

Psgm = Psgm,‖ = Peos−
1
2

κ(∇q)2−κq∇
2q (16)

Psgm,⊥ = Peos +
1
2

κ(∇q)2−κq∇
2q (17)
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Details in derivations of the state functions will not be pro-
vided in this paper. A more detailed discussion of for instance
the parallel and perpendicular pressures can be found in [7]. In
addition to the second order partial differential equation, Eq. 9,
which can be represented as two first order differential equa-
tions, the cumulative mass, Ntot,i (r)=4π

∫ r
0 r2cidr, is used as ad-

ditional variable, satisfying:

∂Ntot,i

∂r
= 4πr2ci (18)

The combined system of differential and algebraic equations
was solved using the "bvp4c" solver in Matlab, coupled with a
multidimensional Newton-Raphson approach to solve the sys-
tem of algebraic equations at each iteration. The Jacobian ma-
trix of the Newton-Raphson approach was constructed based on
the Hessian matrix of the Helmholtz energy. In addition to the
temperature and the total volume, the following (2+Nc) bound-
ary conditions are necessary to fully specify the boundary value
problem:

∂q
∂r

∣∣∣∣
r=Rtot

=
∂q
∂r

∣∣∣∣
r=0

= 0 (19)

Ntot,i
∣∣
r=Rtot

= Ntot,i (20)

The capillary model

Based on previous work on small bubbles and droplets de-
scribed in Refs. [9; 11] we define a modified bubble/droplet
model, also called the capillary model, to be able to compare
the square gradient model to a macroscopic approach. Assum-
ing that the bubble/droplet and the exterior both have homoge-
neous thermodynamic properties separated by a discontinuous
interface at the radius, R, the changes in the Helmholtz energies
of the gas and the liquid phases are:

dFg = −PgdVg +
Nc

∑
i=1

µg,idNg,i (21)

dFl = −PldVl +
Nc

∑
i=1

µl,idNl,i +σdΩ (22)

Here, the surface has been assigned to the liquid phase. In ad-
dition, the total number of moles of each component and the
total volume are constant. This means that dVl =−dVg and that
dNg,i = −dNl,i. We will use the subscript "n" to denote both a
liquid droplet and a bubble at the center of the container, and
"e" for the exterior. Assuming that the bubbles/droplets are per-
fectly spherical, dΩ = 2dVn/R, is the link between the surface
area, Ω and their radius. The change in the Helmholtz energy
valid for both the liquid droplet and the bubble is then:

dFsys =−
(

Pn−Pe−
2σ

R

)
dVn +

Nc

∑
i=1

(µn,i−µe,i)dNn,i (23)

Equilibrium at constant mole numbers and volume is character-
ized by a global minimum in the Helmholtz energy, at which
a necessary condition is dFsys = 0. This leads to equality of

the chemical potentials of both phases and the famous Laplace
relation:

Pn−Pe =
2σ

R
(24)

The Laplace relation and equality of the chemical potentials are
necessary conditions for a minimum, but maxima and saddle
points satisfy the same conditions, since they are also extrema
of the Helmholtz energy of the system. We have to investi-
gate the second derivative matrix, H, namely the Hessian of the
Helmholtz energy to resolve whether the solution is thermody-
namically stable, i.e. a minimum. A minimum is characterized
by a positive definite Hessian matrix (positive eigenvalues), a
maximum by a negative definite matrix (negative eigenvalues)
and a saddle point is characterized by a non-singular Hessian
matrix which is neither positive nor negative definite. A singular
Hessian means that higher derivatives have to be investigated.
The component mass balances for the system give additional
algebraic equations to be satisfied:

4π

3
(
cn,iR3 + ce,i(R3

tot −R3))
)
= Ntot,i (25)

Equality of the chemical potential for each component
through the system, together with the mass balances and the
Laplace equation gives a total of 2Nc+1 equations, which fully
specify the composition in the interior and exterior of the bub-
ble/droplet together with the unknown radius. We will investi-
gate two different models in the capillary approach:

Capillary Model 1: Here, we assume that the liquid is com-
pressible and its pressure and volume are given by the cubic
equation of state.

Capillary Model 2: In this approach, we assume that the liquid
is incompressible and behaves as an ideal mixture. The gas
is ideal.

For an incompressible ideal mixture, the chemical potential
of component i is given by:

µi(T,P) = µi(T,Pi,sat)+RT lnxi + vi,sat (P−Pi,sat) (26)

Here, subscript "sat" refers to a saturated quantity, xi is the mole
fraction, and vi is the partial molar volume. The two different
capillary models will be used to investigate the role of com-
pressibility of the liquid in the stability of bubbles in a multi-
component system.

RESULTS AND DISCUSSION

Results are presented for the binary system, hexane-
cyclohexane, since it has been a popular mixture in the litera-
ture [7; 12]. Parameters used in the models can be found in Tab.
1. Here, the square gradient parameters, κ1 and κ2, were chosen
such that they reproduce exactly the surface tension reported for
the single-component systems hexane and cyclohexane at 300 K
[13]. The surface tension used in the capillary models, reported
in Tab. 1, is the one predicted by the square gradient model for
a planar surface. The overall composition for the simulations
was constant, and close to the liquid phase composition. It was
thus not necessary to consider a composition dependent surface
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tension in the capillary models. We will first show how the cap-
illary models compare with the square gradient model in terms
of quantitative results for key-parameters, such as composition
and pressure. Given that the surface tension is calculated by the
excess of the parallel pressure in the square gradient model, both
capillary models reproduce well results from the square gradient
model for small bubbles and droplets (Fig. 1. and 2) From the

Figure 1. Bubble; mole fraction of hexane, predicted by the square gra-
dient model (solid line), Capillary Model 1 (red dashed line) and Capillary
Model 2 (blue dash-dot line)

Figure 2. Droplet; Mole fraction of hexane, predicted by the square gra-
dient model (solid line), Capillary Model 1 (red dashed line) and Capillary
Model 2 (blue dash-dot line)

figures, one can see that the thickness of the surface, coarsely
defined as the zone where the composition deviates from those
of the two homogeneous phases, is significant compared to the

Table 1. Data used in the simulations. Component 1 is hexane, com-
ponent 2 is cyclohexane. Surface tension is calculated by the square
gradient model for a flat surface, for the mixture at the temperature and
composition considered

Variable Value

Temperature 330 K

κ1 4.2 10−13 Jm5/kmol2

κ2 3.4 10−13 Jm5/kmol2

Mole fractions 0.5

Surface tension 0.162 N/m

Container radius 38 nm

radius. Even if the capillary models are obviously not capable
of reproducing the behavior of the square gradient model at the
surface, the compositions, pressures and densities in the homo-
geneous regions are reproduced well, both for the single com-
ponent systems, and for the binary system. This is surprising
since the excess of mass of both components is 0 in the cap-
illary models, when it is clearly different from 0 in the square
gradient model. The location of the equimolar surface (over-
all density) in the square gradient model gives the radius of the
bubble/droplet. The radii predicted by the capillary models de-
viate from this by less than one percent. The difference between
the gas and the liquid pressure in the two cases, also known as
the Laplace pressure, is even less. These observations are true,
even if the liquid is assumed to be incompressible. This shows
that a capillary model can be used as a tool to understand the
behavior of the more detailed square gradient model, and to re-
veal the behavior and stability of bubbles and droplets at small
sizes, as we shall see.

The minimal bubble radius

In this section, we discuss how assumptions about the liquid-
phase will affect the smallest possible bubble-size in a system
in the canonical ensemble. We also discuss the stability of the
different extrema of the Helmholtz energy in terms of the Hes-
sian and of the work of formation. The difference in Helmholtz
energy between a system with a bubble or a droplet and a super-
saturated gas or undersaturated liquid is known as the reversible
work of formation, ∆W [9; 14]. If this quantity is positive, it
indicates that the bubble is unstable or metastable with respect
to the homogeneous liquid solution. In particular, one can show
that there exists a region where a bubble is metastable, which
means that the total Helmholtz energy of the system is at a local
minimum, but ∆W is positive. We define the minimal radius of
a bubble as the smallest radius for which it will form sponta-
neously, i.e. the state where ∆W = 0, dFsys=0 and Fsys is con-
vex (positive eigenvalues of the Hessian matrix). Fig 3 shows
how the radii corresponding to the extrema of the Helmholtz
energy of the system change with the scaled total mass. The
reference point for mass is the mass corresponding to the ho-
mogeneous liquid at the equilibrium density. It is evident that
with a specified total mass in the system, Capillary model 1 pre-
dicts two possible bubble radii, one large and one small, both
representing extrema of the Helmholtz energy in the capillary
models. The radii of the large bubbles in both capillary models
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Figure 3. The square gradient model (black solid line) compared with
Capillary Model 1 in the stable (dashed line) and the unstable (solid line)
region, and Capillary Model 2 (dash-dot lines) for two component bub-
bles at 330 K.

are almost identical to the radii predicted by the square gradi-
ent model. In fact, they are so similar that they can hardly be
distinguished from each other in Fig. 3. Since we have two
components in this system, there are three possible eigenval-
ues of the Hessian, associated with the number of moles of the
components and the volume of the bubble. Fig. 4 shows that
the large bubbles give only positive eigenvalues of the Hessian,
which proves that these solutions are minima, and locally stable
bubbles. The small bubbles (dot-dashed lines) have one nega-
tive and two positive eigenvalues. This means that these solu-
tions are unstable saddle-points of the Helmholtz energy, corre-
sponding to the critical bubble of interest for nucleation. The
same behavior was observed for the single-component systems,
hexane and cyclohexane (not shown here).

We would like to give some attention to the region close to
where the stable and unstable solutions of Capillary Model 1
merge. From Fig. 5 we observe that there exists locally sta-
ble minima of the Helmholtz energy of the bubbles, where it is
energetically favorable for the system to have a homogeneous
density and no bubble. We make this observation for both Cap-
illary Model 1 and the square gradient model, and refer to this
region as metastable. The minimal radius for a stable bubble is
reached at 8.4 nm, but it is actually possible to have a metastable
bubble down to 6.5 nm in this system (see Fig. 3). The mini-
mal stable radius is found by identifying the radius at which
∆W = 0, and the minimal metastable radius is found by locat-
ing the point where the smallest eigenvalue is close to zero. We
have done the same analysis for the single-components, hex-
ane and cyclohexane and found the same behavior. Metastable
behavior can also be observed for hexane-cyclohexane droplets
near the minimum density, as already discussed in Ref. [11].
These observations show that one should be careful to distin-
guish between metastable and unstable bubbles, since they are
all extremal states of the total Helmholtz energy.

Another interesting observation is that Capillary Model 2,
where the liquid surrounding the bubble is incompressible, has
only one possible bubble solution at a specified total mass of

Figure 4. The smallest eigenvalue of the hessian, Hm,n, in the Capil-
lary Model 1 describing two component bubbles at 330 K, for the stable
(dashed line), the unstable (solid line) and the metastable region (dash-
dot line). The solid line corresponds to small bubbles, and the upper line
is the large bubbles.

Figure 5. The reversible work of formation of Capillary Model 1 for two
component bubbles at 330 K for the stable (dashed line), the unstable
(solid line) and the metastable region (dash-dot line)

the system (Fig. 3). This means that assumptions about the
compressibility of the liquid will have a large impact on esti-
mates of minimal radii. In the limiting case of an incompress-
ible liquid, there is no minimal radius of the bubble, but when
the liquid is compressible there is a minimal radius. We can ad-
dress the stability of Capillary Model 2, through evaluation of
∆W , with homogeneous ideal gas as the only possible reference
state. Then the bubbles are always stable. A more detailed anal-
ysis is needed to see if the minimal radius decreases monotoni-
cally with the compressibility. For small drops, the assumption
of an incompressible liquid did not change the minimal radius
of the drop to a significant extent (not shown).
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CONCLUSION

In this paper, we have investigated how the formation of
nanoscale bubbles are limited by a minimal size in systems with
constant Ntot,i, Vtot, T (total mass of components, total volume
and temperature). We used the square gradient model for curved
systems combined with the cubic equation of state, Peng Robin-
son, to analyze the system from a mesoscopic point of view, and
compared the results to those obtained from the capillary model,
which addresses the problem from a macroscopic point of view.
For the hexane-cyclohexane mixture, we observed that the cap-
illary model was able to reproduce the results from the square
gradient model in the homogeneous regions well, if the value
for the surface tension obtained from the square gradient model
was used. The minimal radius for a stable bubble in a 38 nm
container in this binary system was found to be 8.4 nm, but a
thermodynamic stability analysis showed that it was possible to
have metastable bubbles down to 6.5 nm. No threshold radius,
and only one possible bubble solution corresponding to a stable
bubble was found using the capillary model with the liquid as-
sumed to be incompressible. The assumption of incompressible
liquid had little effect on the minimal droplet radius. This indi-
cates that a more detailed analysis should be done regarding the
role of the compressibility in determining the stability and size
of nano bubbles in binary systems.
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NOMENCLATURE

α Parameter in EoS
a Parameter in EoS [Pam6]
b Parameter in EoS [m3/mol]
c Concentration [mol/m3]
ccc Concentration vector [mol/m3]
ε Structure parameter
F Helmholtz energy [J/mol]
H Hessian matrix of Helmholtz energy
κ Square gradient parameter [Jm5/mol2]
MMM Matrix with kappas [Jm5/mol2]
m Constants in EoS
µ Chemical potential [J/mol]
N Number of moles, capillary model [mol]
nnn Composition vector [mol]
ni Moles of component i [mol]
Ω Surface area [m2]
P Pressure [Pa]
q Order parameter
r Radial position in container [m]
σ Surface tension [N/m]
R Radius bubble/droplet [m]
Rtot Radius of container [m]
Rg Universal gas constant [J/K mol]
U Internal energy [J/mol]
v Molar volume [m3/mol]
V Volume [m3]
xi Mole fractions
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EXTENDED ABSTRACT 
 

The microscopic structure and polarization properties of aqueous solutions of Ne, Ar, CH4, Kr, and Xe over the wide range of state points 
have been investigated via molecular dynamic simulation. The use of a polarizable MCYna potential [1, 2] for water and Lennard-Jones 
potential for water-solute and solute-solute interactions allows us to study the system over the temperature range 278-750 K and solute molar 
fractions up to 30%. A combined MCYna + LJ potential was chosen for these systems with Lorentz-Berthelot combining rules. The MCYna + 
LJ model reproduces the experimentally observed homogeneous phase region of both water-methane and water-noble gas systems more 
accurately than the SPC/E + LJ model. 

The effect of the solute size and concentration on solubility of system, shell structure, hydrogen bonding, static dielectric constant and dipole 
moment has been investigated. It is found that even at low concentrations and high temperature solute particles affect structure of water, 
resulting in the compression of oxygen-oxygen (O-O) and oxygen-hydrogen (O-H) radial distribution functions [3,4]. Coordination numbers of 
aqueous solutions of nonpolar solutes appear to be proportional to the size of solute particles. Our study shows that at the solute molar fractions 
xs ≤ 30% some strengthening of vicinal water structure has been observed. It manifests mainly in increasing of the number of water molecules in 
the 1st solvation shell around central solute particle and consequent increase in O-O and O-H coordination numbers. At the same time at solute 
concentration xs >30% nonpolar solute plays clearly destructive role on tetrahedral water structure and the formation of hydrogen bonds (H-
bonds).  

The dielectric constant εr and average dipole moment µm of water-nonpolar solute systems have been calculated. The calculations confirmed 
the gradual decrease of dielectric constant and average dipole moment with temperature and solute concentration. At high temperatures, this 
trend is caused by the reduction of polarizability of the system, which in turn is caused by the collapse of the H-bond network and resulting 
thermal fluctuations that oppose dipole alignment by an electrostatic field. In case of high solute concentration, the trend is caused by the 
“negative” influence of solute particles on cooperative response of water molecules on the external field. Dielectric constants εr calculated in the 
given MD simulation are in good agreement with the analytical approach of calculating εr of aqueous solutions at small solute concentrations xs 
and temperatures up to the boiling temperature of water. At higher temperatures and solute concentrations, analytical calculations underestimate 
εr compared to MD results. εr and µm do not show any clear dependence from solute particles size. 
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EXTENDED ABSTRACT 
 

Studies on oxides of actinide elements such as thorium, uranium, plutonium and americium are of great interest in nuclear industry since most 
of these oxides are used or are planned to be used as nuclear fuels in various types of reactors [1] in the form of mixed oxides. The thermodynamic 
properties such as enthalpy and heat capacity of these materials are needed for reactor safety calculations. Furthermore studies of the temperature 
dependence of vapour pressure are essential in calculation of the thermodynamic functions in order to predict stable phases in any multi-component 
system. 

The most abundant transuranium elements found in the high level waste of nuclear power reactor fuels are Am and Np [2]. Because the two 
elements can be transformed by fast neutrons into shorter-lived fission products, recycling these elements in fast reactors would improve the 
efficiency and reduce the long-term hazard. The solid solution of the uranium and americium oxides is a possible chemical form for recycling 
americium. To understand the stability of the system with respect to the temperature the thermodynamic properties of mixed oxides needs to be 
investigated. 

One of the objectives of this study is to investigate the heat capacity of the (U, Am)O2 solid solution system. In this purpose we are using a 
Setaram multi detector high temperature calorimeter (MDHTC), operated in drop mode and the heat capacity is obtained by derivation of the 
measured enthalpy increments over temperature [3]. The enthalpy increments of (U1-y, Amy)O2 solid solutions were measured in the temperature 
range 400 – 1800 K and fitted using the least squares method.  
The results of this study will be used to clarify if uranium and americium dioxides that form a continuous solid solution show an ideal behavior of 
the heat capacity (i.e. can be calculated by summing the proportional weights of their end-members) or if some excess contributions appear. The 
derived CP curves of (U1-y, Amy)O2 solid solutions, in the temperature range 298 – 1800 K, and the origin of the behavior will be discussed.  

A Knudsen cell coupled with a mass spectrometer was used to perform vapour pressure measurements [4]. The vaporisation behaviour of (U1-y, 
Amy)O2 solid solution samples has been studied in vacuum at high temperatures up to 2400 K. The evolution of the uranium and americium 
bearing species was also determined as a function of time, in order to evaluate the congruent vapour composition. Appearance potentials of the key 
molecular species were determined by varying the energy of the ionising electrons at constant temperature. The partial and the total vapour 
pressures of the oxides have been measured as a function of temperature. The dissociative ionisation contribution was evaluated with respect to the 
composition of the gaseous phase which under Knudsen conditions is in equilibrium with the condensed phase. The results on the vapour pressure 
of the (U1-y, Amy)O2 samples will be discussed. 

All the thermodynamic results obtained in this study are used for a consistent description of the ternary U-Am-O system and optimisation of the 
phase diagram. 
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EXTENDED ABSTRACT

Hydrates are ice-like, crystalline structures, occurring at high pressures and temperatures around 5◦C, in which gas molecules are trapped in
water-cages[1]. Research on hydrate formation has become increasingly popular since it became evident that large reserves of naturally occurring
methane hydrates exist. As the total amount of methane trapped in hydrates exceeds the collected amount of conventionally available gas, research
on harvesting of methane hydrates becomes imperative.

By exchanging CH4 with CO2, two things can be accomplished. We harvest natural gas for energy production, and we store a greenhouse gas.
We thus have an elegant solution to two problems of paramount importance.

In previous work, the thermodynamic properties of an sI hydrate filled with CO2, CH4, and a mixture of the two has been studied[2] using
semi-Grand Canonical Monte Carlo simulations. An empty hydrate lattice, with a specified amount of water molecules, was filled with CO2 and
CH4 while maintaining constant volume and temperature. The Helmholtz energy difference between an occupied hydrate and an empty hydrate
with isolated gas molecules was computed. Thus, a potential thermodynamic pathway for exchanging CH4 for CO2 hydrates was found. In that
work, calculations for the Helmholtz energy associated with the formation of the empty hydrate structure were not reported. Now, we will present
precisely those results[3]. In addition, we will report values for the Gibbs energy associated with this process. Those values are relevant for appli-
cations where one operates at a constant pressure, rather than at a constant volume.

The kinetic aspects of the CO2 - CH4 exchange are also important. In order to establish a model of guest molecules swapping cages, we first
investigate H2 molecules diffusing into empty cages in an sII hydrate. We expect the H2 molecules to have an easier time swapping cages, due to
their smaller size. It will be necessary to introduce flaws in the hydrate lattice, by removing some water molecules[4]. A fraction of the hydrate is
filled with H2, such that a gradient of the filling fraction arises along one of the axes. By artificially maintaining this gradient, we will obtain a flow
along the direction of the gradient. By calculating the average flow for different gradients, we can thus establish the diffusion constant for one total
fractional filling.

With the model for cage swapping established, we consider pure CO2 and CH4 diffusing in an otherwise empty lattice. We then consider a
mixture of CO2 and CH4. Results from these simulations will be presented.
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ABSTRACT
We study the thermodynamic and structural properties of a flexible homopolymer chain by means of multi-canonical Monte
Carlo method. In this work, we focus on the coil-globule transition. Startiong from a completely random chain, we have
obtained a globule for different sizes of the chain.The implementation of these advanced Monte Carlo method allowed us to
obtain a flat histogram in energy space and calculate various thermodynamic quantities such as the density of states, the free
energy and the specific heat. Structural quantities such as the radius of gyration where also calculated.

INTRODUCTION

Monte Carlo methods are very efficient to study the behavior
of complex systems. However, the Metropolis method[1] in the
canonical ensemble is not able to sample all possible conforma-
tions. Especially at low temperatures, the system will be trapped
in local energy minima. The simulation in generalised ensem-
ble[2] is the best way to avoid such problems. Recently, the
multicanonical Monte Carlo method[3; 4], the Wang-Landau
and the parallel tempering methods[5; 6] became very popular
in statistical physics. Their approaches allow the system to visit
all possible energy states in a single simulation in order to pro-
duce a flat histogram in the energy landscape.
In this work, we present a multicanonical Monte Carlo study
to understand the coil-globule transitions in homopolymer sys-
tems. The model and the simulation method are described in
Sec. II and III respectively. The results are given in Sec .IV and
we conclude in Sec .V.

MODEL AND SIMULATION METHOD

The polymer chain is described by a coarse grained off
lattice flexible homopolymer model that contains N identical
monomers(the same model used in references[7; 8; 9]).The
non bonded monomers interact pairwise via a trucated shifted
Lennard Jones potential given by

ULJ(r) = 4ε
[

(σ
r

)12
−

(σ
r

)6
]

−ULJ(rc) (1)

herer denotes the relative distance between the monomers.εis
set to 1,rc = 2.5σ andσ = r02

−1
6 with the minimum potential

distancer0 = 0.7, and the bonded interaction between nearest

neighbors is given by the FENE potential,

UFENE(r) =−

k
2

R2 ln

{

1−

[

r − r0

R

]2
}

(2)

k is a springconstant set to 40 andR= 0.3.
The total energy is given by

Etot =
N

∑
i=1

N

∑
j=i+1

ULJ(r i j )+
N−1

∑
i=1

UFENE(r ii+1) (3)

The curves of the potentials as a function of the distance be-
tween two monomers are shown in figure1.

In the present work, we employ the multicanonical Monte
Carlo algorithm[3; 4] that consists of performing a random
walk in energy space. The Boltzmann energy distribution
Pcan(E) = g(E)exp(−βE) is deformed by introducing weight
factorsW(E) which are unknown a priori and have to be deter-
mined iteratively. Therby, the multicanonical energy distribu-
tion will be Pmuca(E) = g(E)exp(−βE)W(E) = H(E). Where
H(E) denotes the multicanonical histogram.
Initially, the weight factorsW0(E) = 1 are set to unit. We start
by performing a simulation at infinit temperature under canoni-
cal distribution which yields an estimate histogramH0(E). The

estimationW1(E) is given byW1(E) = W0(E)
H0(E)

. Then, in the

next run yield an estimate ofH1(E) andW2(E) = W1(E)
H1(E)

and so
on. Theiterative procedure is continued until the multicanoni-
cal histogram is flat.
After having estimated the appropriate weightsW(E), a long
production run is performed to determine differente statistical
quantities which can be obtained by the following equation
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Figure 1. Bonded and Non-bonded potentials versus the distance be-

tween two monomers

〈A〉T =
∑E AEH(E)/W(E)e−E/kBT

∑E H(E)/W(E)e−E/kBT
(4)

RESULTS

In the following, we present results of the multicanonical
simulation for homopolymer chains forN = 19,43 and 51. to
obtain the multicanonical weights we performed 300 iterations
with 105 sweeps at each iteration. One sweep is N displace-
ments updates. The simulation has been performed over an en-
ergy range inE/N ∈ [−3,4] which is devided in bins with bin
resolutiondE = 0.1 and temperature range in[0.01;5]A long
simulation with 3×108 sweeps is performed to obtain thermo-
dynamic and structural quantities.
In figure 2 we show the multicanonical histogram obtained at
the end of simulation for homopolymer chain withN = 43
monomers. In figure 3, we plot the specific heat obtaind for
different length of the chain. The coil-globule transition is char-
acterized by a peak that appears at approximatlyT ≃ 0.5.
In our simulation we used the shift monomer update, that type
of displacement does not allow the detection of the transition
signatures at low temperatures. More sophisticated moves are
required such as crankshaft move, end bridging move, reptation
move[10] and the bond exchange move[11]. We are implement-
ing these types of displacements.
The radius of gyration (structural quantity) is shown in figure 5
for the different lengths of the chain.

CONCLUSION

The coil-globule transition for homopolymer systems is stud-
ied by means of multicanonical Monte Carlo simulation for
N = 19,43 and 51 chain sizes. To improve our results, It would
be more efficient to use more sophisticated displacement algo-
rithm. Especially at low temperature, where transition signa-
tures are still difficult to detect.
Our code was validated forN = 30 with the results of another
group[8].
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ABSTRACT
In our work, a further development of the authors model of thermo-chemical flow of fuel, air, oxygen, steam water, species, ionic
and electron currents within nano channels and nano-structures of novel devices is presented. Different transport enhancement
models are taken into account -among them the most important are: the velocity slip connected with complex external friction,
the Darcy mobility and the Reynolds transpiration. Increasing gas path to the triple-phase-boundary (TPB) enhances mass and
electricity fluxes due to the concentration jump and the electron resistivity jump. Enhancement of heat transport due to the von
Smoluchowski jump is considered within the frame of generalized model of Navier-Stokes slip boundary condition.
Particular elements of the model have been tested and calibrated on the literature benchmark experiments concerning nano-flows,
nano-combustion, nano-condensation and separation. Integrated geometrical characteristics of working fluids and canal materials
such as: porosity, tortuosity and mean radii are finally involved into a macroscopic continuum model, and implemented into the
standard CFD code. As a result of analysis the production characteristics have been examined and compared with the benchmark
data.

MOTIVATION OF OUR STUDY

Standing within the current clean coal technologies, the coal-
fired power plants using carbon capture equipment becomes an
expensive source of electricity in Poland. Other power sources,
such as wind, nuclear, geothermal are in a starting level and
cannot be taken to be a serious candidate to repowering of
polish energy market. One of contra-candidate to the clean coal
power plants are, at the moment, the plants based on natural
and shale gases ei. the combined cycle with CO2 capture
technology that currently appear to be more economical [17].

Due to recent possibility, growing after discovery of Polish
natural and unconventional gas sources, a new possibility
of realistic huge cleaner then coal heat energy source will be
obtainable in a few years. In this new chance for modern repow-
ering of Polish energy system, as we assume, the steam turbines
technologies should be widely used, firstly, for combined heat
and power plants [16; 17]. The new candidates to repowering
are plants based on the gas-steam combined cycles erragemed
within innovative thermodynamical cycle based, generally,
on using of different nanoflow phenomena. But in innovative
combined cycle the role a steam turbine change radically. Now,
unlike a gas turbine, in a steam turbine heat is only a byproduct
of power, therefore in cogeneration, steam turbines generate
reduced amount of electricity as a byproduct of heat contained
in flue gases. Recall, that usually about 10 kg/s of flux of flue
gases is needed for generating of 1 kg/s of fresh steam [4; 5; 15;
16]. In conventional combined cycle, a steam turbine is captive
only to a separate heat source and does not directly convert
fuel to electric energy. The energy is transferred from flue
gasses to the turbine through a multi-pressure steam generator

(HRSG) [14; 15], and steam such produce, in turn, powers the
turbine and generator. This separation of functions enables
steam turbines to operate independently from the gas turbine.
Therefore some advantages of steam turbines as for instance,
unusually high drop of pressure from 22 MPa to 500 Pa cannot
be fully explored in the whole conversion process1.

In the following paper, one of innovative cycle is a compact
combined cycles which turns combined heat and power plants
to a power plant dedicated only to clean electricity production.
It can be done by removing of the HRSG from a role of heat
exchanger between the flue gases and working water, and to
replace the combustion chamber on a internal direct steam
producer [17]. Such combined gas and steam turbines can keep
their main performance specifications like the high pressure
(22 MPa) and high temperature (1100◦C) - it is quite a new
situation - up to now there is no steam turbine with such high
temperature of working medium, and, vice versa, there is no
gas turbines with such extremely high pressure. Since this
concept can be simply and naturally connected with concept
of oxy combustion there is a thermodynamical base for a
zero-emission gas-steam turboset.

Especially, in next chapter, the particular analysis of gas-

1Now, The basic question is - does clean gas technologies shall be economi-
cally substantial? The leading factor is the gas price due to Gasprom monopole.
The hope on cheaper gas comes from the recent searches of the shale gas in the
Pomerania district. The ability to economically produce natural gas from un-
conventional shale gas reservoirs in Poland, has been made possible recently
through the application of horizontal drilling technology and so-called ”hy-
draulic fracturing” (e.i. fracking, fracturing). Concerns like: Chevron, Exxon
Mobil, ConocoPhillips, Marathon Oil, have already prepared this drilling tech-
nique which has revolutionized gas production in the United States. [17]482



steam turbine within a zero-emission cycle will be presented.
In that case, the working fluid contains only the mixture of CO2

and H2O what leads to direct separation of CO2 [11; 12; 13].

Innovative cycles, concerned here, leading to high-efficient,
zero-emission energy production and there are combined from
simple cycles ordered in a conversion cascades [10; 8]. Typical
for these cycles the enhancement of efficiency and power are
to be obtained via compactification of devices dimensions and
using of the so-called direct conversion. For instance, fuel
cells are profitable modern devices being the best examples
of a useful machinery where complex conversion of energy at
nano-scale takes place. Especially, we observe such conversion
at the high temperature solid oxide fuel cell (SOFC) that
is built from ceramic nanomaterials. Anode supported fuel
cell consist mainly of two nanoporous electrodes (cermets,
lanthanum strontium manginite) separated by a thin, very dense
solid electrolyte (yttria-stabilized zirconia or perovskite-type
material). Finding of a mathematical model of an acting SOFC
at temperatures as high as 1000◦C is a serious challenge as well
for nanomechanics as for nano-thermo-chemistry [10; 8].

ZERO-EMISSION CYCLE VIA A STEAM-GAS TUR-
BINE

Concept of cycle based on enhacement energy transport

In principle the oxycombustion and capture of CO2 can be
accomplished more easily and cheaply than post-combustion
removal of CO2 from the exhaust gases emitted by a conven-
tional coal plant. The promise of more efficient carbon cap-
ture is one of the primary rationales for clean gas technology
(CGT). Ziółkowski et al. [17] has recently been prepared a con-
cept of repowering of GT8C cycle. Their concept is based on
introducing of compact nanotechnology devides leading to re-
moving large-scale devices like Heat Recovery Steam Genera-
tor (HRSG) and Low Pressure Condenser (Fig. 1). The first is
to exchange the combustion diffusional mode from the classical
one into a one based on oxygen nano-enriched air. In this same
place (MKS), phenomena of nano-removing of heat revised
form oxygen-hydrocarbon combustion process occur which is
governed by adequate steam injection (water-nano-jets) into the
combustion zone. It leads directly to high enthalpy flue gases
that contain only CO2 and steam . The second novel element
is a Dual Brayton Cycle used for steam condensation and com-
pression of CO2. The enhanced condensation is based on nano-
injecton of cold water condensate and a jet compression of CO2

(in SNS). Due to compactness of process within turbine low
part and exhaust hood, as well as the heat requperation high ef-
ficiency is obtained.

CFM simulation

By introducing enhancement transport and conversion
integral-like coefficients into zero-dimensional model of
thermodynamical cycle, it is possible to simulate the work
of an innovative zero-emission power plant. A starting point
for conversion of GT8C into zeroemision-GT8C has been
taken as normal operating condition for PGE Gorzów. Data
for numerical analysis of traditional GT8C have taken from
literature [16]. Two different modernization of GT8C have been
considered. Both modernizations are based on oxy combustion,

Figure 1. IFFM cycle to the compact, high efficiency and zero-
emissions power plant, where the MKS - Wet Combustion chamber, TPG
- Paro-Gas Turbine and SNS - Condenser spray-ejector, C - compressor,
HE - heat exchanger, G - generator, P - pump and R - a gas-water sep-
arator, CON - condenser

Figure 2. PGE Gorzów plant scheme of a gas-steam turbosets with oxy
combustion and flue gases recirculation (ASU - air separation unit, C -
compressor, C’ - additional compressor, CC - combustion chamber, GT
- gas-steam turbine, HRSG - heat recovery steam generator, P - pomp,
CON - condenser, D - dividing elements).

steam/water injection and steam from exhaust gases conden-
sation (Fig. 1 and Fig. 2). The basic oryginal cycle contains:
12-stage compressor (C); silo-combustion chamber (CC), and
three stage gas turbine (GT). Modernized cycle presented
on(Fig. 2) contains also; an air separation unit (ASU); heat
recovery steam generator (HRSG), condenser of water vapor
(CON), additional compressor (C’) for recirculation flue gases,
a pomp (P) and dividing elements (D).
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The station ASU products ca. 14,8kgO2/s and its power con-
suming ratio is 0,248kWh/kgO2 [6]. From HRSG one obtains
mass flux of steam ṁst=28kg/s, what together with the combus-
tion steam flux (ca. 8kg/s) gives 0,2 mass fraction in steam-gas
working fluid. This H2O - CO2 mixture expands in a gas tur-
bine from pressure 16,2 bar to ambient pressure, and next, after
cooling down in HRSG, goes into a steam condenser. The ex-
cess of CO2 after compressing to the pressure of liquidation is
removed from the cycle [6; 7].

Comparison of solutions

The principal differences in both modifications lead on the
treatment of amount of injected fuel and amount of components
working medium. In the second modification (Fig. 2) the fuel
mass flow rates ṁf becomes the same like in original GT8C.
In the first one (Fig. 1), the fuel mass rate becomes higher. We
noted that together with increasing of ṁf the temperature at
combustion chamber tKS grow. The netto efficiency of IFFM
cycle with oxy combustion and capture CO2, at the level of
ηel−netto = 43.67%. The decrease of the efficiency is caused by
the oxygen producing (6.38%) and capture the CO2(2.28%).The
indubitable advantage of this cycle with oxy combustion and
CO2 capture is lack of pollution such as NOx and CO2 (Fig. 2).
Essential results are shown in (Tab. 1).

Table 1. Comparison of two conversions of GT8C into the gas-steam
turbine.

Parameters dimension Original GT8C I modification II modification

Fig1 Fig2

t0t [◦C] 15 15 15

p0t [bar] 1,013 1,013 1,013

tf [◦C] 15 15 15

pf [bar] 40,5 40,5 40,5

ṁf [kg/s] 3,21 12,83 3,41

ṁsp [kg/s] 182,3 182,3 182,5

ṁst [kg/s] - - 28

tst [◦C] - - 580

tGT [◦C] 520 272 591

tKS [◦C] 1100 1274 1032

ηel [%] 34,8 43,66 32,55

Nel [MWe] 54,5 281,3 54,1

ṁspot [kg/s] 182,3 35,8 11,0

CO2 [kg/MWh] 592 0 610

NOX [kg/MWh] 0,3670 0,0003 0,0079

[O2] [-] 0,139 0,002 0,181

[H2O] [-] 0,076 0,001 0,017

[N2] [-] 0,745 0,014 0,027

[CO2] [-] 0,031 0,987 0,775

[NOX ] [ppm] 30 0,6 15

The electrical efficiency of the conventional GT8C is calcu-
lated to be ηel = 34,8%. The GT8C conversion to the gas-steam
cycle with oxy combustion results and recirculation in decreas-
ing of efficiency to the level of ηel = 32,6%. But simultane-
ously, the significant decreasing of NOx emission to the level of

8g/MWh have been observed. Yet other advantage is reduction
of the flue gases rates that is rejected into ambient air: 11kg/s,
since the flux 136 kg/s flue gases undergo recirculation con-
nected with condensation of 35kg/s steam water. It is also ob-
served the increase of CO2 emission to ca. 18kg/MWh In com-
parison with the original cycle GT8C. On the other hand in both
modification, simultaneously, the grow of mole fraction [CO2]
from level 0,03 to 0,987 (I modification - CO2 is captured in the
end) to 0,78 (II modification) is observed (Tab. 1). It appears
that one obtain the better conditions to carbon capture from the
flue gases.

ZERO-EMISSION CYCLE WITH SOFC AND GAS TUR-
BINE

Nano-phenomena within SOFC

Within the context of mounting pressures on zero emission
technologies fuel cell systems will play a major role. Since a
fuel cell, like SOFC is working without the Carnot limit of ef-
ficiency, the systems build on the fuel cells can approach more
effective, then conventional, energy conversion processes. On
known system combining SOFC and gas turbine working with
power 300 kW, has been developed by Siemens Westinghouse.
Yet another system leading to advance zero emission power
plants has been prepared and tested by Lemański [10]. Their
concept is to combine high-temperature solid oxide fuel cells
(SOFC) with gas shifting and post-combustion of a rest fuel
within a one chamber. Since the efficiency of pSOFC/GT sys-
tem depends mainly form a level used pressure, Lemański has
research a system with double levels of pressure and double
SOFC; one working in the higher and one in lower pressure
(Fig. 3). The ratio of both pressures change from Π = 1÷ 3.8
and it depends on additional heat exchange between high and
low pressure parts. The electrical efficiency of double pressure
pSOFC/GT system is calculated - with increase of Π the electri-
cal efficiency both SOFC becomes lower, but tie total efficiency
of system increse mainly due to higher inlet parameters for gas
turbine. To be included is delving into the impact fuel cell-
CO2 capture technology from hydrocarbon sources might have
in terms of energy economics, as well as on our evolving energy
resource mix and on renewable energy development.

CFD simulation

The high temperature solid oxide fuel cell is build mainly
from nanomaterials. It consists of two porous electrodes sep-
arated by a dence solid electrolyte. Finding of a solid-state
material that operate at temperatures as high as 1000◦C is a
serious challenge. Especially, porous ceramics, being double
phase electrodes, needs advanced mathematical modeling [3; 8]
which include some nano-flow effects. The phenomenological
description of a combination of a huge number of a single nano-
channel can be given by two geometrical parameters of porous
body: porosity factor, the mean pore radius, and tortuosity. Tor-
tuosity is defined as the ratio of the porous channel length to the
straight distance between the end surfaces of the control vol-
ume. Tortuosity together with porosity indicates the ratio of the
active surface to the volume electrodes. Mean radius of pores
is the basic parameter determining nano-flows. All these pa-
rameters are involved mainly in description of parameters of
3D model like the diffusive transport of species throughout a
fuel cell. The main diffusion mechanism i.e. molecular dif-
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Figure 3. The scheme of hybrid pSOFC/GT used in commercial appli-
cation by Siemens Westinghouse (SOFC - solid oxide fuel cells, CC -
combustion chamber, C - compressor, GT - gas turbine, HE -heat ex-
changer , V - valve, P - pump) [10; 9].

fusion, Knudsen diffusion and Darcy’s pressure diffusion, Pel-
lat electrical diffusion are, generally, a function of above nano-
geometrical parameters [2; 3; 1].
On (Fig4) solution domain of a tubular fuel cell is presented. In
present paper, a tubular geometry examinated by Siemens and
Westinghouse was employed with basic dimensions given else-
where [4]. The model has been implemented into commercial
solver using user subroutine technique (UDF) and validated.

Figure 4. 3D Computational domain for a SOFC tubular [8].

Local solution based on slip velocity, thermal, mass and elec-
tric potential mobility forces has been adopted in average maner
to terscription of phenomenological coefficients in function of
porosity, tortuosity and mean pore size. Finally the mean pore
radii has been taken to be equal 300 nm. In Fig5 dependence of
generated voltage on current at various porosities are presented.
When lower porosities are assumed the concentration polariza-
tion is higher. Howewer, a higher tortuosity explitly disturb the
mass diffusion process (Fig6).

Figure 5. Influence of porosity nano parameter on SOFC performance
[8].

Figure 6. Influence of nano tortuosity parameter on SOFC performance
[8]

Yet other novel concept is to use instant of air some oxygen
enriched mixture. It can be done if one exchange of ASU unit
for oxygen separation by modern technique called the Mixed
Conducting Membranes (MCM) which produce pure oxygen
from air which produce pure oxygen from air [2]. These mem-
branes acts similarly to the cathode in a SOFC which can con-
duct ions via non-porous, metallic oxides that operate at high
temperatures, i.e. > 700◦C . In comparison to cathode material
it has high oxygen flux and selectivity. Utilization of the MCM
reactor instance of ASU means its integration into conventional
gas turbine combustion. Similarly to SOFC, the classical cham-
ber in an ordinary gas turbine is replaced by the MCM-reactor,
which includes a combustion chamber, a ’low’ temperature heat
exchanger, an MCM membrane and a high temperature heat ex-
changer. The concept allows 100% CO2 capture, increase of
cycle efficiency to 50%, and will in this case have less than 1
ppm v/v NOx in the oxygen depleted outlet air.

ROLE OF NANO-FLOWS PHENOMENA

Despite the achieved fluency in experiment design, there is
an apparent lack of understanding of the energy conversion
enhancement in it’s theoretical background. This is revealed
with the numerical prediction discrepancy compared to mea-
surement. Usually, the discrepancy grows with the growth of
a medium rarefaction, and the channel hydraulic diameter [2;
3]. That is, when the channel’s diameter is comparable with
the mean free path of molecules (which is defined as Knudsen
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number), acquired either through increased rarefaction or
decreased channel diameter, the flow slip seems to occur. This
rule also stands for other phenomena, when their influence
on the bulk flow is not negligible. By the last statement it
is understood, that although the phenomena may be present
in a large scaled devices, they seem to be of insignificant
importance. When the boundary layer however, extends to the
bulk, as it takes place in micro and nano channels, the wall
effects alter the entire flow field.

Boundary friction forces

In nano-flow boundary friction appear as a generalization of
Young’s form of boundary condition:

~f + ~τw = 0 . (1)

which stay that the boundary friction force is equal to the
fluid ”wall stress”. It is a very neat representation, and to some
extent complete. If one considers a simple flow of a fluid in
contact with the solid wall we must to add a condition that the
solid ”wall stress” should be equal the fluid ”wall stress” and
the friction force. However, in a more general case, as Pois-
son has shown, the condition requires further extension for the
inclusion of capillary forces, most important in case of multi-
phase flows. The capillary forces may have a strong influence
on friction and velocity slip. The Cauchy boundary condition
is hence supplemented with an additional term by Poisson, and
has a form:

~f + ~τw + divs
(
γ
↔
I s

)
= 0 (2)

Acording to Duhem and Roy the friction forces must be based
on the velocity slip in the following form :

~f =
(
v0

1

|~vs|
+ v1 + v2|~vs|

)
~vs (3)

governed by three slip coefficients v0, v1, v2 and where ~vs - sur-
face velocity. On the other hand, in the boundary condition def-
inition Eq.(1), there is the wall stress vector, which is, in accor-
dance with Cauchy definition, defined to be ~τw =

↔
t ~n, where

↔
t

is the Cauchy tensor of momentum flux.

Transpiration effects

Graham and Reynolds transpiration effect manifests itself as
a countercurrent at the wall to the main flow. That is, while the
gradient between the inlet and the outlet of a microtube gener-
ates the flow in the opposite to the gradient direction, the tran-
spiration occurs as the counter flow at the fluid - solid interface.
When spoken of Graham observed transpiration, we speak of
concentration transpiration. The ”wall flow” occurs from the
region of a lower concentration to the region of a higher con-
centration of a given constituent. When spoken of Reynolds
observed transpiration, we speak of thermal transpiration, i.e.
the flow from region of a lower temperature to the region of a
higher temperature, also at the fluid - solid interface. Taking
into account the transpiration effects, and also accounting for

the pressure transpiration we achieve a more general form of
the friction force definition as:

~f = v1 (~vs −~vwall)− (cs,$grads$
+cs,cgradsc+ cs,θgradsθ+ cs,φgradsφ) (4)

Where appears Navier’s slip coefficent and the pressure (cs,$),
concentration (cs,c), thermal transpiration (cs,θ) and electro-
mobility cs,φ coefficients, respectively.

Temperature jump model

Proposed by von Smoluchowski temperature jump model
introduces a characteristic length scale lt defined as the jump
length, which is connected with the heat boundary condition:

h(θ− θwall) + ~q · ~n = 0, (5)

where heat flux is defined by Fourier law ~q = λgradθ; h - coef-
ficient of thermal conduction, θwall - temperature on the wall, λ
- thermal conductivity coefficient
Temperature jump length was defined by Smoluchowski to be:

lθ =
λ

h
. (6)

Now if one postulate of Navier-Stokes layer temperature then a
generalized form of the boundary condition has a form:

∂t(cp,sθs) + div(cp,sθs~vs||)− θs
↔
I s ~vs~n

+divs(λsgradsθs) + h(θ− θwall) + ~q · ~n = 0 (7)

where
↔
I s=

↔
I −~n⊗~n, ~n - normal vector, γ - surface stress, divs

- surface divergence, grads - surface gradient, cp,s - specific heat
of thermal layer, θs - temperature of thermal layer ~vs|| tangent
component of ~vs.

Concentration jump model

In case of the flow of a fluid mixture an effect of concentra-
tion jump may occur, particularly when the reactin mixture is
considered, and channel walls have catalytic properties. Thus
the discontinuity of concentration may take place in the direc-
tion normal to the wall. The model proposed by Lewis defines
the concentration boundary condition as follows:

α(c− cwall) +~j · ~n = 0, (8)

where constituent flux is defined according to Fick diffusion law
~j = Dgradc.
The closure for a corresponding concentration jump was pro-
posed in literature, to be defined as:

lc =
D

α
≈ 0.03mm. (9)

Postulating the layer concentration the generalized form of the
concentration boundary condition is:

∂t(ρscs) + div(ρscs~vs||)− cs
↔
I s ~vs~n

+divs(Dsgradscs) + α(c− cwall) +~j · ~n = 0, (10)
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Electric current jump

Numerous researcher on jonic electric current have been
shown [8; 10] that enhancemnnt flow of electricity is observed
due to nanostructure of the electrolit medium. Therefore, ac-
cording to [8] we propose to replace the classical condition of
disappearance of electric current on a boundary j · n = 0, where
the jonic current j = σgradφ is described by the Ohm law based
on bulk conductivity constant σ – by the following condition of
”electric jump”:

j · n + div(σsgradsφ) = 0. (11)

The surface gradient of electric potential is very important now.
It can be treated as a ”mobility” surface force. If this force is
added to general friction force (4) some additional surface flow
appears which is known to be the Pellat effect.

SUMMARY

In the paper the different effects coming form of generalized
boundary condition model derived in IFFM PASci has been de-
scribed and numerically implemented 3D as well 0D model. It
was shown, that more than velocity slip may account for the
enhanced flow phenomenon, i.e. the concentration, thermal,
pressure, electric charge or phase progress may have consider-
able impact on the flow, efficiency, power performance increase.
Aside from co - current and counter - current velocity profile in-
fluences observed in the micro and nano flows, there exist phe-
nomena enacting on the temperature or concentration continuity
occurring in the temperature and concentration jumps in the nor-
mal to the fluid - solid interface direction. These discontinuities
are non negligible due to strong wall domination in the micro
and nano flows. Further experimental and theoretical investiga-
tion in this field is also required to establish the form and value
of the model parameters. Along with the mentioned merits, the
model provides a good physical interpretation of all the terms,
however experimental research is required for further confirma-
tion of the model assumptions.
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ABSTRACT
In this work we present the efficiency performance for an isothermal molecular machine under maximum conditions for a figure of
merit representing a compromise between useful energy and lost energy (theΩ criterion). This represents the best compromise
between energy benefits and losses for a specific job and neither an explicit evaluation of entropies nor the consideration of
environmental parameters are required. Such a regime has been invoked as optimum not only in macroscopic heat engines but
also in some molecular motors. We compared our results with previous ones for the same model obtained by Van den Broeck,et
al. PRL 108, 210602 (2012), where the efficiency is considered at maximum power conditions. The motion of a molecule, is very
different from a macroscopic heat engine; to understand how molecular motors operate requires mechanical concepts such as
force, elasticity, damping and work but it is necessary to consider special events such as highly damped and diffusive effects. In
this work we studied a protein machine managed by a chemical force, where two chemical reaction rate theories were considered:
the Eyring rate theory, where the reaction is assumed to correspond to the break-down of a single quantum-mechanical vibration
of the protein, and the Kramers rate theory, where a global protein conformational changes, and the more physically realistic
model is this rate theory. Then, we investigated the asymptotic behaviour of efficiencies at small global reaction chemical
potential gap (ε), expanding them up to the third-order term ofε. This points to a number of revealing observations: the three
first expansion terms are the prediction of linear irreversible thermodynamics of efficiency for the same optimization criteria
under certain conditions. We also derive upper and lower bounds for the efficiency of an isothermal molecular machine operating
at Omega function. The upper bound is reached when the activated state is close to the fuelling or reactant state (Eyring-like),
while the lower bound is reached when the activated state is close to the product state (Kramers-like).

INTRODUCTION

Molecular motors [1] are biological molecular machines be-
ing the essential agents of movement in living organisms. In
general terms, a motor may be defined as a device that consumes
energy in one form and converts it into motion or mechanical
work; for example, motor proteins are molecular machines that
convert the chemical energy derived from the hydrolysis of ATP
into a mechanical work used to power cellular motility [2; 3].
Molecular motors are an assembly of mechanical parts-springs,
levers, swivels, and latches- that move in a coordinate fashion
and as ATP is hydrolized a directed motion is produced. How-
ever, proteins and other biomolecules are so tiny that the iner-
tial forces are comparatively small and can usually be ignored,
whereas the viscous forces from the surrounding fluid, at con-
stant temperature, are usually large and dominate the mechani-
cal responses. In contrast with heat engines limited by Carnot’s
theorem [4], the upper value of thermodynamic efficiency of
isothermal motors is 1. Similar to heat engines, however, oper-
ating at the upper bound comes at the price of zero power, since
it requires infinitely slow driving. Searching the efficiency at
maximum power (EMP) is most interesting [5; 6].

For heat engines this issue has been profoundly studied since
the publication of the Curzon and Ahlborn paper [7], opened
the perspective of establishing more real theoretical bounds for
a real heat engine. The Curzon and Ahlborn paper gave rise

to the birth and development of finite-time thermodynamics
(FTT), a branch of thermodynamics devoted to extend classical
reversible thermodynamics to include more realistic finite-time
and finite-size (irreversible) processes [8; 9; 10; 11; 12; 13; 14;
15; 16].

The main goal of FTT is to ascertain the best operating mode
of heat devices with finite-time cycles. Basically, finite-rate
constraints arising from several sources of irreversibility are
modelled and then a suitable function is optimized with respect
to the involved parameters. In principle, one has the freedom to
choose such a function. This has lead to the proposal of a great
variety of criteria based on thermodynamic, economic, compro-
mise, and sustainability considerations [17; 18; 19] in this con-
text the so-calledΩ criterion was presented by [20] and this rep-
resents a compromise between energy benefits and losses for a
specific job. It is easy to apply in any energy converter (isother-
mal or non-isothermal) because it does not require the explicit
evaluation of the entropy generation and it is independent of en-
vironmental parameters. It follows then that we present this cri-
terion applied to isothermal molecular machine in this present
work.

Already the efficiency of molecular motors has been dis-
cussed [21; 22; 23; 24], the problem of EMP or under other op-
timum condition, has received much less attention for machines
working under isothermal conditions [25; 26]. For molecular
motors, a case study has shown values well above the linear re-
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sponse result 1/2 [27]
In this work we address the issue of efficiency under Omega

criterion for a model of molecular motor, the work is organized
in the following way, in the section 1 the theoretical model of
a molecular motor is presented, in section 2 we present the ef-
ficiencies of molecular motor in optimum conditions (EMP and
Omega), finally en section 3 some discussions are enunciated.

1 MODEL FOR A MOLECULAR MOTOR

We first consider a generic model for a molecular motor, pre-
sented in [5], namely, a two-state machine operating along a
one-dimensional reaction coordinate, see Fig. 1. The states cor-
respond to two minima of an appropriate free energy landscape.
While a physical energy landscape is expected to be very com-
plicated and high dimensional, the thermally activated transi-
tions between the two states will typically follow a preferred
pathway that connects these states via the lowest lying saddle
point, the so-called activated state. One can project the mo-
tion on this pathway and introduce a one-dimensional reaction
coordinatex with corresponding effective free energy potential
G(x). The two rest states of the machine, that is, the minima in
the absence of external forces, correspond to, say, locations

x = 0 andx = L

The activated state lies at an intermediate position

xa = λL ∋ λ ∈ [0,1]

In the unperturbed phase there are no net transitions, and the
states 1 and 2 have the same baseline potential value,

G0(x = 0) =G0(x = L) = 0

The potential has a maximum

G(x = λL) = Ga

at the activated state, whose value is typically much larger than
the thermal energyβ−1 = kBT (T being the temperature andkB

the Boltzmann constant).
In this rest state, the rates, when potential is minimum,k+1

0
from 1 to 2 andk−1

0 from 2 to 1, are equal and given by

k+1
0 = k−1

0 ≡ k0 = κexp(−βGa),

where the pre-exponential factorκ is considered constant.
In the presence of external forces, states 1 and 2 can be iden-

tified as fuel and product states, respectively. To transform fuel
into product, the machine is subject to a driving forceF1 which
allows it to overcome an opposing but weaker loading force
−F2, with F2 ≤ F1. These forces can be of various physical
origins, including chemical, electrical or mechanical. The com-
bined effect of driving and loading is a tilding of the potential
towards the product state 2, that is,

G(x) = G0(x)−Fx

with F = F1−F2 ≥ 0.
In a transition from state 1 to state 2, a input energyε1 =2 L

is transformed into a output energyε2 = βF2L.
The efficiency of this conversion of energy is given by

η =
ε2

ε1
=

F2

F1
. (1)
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Figure 1. Schematic free energy potential U0(x) for a two-state molec-

ular engine described by a reaction coordinate x under the net load force

F = F1−F2 ≥ 0.

Equation (1) indicates how efficiently the energy is converted
in the system in the process of doing work against the load. The
maximum value of efficiency isη = 1, this is reached when the
loading forceF2 approaches to the driving forceF1, and the tran-
sition from 1 to 2 is taken in infinity time, that is, in a reversible
manner and therefore with zero power.

1.1 Rate Theories of Chemical Reactions

The Eyring and Kramers rate theories [1] represent two
extreme views of the mechanism of global conformational
changes of proteins. In theEyring model, the transition state
is like the initial state. A sudden, local chemical change cre-
ates a highly strained protein that then relaxes into a new sta-
ble conformation. The activated state is very close to the fuel
state 1;i.e., λ is close to zero. The perturbation−Fx barely af-
fects the height of the activation barrier that needs to be crossed
to go from state 1 to 2. The rate also remains essentially
unaffected,k+ ≈ k0. However, a maximum barrier increase
of FL occurs for the backward transition, resulting in a rate
k− ≈ k0exp(−βFL) (assumingFL << Ga). In the Kramers
view, a protein undergoes a global diffusion into the activated
state. When a sufficiently large conformational change has been
achieved, the protein converts to the final state, at this scenario
scenarioλ ≈ 1, k+0 exp(βFL), while k− ≈ k0 remains essentially
unaffected. For a barrier atxa = λL, one hask+ = k0exp(λε)
andk− = k0exp[−(1−λ)ε], whereε = ε1−ε2 = βFL is the en-
ergy loss. βF is a proper thermodynamics force that appears
in the entropy production and is thus a measure of the distance
from equilibrium.

2 MAXIMUM POWER AND OMEGA CRITERION

2.1 Maximum power output

With the explicit expressions for the rates, it is possible to
write the output powerP, given by the output energyε2 mul-
tiplied by its net rate of productions, that is,P = kε2, with
k = k+ − k− = k(ε) = k0[eλε

− e−(1−λ)ε]. To specify the con-
dition of maximum power it is necessary to solve next equation

∂P
∂ε2

= 0,

which yields thesolution

ε2 =
1− e−ε

λ(1− e−ε)+ e−ε . (2)

491



Substituting this expression in Eq.(1), it is possible to get the
EMP, given by,

ηMP =
eε
−1

(λε+1)(eε
−1)+ ε

(3)

or,

ηMP =
1
2
+

1−2λ
8

ε+
1−12λ+12λ2

96
ε2+O(ε3) (4)

written in anexpansion of Taylor series. In the next subsection
we present the same procedure but under Omega criterion.

2.2 Omega function

Now we present the analysis of efficiency for the model of
isothermal molecular engine, under de so-calledΩ function,
which represents a compromise between energy benefits and
losses for a specific job; it is easy to apply in any energy con-
verter, and it is independent on environmental parameters. The
details of this optimization criterion is presented in [20].

For isothermal engine theΩ criterion reads as

Ω =
2η−1

η
P. (5)

To find the efficiency under condition of maximum Omega
we get,

dΩ
dε2

= 0, (6)

this equation issolved where,

ε2 =
(eε

−1)(2+λε)+ ε
λ(eε

−1)+1
. (7)

Substituting this expression in the expression for the effi-
ciency eq. (1), we get the efficiency under Omega criterion
condition, that is,

ηΩ =
ε2

ε2+ ε
=

(2+λε)(eε
−1)+ ε

2[(1+λε)(eε
−1)+ ε]

. (8)

Expanding this in a Taylor series around zero we get,

ηΩ =
3
4
+

1
16

(1−2λ)ε+
1

192
(1−12λ+12λ2)(ε)2+O((ε)3)

(9)

3 CONCLUSIONS

In this work we presented the efficiency of a model of molec-
ular motor, under maximum power output conditions previously
found by Broecket al., We also presented a new result, the ef-
ficiency under Omega criterion, we can note that the behaviour
observed for thermal heat engines, working between two heat
reservoir [28], is similar for this isothermal model presented
here. It could be interesting to check with experimental veri-
fication if molecular motors works closer to EMP or any other
regime, like Omega criterion.
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IPN, México for supporting this work. N.Śanchez-Salas and A.
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ABSTRACT
Free-energy calculation is one of the main topics in thermodynamics. However, biomolecules such as proteins have complicated
free energy surfaces with many local minima. Conventional molecular dynamics (MD) and Monte Carlo (MC) simulations in
physical ensembles, such as the canonical and isobaric-isothermal ensemble, tend to get trapped in these local-minimum states
and cannot give the correct free-energy difference between different-conformational states. In order to avoid this difficulty,
generalized-ensemble algorithms such as the multicanonical algorithm are frequently employed. However, because the multi-
canonical simulation is performed in a fixed volume, neither the pressure dependence nor temperature dependence at certain
pressure can be investigated as in experiments. To overcome this difficulty, the author recently proposed multibaric-multithermal
MD and MC algorithms. In this ensemble, two-dimensional random walks in the potential-energy space and in the volume space
are realized. In this paper, the multibaric-multithermal molecular dynamics algorithm is reviewed and application to a 10-residue
protein, chignolin is presented.

INTRODUCTION

Molecular dynamics (MD) simulation is a standard tool to
calculate free-energy landscape and to investigate the confor-
mational changes for biomolecules such as proteins at atomic
level. However, biomolecules have complicated free energy sur-
faces with many local minima. Thus, conventional MD simula-
tions in physical ensembles, such as the canonical [1; 2; 3] and
isobaric-isothermal [4] ensemble, tend to get trapped in these
local-minimum states. One of the powerful techniques to avoid
this difficulty is generalized-ensemble algorithms [5; 6; 7; 8; 9]
such as the multicanonical algorithm [10; 11; 12; 13]. In the
multicanonical ensemble, a free one-dimensional random walk
is realized in the potential-energy space and a simulation does
not get trapped in free-energy-minimum states.

However, because the multicanonical simulation is per-
formed in a fixed volume, neither the pressure dependence nor
temperature dependence at certain pressure can be investigated
as in experiments. To overcome this difficulty, the author have
proposed the multibaric-multithermal algorithm [14; 15; 16; 17;
18; 19; 20]. In this algorithm, two-dimensional random walks
are realized both in the potential-energy space and in the volume
space, so that the temperature and pressure dependence can be
discussed. This algorithm can be also used for Monte Carlo
(MC) simulations. In this paper, the multibaric-multithermal al-
gorithm is reviewed and applications of this algorithm to chig-
nolin in explicit water is presented.

METHOD

In the isobaric-isothermal ensemble [4], the distribution
PNPT(E,V) of potential energyE and volumeV is given by

PNPT(E,V) = n(E,V)e−β0H , (1)

wheren(E,V) is the density of states as a function ofE andV
andH is the “enthalpy” (without the kinetic energy contribu-
tions): H = E+P0V . Here,P0 is the pressure at which simu-
lations are performed. This ensemble has bell-shaped distribu-
tions both in the potential-energy space and in the volume space,
as shown in Fig. 1(a). In order to obtain the isobaric-isothermal
ensemble, the combination of the Nosé thermostat [1; 2] and the
Andersen barostat [4] is frequently employed.

In the multibaric-multithermal ensemble [14; 15; 16; 17;
18], every state is sampled with a weight factorWmbt(E,V) ≡
exp{−β0Hmbt(E,V)} so that a uniform distribution of bothE
andV, as shown in Fig. 1(b), may be obtained:

Pmbt(E,V) = n(E,V)Wmbt(E,V) = constant. (2)

Here,Wmbt(E,V) and Hmbt are referred to as the multibaric-
multithermal weight factor and the multibaric-multithermal en-
thalpy, respectively. The difference betweenHmbt and H is
written asδH(E,V): Hmbt(E,V) = H + δH(E,V) . The dif-
ferenceδH(E,V) is therefore characteristic of the multibaric-
multithermal simulation. The case ofδH(E,V) = 0 gives the
regular isobaric-isothermal ensemble.

The equations of motion in the multibaric-multithermal en-
semble based on the Nosé thermostat [1; 2] and the Andersen
barostat [4] are given by

ṙ i =
pi

mi
+

V̇
3V

r i , (3)

ṗi =

(

1+
∂δH
∂E

)

F i −
(

V̇
3V

+
ṡ
s

)

pi , (4)

V̇ = s
PV

W
, (5)
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Figure 1. Distributions P (E,V) of potential energy E and volume V of

an chignolin in explicit water (a) by the isobaric-isothermal MD simulation

at T = 298K and P= 0.1 MPa and (b) by the multibaric-multithermal

MD simulation.

ṖV = s

[

1
3V

{

N

∑
i=1

p2
i

mi
+

(

1+
∂δH
∂E

) N

∑
i=1

F i · r i

}

−
(

P0+
∂δH
∂V

)]

, (6)

ṡ= s
Ps

Q
, (7)

Ṗs =
N+M

∑
i=1

p2
i

mi
−gkBT0 , (8)

wherer i is the coordinate,pi is the momentum,s is the addi-
tional degree of freedom for the Nosé thermostat, the dot ( ˙ )
stands for the real time derivatived/dt, andF i stands for the
force acting on atomi. The variablesPV andPs are the conju-
gate momenta forV ands, respectively. The constantmi is the
mass of atomi. The constantsW andQ are the artificial “mass”
related toV ands, respectively. Performing the MD simulation
by the equations of motion, the multibaric-multithermal distri-
butionPmbt(E,V) in Eq. (2) is obtained.

After an optimal weight factorWmbt(E,V) is determined, for
example, by the iterations of short simulations [21; 22] or by
the Wang-Landau techniques [23], a long production run is per-
formed for data collection. The reweighting techniques [24]
are used for the results of the production run to calculate the
isobaric-isothermal-ensemble averages. The expectation value
of a physical quantityA at the desired temperatureT and pres-
sureP is given by

⟨A⟩NPT =
⟨A(r,V)W−1

mbt(E(r,V),V)e−β{E(r ,V)+PV}⟩mbt

⟨W−1
mbt(E(r,V),V)e−β{E(r ,V)+PV}⟩mbt

, (9)

where⟨· · ·⟩mbt is the multibaric-multithermal ensemble average.
Because of the random walks both in the potential-energy space
and in the volume space, physical quantities can be calculated
in wide ranges ofT andP.

In order to calculate free-energy landscape, we should cal-
culate first an unnormalized histogram as a function of reaction
coordinates(ξ1,ξ2, · · ·) by the reweighting techniques. In the
case of two reaction coordinates(ξ1,ξ2), it is given by

⟨N(ξ1,ξ2)⟩NVT

=
⟨N(ξ1(r),ξ2(r))W

−1
mbt(E(r,V),V)e−β{E(r ,V)+PV}⟩mbt

⟨W−1
mbt(E(r,V),V)e−β{E(r ,V)+PV}⟩mbt

.

(10)

Probability distribution P(ξ1,ξ2) is calculated by normalizing
⟨N(ξ1,ξ2)⟩NVT :

P(ξ1,ξ2) =
⟨N(ξ1,ξ2)⟩NVT∫

dξ1dξ2⟨N(ξ1,ξ2)⟩NVT
(11)

Thefree-energy landscape then can be calculated by

F(ξ1,ξ2) =−kBT logP(ξ1,ξ2) . (12)

APPLICATION TO CHIGNOLIN

Application to chignolin in explicit water solvent [25] is now
presented. Chignolin is a 10 residue protein (GYDPETGTWG)
of which the native state is aβ-hairpin structure [26]. The N and
C termini of the protein were left uncapped as in the experiment
by Honda et al. [26]. That is, the N terminus and C termi-
nus have a positive and negative electric charge, respectively.
The system is consisting of one chignolin molecule, 902 wa-
ter molecules, and two sodium ions Na+ as counter ions. The
initial values of the chignolin backbone dihedral angles were
φ = ψ = 180◦ except for proline. The initial dihedral-angle val-
ues of PRO4 were set toφ =−60◦ andψ = 180◦.

AMBER parm99SB force field [27] was used for the chig-
nolin molecule and the TIP3P [28] rigid-body model was used
for the water molecules. A cubic unit cell was employed with
periodic boundary conditions. The electrostatic potential was
calculated by the Ewald method. Cutoff distance wasrc = 12Å
for both electrostatic and Lennard-Jone potential. The combi-
nation [29] of the Nośe-Hoover thermostat [1; 2; 3], the Ander-
sen barostat [4], and the symplectic quaternion scheme [30; 31]
was used for the rigid-body water molecules. Reversible mul-
tiple time scale molecular dynamics techniques [32] were also
applied. The time step was taken to be∆t = 0.5 fs for the protein
atoms and∆t = 4.0 fs for the water molecules. Because the sym-
plectic rigid-body algorithm was used for the water molecules
here,∆t was able to be taken as long as 4.0 fs [29].

During this MD simulation, the root mean square deviation
(RMSD) decreased and increased repeatedly. It mean that fold-
ing and unfolding events occurred. the unfolding events oc-
curred four times.

Temperature and pressure dependences of the fraction of the
folded chignolin ffold are shown in Fig. 2. The fraction of the
folded protein ffold decreases as temperature and /or pressure
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Figure 2. (a) Temperature dependence of fraction of the folded protein

ffold at P= 0.1, 200, 400, and 600 MPa and (b) pressure dependence

of ffold at T = 300, 400, and 500 K obtained by the reweighting tech-

niques from the results of the multibaric-multithermal MD simulation.

increases. The partial molar enthalpy change∆H and the partial
molar volume change∆V on unfolding is calculated by

∆H = R

[

∂ log{ ffold/(1− ffold)}
∂(1/T)

]

P
, (13)

∆V = RT

[

∂ log{ ffold/(1− ffold)}
∂P

]

T
. (14)

Interpolating or extrapolatingthe temperature dependence of
ffold, the derivatives in Eqs. (13) and (14) were calculated.
The partial molar enthalpy change∆H was determined that
∆H = 24.1±4.9 kJ/mol atP = 0.1 MPa, as listed in Table 1.
Honda et al. determined∆H by the CD spectroscopy and
NMR experiments and their data distribute between 25.9 kJ/mol
and 32.2 kJ/mol. The partial molar enthalpy change∆H by
the present multibaric-multithermal MD simulation is slightly
lower than the experimental data, but shows a reasonably good
agreement.

The partial molar volume change∆V was determined that
∆V = −5.6± 1.5 cm3/mol at T = 298 K, as listed in Ta-
ble 1. Imamura and Kato obtained∆V = −8.8 cm3/mol by
their Fourier transform infraredspectrometer (FT-IR) experi-
ments [33]. The absolute value of the present multibaric-
multithermal MD result is slightly lower than their experimental
data, but still agrees well.

The lower absolute values of∆H and∆V mean that chignolin

Table 1. Difference in the Gibbs free energy ∆G between the unfolded

state and the folded state, difference in the partial molar enthalpy ∆H
at P = 0.1 MPa, and difference in the partial molar volume ∆V at

T = 298 K calculated by the multibaric-multithermal (MUBATH) MD

simulation. Experimental data are taken from Refs. [26; 33].

Method ∆G/(kJ/mol) ∆H/(kJ/mol) ∆V/(cm3/mol)

MUBATH 3.5 ± 0.5 24.1± 4.9 -5.6± 1.5

Exp. 1.07 – 1.87 25.9 – 32.2 -8.8
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Figure 3. Potential of mean force (PMF) as a function of

r(ASP3O−GLY7N) and r(GLU5O−THR8N) (a) at T = 300K

and P= 0.1 MPa and (b) at T = 500K and P= 600MPa obtained by

the reweighting techniques from the results of the multibaric-multithermal

MD simulation.

does not unfold with the increasing temperature or pressure in
the MD simulation as fast as in the experiment. A possible rea-
son is that the Coulomb potential parameter or the electrostatic
charge in the classical force field is too large. Reducing the ab-
solute value of the electrostatic charge may evaluate the hydro-
gen bonds weaker so that the simulational temperature/pressure
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dependence offfold and∆G may agree betterwith the experi-
ment.

The present multibaric-multithermal MD simulation sam-
pled not only theβ-hairpin structure but also a 310-helix struc-
ture. Figure 3 shows potential of mean force as a function
of r(ASP3O−GLY7N) and r(GLU5O−THR8N), which are
the distance between ASP3O and GLY7N atoms and that be-
tween GLU5O and THR8N atoms, respectively. ASP3O and
GLY7N atoms make a hydrogen bond at theβ-hairpin struc-
ture and GLU5O and THR8N atoms make a hydrogen bond
at the 310-helix structure. The potential of mean force has
a global minimum state atr(ASP3O−GLY7N) = 3.0 Å and
r(GLU5O−THR8N) =7.8 Å at T = 300 K andP= 0.1 MPa,
as shown in Fig. 3(a). This state is the native state, at which
the chignolin folds into theβ-hairpin structure. There also ex-
ists other states, which correspond to unfolded states. We can
see blue and green distribution in a wide area atT = 500 K and
P = 600 MPa, which means that the unfolded states increase,
as shown in Fig. 3(b). There are several local-minimum free-
energy states besides the global-minimum state. The state E is
not a local-minimum states but a transition state between the
states B and F or the states D and C.

Typical conformations obtained by the multibaric-
multithermal MD simulation at these states are illustrated
in Fig. 4. At the global-minimum state A, chignolin forms
the nativeβ-hairpin structure. The local-minimum state B is
obtained from the state A by bending the C terminus of the
β-hairpin structure. The local-minimum state C is obtained
from either state A or state B by bending both N and C terminus
of theβ-hairpin structure. This conformation looks like a Greek
letter “Ω”. If the N terminus of the state B does not bent like
the state C, but make a turn, anα-helix structure is obtained at
the state D. The transition sate E is obtained by breaking some
of the hydrogen bonds of theα-helix structure at the state D. It
can be obtained also from the state B or C. The local-minimum
state F, a 310-helix structure, is obtained from the state E by
forming hydrogen bonds in a different way from theα-helix
structure at the state D. This 310-helix structure can also be
attained from theΩ-like structure at the state C by making
turn structures. Finally an extended structure is obtained at the
state G if all hydrogen bonds are broken from the state C or F.
Following these pathways, the nativeβ-hairpin structure at the
state A unfolds to the extended structure at the state G. When
chignolin folds, it follows the reverse process to the native
structure.

CONCLUSION

The multibaric-multithermal ensemble algorithm is re-
viewed. The multibaric-multithermal MD or MC simulation
performs a two-dimensional random walk both in the potential-
energy space and in the volume space so that one can obtain
various isobaric-isothermal ensemble averages at different tem-
peratures and pressures from only one simulation run. The
multibaric-multithermal algorithm will thus be a powerful sim-
ulation technique to study the temperature and pressure depen-
dences of biomolecules like proteins.
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INTRODUCTION 

Mathematically modeling physical phenomena, such as a 

rigid body dynamics of the deformation of an elastic material 

or the propagation of an electromagnetic wave in the 

atmosphere, our best scientific knowledge about the laws of 

physics. So for the first case we used Newton's laws, the 

continuum mechanics and Maxwell's laws. 

These laws are the result of centuries of experimentation, 

observation and inspiration of the scientists involved in the 

creation of knowledge of nature. 

In biology and life sciences in general, the interaction 

between the observed phenomena and their mathematical 

description, are still in the early stages of development and 

apart from the Hardy-Weinberg equilibrium. The philosophy 

is to develop mathematical models that can describe in a 

qualitative manner observed biological processes.  

There is a lot of work in the literature of complex systems, 

which consider its efficiency analysis and even related to 

probable heart heartbeat  analyzed as time series, others show 

dynamic and thermodynamic  models. Our the study subject is 

the heart, so we give a brief description about its operation. 

The heart is one of the most important organs of the human 

body and it has as principal task, maintain circulation the 

blood, so the function of the heart is to pump blood. The 

blood carries oxygen (O2) from the lungs to the various 

tissues of the body and it carries carbon dioxide (CO2) from 

these tissues back to the lungs. Since the circulation forms a 

closed loop, its description can begin anywhere. We will 

begin on the left side of the heart. The left heart side receives 

blood rich in O2 and pumps this blood into the systemic 

arteries. These form a tree of progressively smaller vessels 

that supply fully oxygenated (and hence bright red) blood to 

all of the organs and tissues of the body. From the smallest of 

the systemic arteries, blood flows into the systemic 

capillaries, which are roughly the diameter of a single red 

blood cell. It is in capillaries that the actual exchange of O2 

and CO2 takes place. The blood that leaves the systemic 

capillaries carries less O2 and more  CO2 than the blood that 

entered. (The loss of O2 causes a change in the color so that 

the blood is now more bluish than before.)  

Leaving the systemic capillaries, the blood enters systemic 

veins through which it flows in vessels of progressively 

increasing size toward the right side of the heart. 

The right heart pumps blood into the pulmonary arteries 

which form a tree that distributes the blood to the tissues of 

the lung. The smallest branches of this tree give rise to the 

pulmonary capillaries where CO2 leaves the blood stream and 

O2 enters from the air space of the lungs. Leaving the 

pulmonary capillaries, the oxygenate blood is collected in the 

pulmonary veins through which it flows back to the left heart. 

This complete the circulation, F. C. Hoppensteadt [1]. 

BLOOD FLOW 

The circulatory blood system 

If we consider for a moment a simplified concept of the 

circulatory blood system in man, we can imagine that we have  

a pump delivering blood to a complicates networks of pipes, 

which has innumerable connections. To develop an 

appropriate mathematical model of this system and its 

behavior is an almost impossible task. Thus, in order to make 

any progress, we attempt to model parts of system separately. 

Here we concentrate on a small section of this circuit, say in 

the region of the aorta as shown in Fig. 1. Indeed we shall 

consider the relative straight section between A and B.  One 

can imagine that the blood flow in this section behaves in 

much  the same way a water in a cylindrical tube. This, 

however, is a gross oversimplification of the situation. To see 

this, let us consider some salient facts regarding  blood flow. 

First of all unlike water, blood does not have constant 
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ABSTRACT 

In this work, we use some results from mechanics of fluids and the thermodynamics of finite time to calculate, the efficiency of 

the heart, considering the heart like a mechanics pump. We also study the model of the heartbeat. We find results of the 

efficiency to heart far away from the real values, i.e. the model to heart like a mechanics pump is too oversimplified, the above 

is because the heart is a complex system. However using the nonlinear dynamics considering the time delays inherent of the 

system, we obtain two fixed points which sustained oscillations, and these could be the Diastole and Systole, these parameters 

are associated with blood flow in human body called pressure arterial and are very important in the cardio-vascular problems.  

We have to point out that our work is from point view academic, and pretend  to the students taking in account that the theory 

can be immediately applied to many real systems, but also has very limitations.           
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viscosity and this vary with the velocity. Thus blood may be 

claimed to be non-Newtonian; indeed the properties of blood 

change rapidly if removed from the system and so it is 

extremely difficult to perform experiments on it under 

laboratory conditions . 

 

 
Fig. 1 Schematic description of an aorta 

 

If we now consider the type of flow in an artery, it is 

apparent that because the heart delivers blood in short bursts 

during contraction into systole, the flow is pulsatile and not 

uniform. Furthermore, we do not know the velocity profile of 

the flow entering  A in Fig. 1  and consequently the velocity 

profile at B is also unknown. This observation is of 

fundamental importance in the mathematical description of 

blood flow. On the order hand, the hydrodynamic problem of 

considering the change of an initial velocity  profile a 

Newtonian fluid in a rigid pipe is fairly well understood and is 

based on the fundamental theory of Poiseuille (1846). One 

should remark here that Poiseuille whose contributions to 

hydrodynamics are well known to engineers and 

mathematicians, was in fact a physician and his interest was 

precisely the problem we are considering here, namely, the 

study of the blood flow. 

Let us now focus on the arteries themselves. We know 

them to be elastic and a typical cross section may change 

significantly with time due to pulsating nature of the flow of 

blood. Thus once again it may be unreasonable to treat the 

arteries as rigid tubes. Nevertheless we find it necessary to 

assume this as first approximation. 

   In Fig. 1 consider the flow of blood delivered into an 

aorta. The blood is pumped in an asymmetrical fashion and 

there large cross-channel components of velocity in the arch 

region and consequently large thoracic surgery on animals. 

However, away from the arch itself, say in section A-B, the 

cross-channel components of velocity are considerably 

reduced and the flow is almost entirely  longitudinal but, of 

course, still pulsatile. In the arc region it is found thoracic 

surgery that the arc pliant  and yields easily to the cross-

channel pressure gradients. Thus it is reasonable to assume 

changes and the “general give” radially of all cross sections of 

the aorta cause changes in pressure to be dampened, 

especially the radial components. We radial velocity 

components may be neglected. This assumption is known to 

physiologists as the Windkessel effect assumption, an idea 

introduced by the German physiologist Otto Frank, D. S. 

Jones [2]. 

 

Mechanics of Fluids 

We define a fluid as a substance which must continue to 

change shape as long as there is a shear stress, however small, 

present. By contrast a solid undergoes a definite displacement 

(or breaks completely) when subjected to a shear stress. In 

fluid mechanics study different types of fluids such as 

compressible, incompressible, Newtonian and non-

Newtonian. In the previous section studied that blood flow 

can be considered as a non-Newtonian fluid, as this does not 

satisfy the conditions to be studied as incompressible and 

Newtonian fluid. A. Bejan [3] was obtained an expression to 

calculate the efficiency for a piston and cylinder apparatus for 

extracting mechanical power from the flow of a fluid between 

two pressure reservoirs, given as 

 

     
 

 
(  

  

  
)                                              (1) 

 

where      is the maximum efficiency,  P1 is the reservoir 

pressure, P2 is the reservoir pressure with P1 > P2. The Fig.11-

28 of A. Vander et al [4] shows that the initial pressure 

reaches a value more than 110 mmHg before going througth 

the aorta. 

Now as we saw in the physiology of the left side of the 

heart, we can assume in a first approximation that this can be 

represented as proposed in [3], this is shown in Fig.2. 

 

 
Fig. 2 Piston and cylinder apparatus for extracting mechanical 

power from the flow of a fluid between two pressure reservoirs. 

 

On the other hand, the maximum pressure supported by a 

vein is 140 mmHg, also the normal arterial pressure in person 

without hypertension is 120 mmHg, moreover the biological 

systems have good efficiency, then we can suppose that the 

heart’s efficiency is around 30%, i.e.          , so from 

Eq. (1) we obtain that P1 =300mmHg, with P2 =120 mmHg, 

these result cannot be real. Therefore our approximation of 

the heart like mechanics pump is far from the reality. And we 

have to propose a model that takes in account more details of 

the blood flow. 

 

NON- LINEAR DYNAMICS 

As is known, the heart muscle is an autonomous system 

and has an intermittent dynamic, i.e. its operation is periodic. 

Then we use Non-linear Dynamics considering the time 

delays inherent to the heart to study the model heart’s 

dynamics proposed by E. C. Zeeman [5]. 

Times Delays 

In real life situations when the value of a variable is 

modified the effect in the dynamic response of the system is 

not observed immediately. A certain time must elapse until 

the system begins to respond or "feel" the effect of the 

changes made. Suppose we modify the concentration of a 

reactor feed. Our experience, and common sense tells us that 

time passes until the variables that characterize the dynamic 

behavior of the reactor (eg concentration) begin to modify its 

value relative to their pre-change. These systems are known 

as dynamical systems. Delayed systems appear naturally in 

Medicine, Biology and Engineering. These systems have been 
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studied since before the last century. Studies in Medicine and 

Biology begin with Ross’ epidemiology models (1911) and 

others in the early twentieth century, which were studied by 

Lotka, Volterra and Kostitzin, N. McDonald [6]. A distinctive 

feature of these systems is that their rate of evolution is 

described by differential equations that include information 

about the history of the system. The effects of delays are of 

great interest, since their presence may include complex 

behavior(oscillations, instability, bad system performance).  

R. Páez-Hernández et al [7] studied the effect time delays 

produced in a mathematical model for the stretch reflex 

regulatory pathway. A. Rojas-Pacheco et al [8] studied time-

delay effects on dynamics of a two-actor conflict model. 

Fixed points and linearisation system with delays 

Consider a dynamic system which has a single variable 

with time delays , 

  

  
                                                              (2) 

  

  
                                                              (3) 

where subscript   is a time delay variable. Following step to 

step to H. S. Strogatz [9] to obtain a linear system,  

 ̇   (        ),  ̇   (       
   )        (4) 

where   and   represent a small perturbation of the system 

and         is a fixed point, now we do a Taylor’s series 

expansion to Eq. (2) and we consider negligible the terms of 

two on ward, and evaluate in the steady-state and we obtain 
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|
       

  
  

   
|
       

                                 (5) 
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                                (6) 

Now we assume that   and   are of the form  

     
  (5)                                                      (7) 

      
                                                       (8)   

     
                                                             (9) 

      
                                                     (10) 

where   is a complex number,    and    are constant. 

Substituting Eqs. (7)-(10) into Eqs. (5) and (6) leads to the 

following set of homogeneous linear system for   and   : 

            
                                        (11) 

   
       (    )    .                              (12) 

This system of equations has non-trivial solutions only if 

the determinant of the matrix of coefficients equals zero, i.e. 

      (    )     
   

       .                 (13) 

This equation is also called the transcendental 

characteristic equation, and can be written as 

               ,                                     (14) 

with z an eigenvalue, and      and    are polynomials of 

second and zero order, respectively. 

The solutions to this equation are not obvious because has 

an infinite number of roots [6]. One way to overcome this 

situation is to consider the fact a common effect of time 

delays to destabilize stable fixed points or to stabilize unstable 

fixed points by sustained oscillations. If we assume that 

(    ), and substitute in (14), we obtain a complex variable 

equation. 

                                                    (15) 

 

where      and      are second and first order polynomials, 

respectively. We observe that the right hand side of this 

equation represents the unitary circle whereas the left hand 

side describes a parabola. The intersection of these two curves 

could represent a change in the stability of the system. The 

analysis of intersection between the parabola and the unitary 

circle leads to the following classification: 

a. If the parabola does not intersect the unitary circle, and 

the system is stable to    , then the system is stable 

independent of delay. 

b. If the system is stable for     and the parabola 

intersects the unit circle, then the system can be 

affected by delays. 

Non-Linear Dynamic Model of Heart 

A mathematical model that describes the behaviour of 

the heartbeat was developed in [5], where it was suggested 

that such a model contain three basic features: 

 a stable equilibrium state representing diastole; 

 the threshold for triggering the electrochemical 

wave causing the heart to go into systole; and 

 the return of the heart into the diastolic state. 

   The resulting model is given by 

 ̇   
 

 
                                         (16) 

 ̇                                                        (17) 

 

where x(t) represents the length of the muscle fiber, y(t) is a 

variable related to electrochemical activity; the parameter ϵ is 

a small positive constant associated with the fast eigenvalue 

of the system,    is a scalar quantity representing a typical 

length of muscle fiber in the diastolic state, and T represents 

tension in the muscle fiber. Now we use the result for 

linearization systems, for the case     ,  

 

        
 

 
                                    (18) 

 

and 

 

                                                         (19)  

 

this yields, 

  |        
 

 
                                                     (20) 

  |       
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now substituting Eqs.(20)-(23) into Eq. (13), we obtain the 

eigenvalues         and         for    ,       and 

    . Therefore, the origin is unstable since both 

eigenvalues are real and positive. In Fig. 3 we show the phase 

portrait of Eqs. (2) and (3), with the same values for the 

parameters, the  cubic line (red curve) represents the steady 

state of Eq.(18), A and B may be represent the systole and 

diastole points. 

 

 
Fig.3  Phase portrait of the heartbeat model. 

Dynamic effects of time delays 

   Consider again the systems of delay differential equations 

given by Eqs. (2) and (3), but now   
 

 
. They can rewritten 

as 

  

  
  (     ⁄ ) 

  

  
  (   ⁄   ) 

 

with   and   as defined in Eqs. (18) and (19). Following 

section 2.1, the time course of small perturbations from the 

steady state is determined; we can write Eq. (13) as 

      (    )       
     .                     (24) 

   The stability analysis of a dynamic system involving time 

delays can be quite complicated due to the fact that, in 

general, the characteristic equation has an infinite number of 

solutions. On the other hand, it is known that a common effect 

of time delays is to destabilize formerly stable steady states by 

inducing sustained oscillations. To test whether this happens, 

assume that   is imaginary        and substitute into the 

characteristic equation to obtain 

                    ,                           (25) 

wit 

  
 

    
 ,    

    

    
  and   

     

    
. 

   It follows from Eqs. (20)-(23) that     ,     ,      

and     . This further implies that E < 0, F=0, and D > 0. 

   The left-hand side of Eq. (25) determines the lower branch 

of a horizontal parabola in the complex plane. This parabola 

opens to the to the right and its vertex is located in the point 

     . On the other hand, the right-hand side of Eq. (25) 

determines a unitary circle in the complex plane. The points 

where these curves cross correspond to values of   and   at 

which sustained oscillations appear due to a destabilization of 

the steady state, or vice versa. Let   and   real variables along 

the real and the imaginary axes of the complex plane, 

respectively. In terms of these variables, the equation for the 

parabola can be written as 

   
 

   
                                                            (26) 

While the equation for the circle is 

       .                                                         (27) 

To find the points where both curves cross, solve for   in Eq. 

(26) and substitute into Eq. (27) to obtain 

   
  

 
   .                                                      (28) 

   The solutions to this last equation give the real coordinates 

of the crossing points. The corresponding imaginary 

coordinates can then calculated as    √    . The 

solutions of Eq. (28) are 

   
 

 
 

 

 
√     ,                                           (29) 

 

   
 

 
 

 

 
√      ,                                          (30) 

with      ⁄  and     . From its definition and the fact 

that E is negative and D is positive, L is negative. Notice that 

   and    have common points. Therefore, the parabola of Eq. 

(26) crosses the unitary circle in the points (-0.19,0.98), this 

indicating that there a two points which induce oscillations, 

i.e., those points can be destabilize the system.  In Fig. 4 

shows these points. 

 

Fig. 4 Plot shows the intersections between unit circle and the 

parabola given in Eqs.(26) and Eqs.(27). 

COMMENTS  

   From the result obtained with mechanics of fluids we can 

assert, that our approximation of the heart like mechanics 

pump is far from the reality. We will looking another model 

that takes in account more details of the blood flow, and 

probably we can get an expression, that gives values more 

realist. Finally we have to remark that Non-linear dynamics is 

an useful and powerful tool to tackle system with time delays, 

because it was possible to get two points which destabilizes 

the system, and assume that the intersection of these points 

could be associated with both arterial pressure the called 

Systole and Diastole, important parameters of pressure in 

blood flow.   
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NOMENCLATURE  

Symbol Quantity SI Unit 

  length of muscle fiber (m) 

   typical length of muscle fiber in the 

diastolic state 

(m) 

 

  variable related to electrochemical 

activity 

(J) 

 

   small disturbances from the 

corresponding 

fixed point values 

(m) 

   small disturbances from the 

corresponding 

fixed point values 

(m) 

 

   eigenvalue 1 (Hz) 

 

   eigenvalue 2 (Hz) 

 

  time delay (s) 

 

  frequency (Hz) 

 

   constant high pressure reservoir (Pa) 

 

   constant  low pressure  reservoir (Pa) 

 

T tension in the muscle fiber (N) 

 ⃗   
 

eigenvector corresponding to 

eigenvalue    

(m) 

 ⃗   
 

eigenvector corresponding to 

eigenvalue    

(m) 

 

    

 

                                                       

 

 

 

 

 

 

 

Dimensionless Quantity 

         is a small positive constant 

         efficiency 

A systole 

B diastole 

E       constant 

F          constant 

D         constant 

i            imaginary unit       

A1         arbitrary constant 1 

A2         arbitrary constant 2 

B1   arbitrary constant 1 

B2 arbitrary constant 2 
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INTRODUCTION 

There are many previous works on Finite Time 

Thermodynamics (FTT), several of them focus on the steady-

state energetic properties of the systems. Nevertheless, it is 

worthwhile to consider the local stability of the system. 

Santillán et al [1] first studied the local stability of a Curzon-

Ahlborn-Novikov (CAN) engine working in a maximum-

power-like regime considering the heat resistance and the 

equal high and low temperature heat transfer coefficients with 

Newton’s heat transfer law. Chimal-Eguia et al. [2] analyzed 

the local stability of an endoreversible heat engine working in 

a maximum-power-like regime with Stefan-Boltzman law. 

Guzman-Vargas et al. [3] studied the effect of heat transfer 

law and heat transfer coefficients on the local stability of an 

endoreversible heat engine operating in a maximum-power-

like regime. Barranco-Jimenez et al [4] investigated the local 

stability of a thermo-economic model of a Novikov-Curzon-

Ahlborn heat engine. Páez-Hernandez et al. [5] studied the 

dynamic properties in an endoreversible Curzon-Ahlborn 

(CA) engine using a Van der Waals gas working substance at 

maximum power regime. Páez-Hernandez et al. [6] studied 

the Local stability analysis of a Curzon-Ahlborn engine 

considering the Van der Waals equation state in the maximum 

ecological regime. Chimal-Eguia et al. [7] analyzed the local 

stability of an endoreversible heat engine working in an 

ecological regime. Páez-Hernández et al [8] studied the 

dynamic robustness of a non-endoreversible engine working 

at maximum power output.  Sanchez-Salas et al. [9] studied 

the dynamic robustness of a non-endoreversible engine 

working in an ecological regime. Huang et al [10] studied the 

local analysis of an endoreversible heat pump operating at 

minimum input power for a given heating load with Newton’s 

heat transfer law. Huang [11] analyzed the local 

asymptotically stability of an irreversible heat pump subject to 

total thermal conductance constraint. Wu et al [12] studied the  

 

local stability of an endoreversible heat pump with Newton’s 

heat transfer law working at the maximum ecological 

function. 

TIME DELAYS 

 In real life situations when the value of a variable is 

modified, the effect in the dynamic response of the system is 

not observed immediately. A certain time must elapse until 

the system begins to respond or "feel" the effect of the 

changes made. Suppose we modify the concentration of a 

reactor feed. Our experience and common sense tell us that 

time passes until the variables that characterize the dynamic 

behavior of the reactor (e.g. concentration) begin to modify its 

value relative to their pre-change. These systems are known 

as dynamical systems. Delayed systems appear naturally in 

Medicine, Biology and Engineering. These systems have been 

studied before the last century. Studies in Medicine and 

Biology begin with Ross’ epidemiology models (1911) and 

others in the early twentieth century, which were studied by 

Lotka, Volterra and Kostitzin [13]. A distinctive feature of 

these systems is that their rate of evolution is described by 

differential equations that include information about the 

history of the system. The effects of delays are of great 

interest, since their presence may include complex behavior 

(oscillations, instability, bad system performance).  Páez-

Hernández et al [14] studied the effect time delays produced 

in a mathematical model for the stretch reflex regulatory 

pathway. Guzmán-Vargas et al [15] studied time-delay effects 

on dynamics of a two-actor conflict model. 

FIXED POINT AND LINEARIZED SYSTEM WITH 

DELAYS 

Consider a dynamic system which has a single variable 

with time delays  , 
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ABSTRACT 
In this work we analyze engine implicit time delays of an endoreversible Curzon-Ahlborn engine using a van der Waals gas 

working at maximum power regime, we obtain relaxation times, and system phase portrait. When comparing the phase portrait 

with an endoreversible Curzon-Ahlborn engine using a van de Waals gas working at maximum ecological regime, we observe 

that eigenvectors have a counter clockwise rotation, as can be seen in the corresponding phase portrait. We find that the total 

time delay does not destabilize the system steady-state, regardless of this length, and thus it does not seem to play a role in the 

dynamic-thermodynamic properties trade-off. This result is in accordance with previous studies of endoreversible and non-

endoreversible Curzon-Ahlborn engines. Finally we can conclude that it is a fact that the engine dynamic properties are 

different when the work regimes and working substance change.  
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                                                               (1) 

where subscript   is a time delay variable. Following step by 

step Strogatz [16] to obtain a linear system,  

 ̇   (          ),  ̇   (       
   )   (2) 

where   and   represent a small perturbation of the system 

and         is a fixed point, now we do a Taylor series 

expansion to Eq. (2) and we consider negligible the terms of 

two onward, and evaluate the steady-state and we obtain 

 ̇  
  

  
|
       

  
  

   
|
       

                                  (3) 

 ̇  
  

   
|
       

   
  

  
|
       

                                 (4) 

Now we assume that   and   are of the form  

     
                                                              (5) 

      
                                                        (6)   

     
                                                             (7) 

      
                                                        (8) 

where   is a complex number,    and    are constant. 

Substituting (5)-(8) in (3) and (4) leads to the following set 

of homogeneous linear system for   and   : 

            
                                          (9) 

   
       (    )    .                              (10) 

This system of equations has non-trivial solutions only if 

the determinant of the matrix of coefficients equals zero, i.e. 

      (    )     
   

       .                  (11)  

This equation is also called the transcendental 

characteristic equation, and can be written as 

               ,                                      (12) 

with z an eigenvalue, and      and      are polynomials of 

second and zero order, respectively. 

The solutions to this equation are not obvious because has 

an infinite number of roots [13]. One way to overcome this 

situation is to consider the fact a common effect of time 

delays to destabilize stable fixed points or to stabilize unstable 

fixed points by sustained oscillations. If we assume that 

(    ), and substitute in (12), we obtain a complex variable 

equation. 

                                                      (13) 

 

where      and      are second and first order polynomials, 

respectively. We observe that the right hand side of this 

equation represents the unitary circle whereas the left hand 

side describes a parabola. The intersection of these two curves 

could represent a change in the stability of the system. The 

analysis of intersection between the parabola and the unitary 

circle leads to the following classification: 

a. If the parabola does not intersect the unitary circle, and 

the system is stable to    , then the system is stable 

and independent of delay. 

b. If the system is stable for     and the parabola 

intersects the unit circle, then the system can be 

affected by delays. 

THE STEADY-STATE CURZON-AHLBORN ENGINE 

USING A VAN DER WAALS GAS AS WORKING 

SUBSTANCE  

   Consider the endoreversible CA heat engine (Figure 1). This 

engine works between the heat reservoirs T1 and T2 (T1  2). 

The working temperatures at steady state are  ̅  and  ̅(T1  ̅  
 ̅  T2). Heat flows from T1 to  ̅ and from  ̅ to T2 through 

thermal resistances, with a thermal conductance denoted by .  

 

Figure 1: Schematic representation of a CA engine which consists of 

a Carnot engine (Ca) and the heat reservoirs T1 and T2. The heat 

exchanges J1 and J2 take place through both thermal conductors with 

the same conductance. 

 

   Using the endoreversibility hypothesis, an engine working 

between the reservoir  ̅ and  ̅ acts like a Carnot engine, 

although it works in finite time cycles, i.e. 

 

  ̅  
 ̅

 ̅  ̅
 ̅                                                                (14)          (11) 

and 

  ̅  
 ̅

 ̅  ̅
 ̅                                                                (15)          (12) 

  ̅ and   ̅ are the steady-state heat flows from  ̅ to the engine, 

and from the engine to  ̅ respectively.  ̅ is the engine power 

output.  

   The CA engine works usually in steady state, so that the 

heat flux from    to  ̅ is   ̅, and the heat flux from  ̅ to T2 is 

  ̅, 

 

  ̅        ̅                                                          (16)         (13) 

and 

  ̅     ̅     .                                                         (17)         (14) 

From equations (14)–(17), and from the definition of 

efficiency given as, 
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 ̅

  ̅
 .                                                                       (18)           (15)  

it follows that 

 ̅  
  

 
(  

    ⁄

   ̅
)                                                      (19)         (16) 

 ̅  
  

 
    ̅ (  

    ⁄

   ̅
).                                        (20)        (17) 

   The efficiency of a Curzon-Ahlborn engine working at 

maximum power output using a van der Waals gas as working 

substance    , was found by Ladino-Luna [17] and it is given 

as, 

    

  {√         √        
 

 
(  √ )

 
[
(  √ )

 

 √ 
 

   ]    
       

  },                                              (21) 

with:       ⁄ , and 

    
 

   
(  

      

      
)
  

,                                       (22)        (19) 

where b is a constant which depends on the gas,   is the ratio 

of the constant-pressure and constant-volume heat capacities 

      ⁄ ,      and      are the subtended volumes 

maximum and minimum respectively by the gas in a cycle.              

Now if we consider  that b is smaller than       and     , 

table 13.1 [18], then the ratio                 ⁄  is 

approximately         ⁄ , this ratio is called volumetric 

compression ratio   , for Diesel cycle the typical values are 

12-15, table 10.1 [19], so we do the calculus using (22)  and 

obtain            , which shows that we can use for 

calculus purposes      , equation (22) gives more values 

to     , but do not have  physical meaning , in accordance 

with [20]. 

    So we use only the linear approximations of (21), and 

supposing a value      ,  and we obtain the approximate 

expression, 

      √  
 

 
(  √ )

 
 

   

 
 

  

 
.              (23)       

   In this approximation we observe a relation between 

Carnot’s efficiency (  ) and van der Waals’s efficiency (   ) 

at maximum power, which is        ⁄ . It is reasonable 

because     is smaller than   , so the efficiency of a CA 

engine working in the maximum power regime using a van 

der Waals gas working substance is given by (21), with 

      ⁄ . Now, substituting this efficiency (23), into 

equations (19) and (20) renders 

 ̅  
  

 

      

     
                                                             (24)          (21) 

and 

 ̅  
  

 
      .                                                      (25)         (22) 

   From (14), and (18)-(20) we can write the power output of 

the steady- state in terms of    and       and    and it 

becomes 

 ̅  
   

 

      

     
.                                                         (26)          (23) 

   Solving   and   , from equations (19) and (20) results in 

    
  ̅ ̅

 ̅   ̅
                                                             (27)          (24) 

and 

   
 

 
(  ̅  

 ̅ ̅

 ̅   ̅
).                                                (28)         (25) 

   Finally substituting (27) and (28) in (26) we obtain the 

power output in steady-state  ̅ as function of  ̅ and  ̅, 

 ̅   
   ̅  ̅ 

 ̅   ̅
.                                                           (29) 

 

LOCAL STABILITY OF AN ENDOREVERSIBLE 

CURZON-AHLBORN ENGINE 

 

   Following Santillán et al [1], a system of differential 

equations is constructed, which provides information about of 

the stability engine. Santillán et al. developed a system of 

coupled differential equations to model the rate of change of 

intermediate temperature.  

   Assuming that the temperatures x and y correspond to 

macroscopic objects with heat capacity C, the differential 

equations for x and y are given by [1] 

 
  

  
 

 

 
[          ]                                             (30)        (27) 

and 

  

  
 

 

 
[          ],                                            (31)        (28) 

   Both derivatives cancel when x, y, J1 and J2 take their steady 

state values. Under the endoreversibility assumption, the heat 

flux from x to the working fluid is J1 and the heat flux from 

the Carnot engine to y is J2, so J1 and J2 are given in terms of 

x and y, and the power output P as,  

   
 

   
                                                                    (32)          (29) 

and 

   
 

   
 .                                                                  (33)          (30) 

   It seems reasonable to assume that the power output 

produced by the CA engine is related to temperature x and y 

in the same way that the power output at steady state  ̅ 

depends on   ̅ and  ̅ in the maximum power regime (see 

equation (26)), i.e., 

  
       

    
.                                                              (34)          (31) 

   The substitution (32)-(34) in (30) and (31) leads to the 

following set of differential equations for temperatures x and 

y of a CA engine performing in maximum-power regime and 

using a van der Waals gas as working substance. 

  

  
 

 [            ]

       
                                                  (35)         (32) 

and 

  

  
 

 [                 ]

       
.                                         (36) 

   To analyze the system stability near to the steady state, we 

proceed by following the steps described in section stability 

with  = 0. First we define 

       
 [            ]

       
                                         (37) 

and 
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   The matrix   (
    
    

), A is called the jacobian matrix. 

Now using Eqs. (37) and (38), we obtain 
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              (40) 
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  (         )

        
                                                (42) 

 

with       ⁄ . 

 

   By substitution of (39)-(42) in Eq. (11) with    , we find 

that both eigenvalues     and     have real parts, then we can 

conclude that any perturbation decays exponentially with time 

and thus that steady-state is stable for every value of  , C and 

      ⁄   . The above permit us establish the relaxation 

times, in [5] was studied the dynamic properties for this 

engine and is shown that energetic properties of an 

endoreversible Curzon-Ahlborn engine using a Van der Waals 

gas working at maximum power output regime (MP) worsens 

as   decrease to zero, and there is an interval for the Curzon-

Ahlborn engine which has efficiency and power output 

subject to compromise with  , as it has been shown in [1,3,8]. 

In [6] was studied the dynamic properties for this engine and 

is shown that energetic properties of an endoreversible 

Curzon-Ahlborn engine using a van der Waals gas working at 

maximum ecological regime (ME). This engine has the same 

characteristic as the maximum power output regime, now our 

interest is show the behavior for both regimes; in Fig. 2 we 

compare the relaxation times for both regimes, we observe 

that relaxation times exhibit approximately the same stability 

interval. 

 

 

Fig. 2 Plots of relaxation times t1 and t2, in units of C/α, vs. τ 

   However when we compare the portrait phase for both 

maximum power output and maximum ecological regimes, 

there is a small difference between the eigenvectors, i.e., there 

is a rotation for both eigenvectors, this can see in the Fig.3. 

 

 

DYNAMIC EFFECTS OF TIME DELAYS 

 

   Consider again the systems of delay differential equations 

given by Eqs. (1) and (2), but now   
 

 
. They can rewritten 

as 
  

  
  (     ⁄ ) 

  

  
  (   ⁄   ) 

 

Figure 3. Phase portrait of a Curzon-Ahlborn engine working at two 

different regimes 

with   and   as defined in Eqs. (30) and (31). From the fixed 

points theory  with time delays, the time course of small 

perturbations from the steady state is determined; we can 

write Eq. (11) as 

      (    )       
     .                        (43) 

   The stability analysis of a dynamic system involving time 

delays can be quite complicated due to the fact that, in 

general, the characteristic equation has an infinite number of 

solutions. On the other hand, it is known that a common effect 

of time delays is to destabilize formerly stable steady states by 

inducing sustained oscillations. To test whether this happens, 

assume that   is imaginary        and substitute into the 

characteristic equation to obtain 

                    ,                             (44) 

with 

  
 

    
 ,     

    

    
 and    

     

    
. 

   It follows form Eqs. (39)-(42) that        , while  

       . This further implies that constants A, B, and D are 

all positive. 

   The left-hand side of Eq. (44) determines the lower branch 

of a horizontal parabola in the complex plane. This parabola 

opens to the to the left and its vertex is located in the point 

     . On the other hand, the right-hand side of Eq. (44) 

determines a unitary circle in the complex plane. The points 

where these curves cross correspond to values of   and   at 

which sustained oscillations appear due to a destabilization of 

the steady state, or vice versa. If both curves never cross, the 

steady state cannot be destabilized by the total delay  , no 

matter how long it is. Let   and   real variables along the real 

MP
ME

Rotation

fast eigendirection

slow eigendirection
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and the imaginary axes of the complex plane, respectively. In 

terms of these variables, the equation for the parabola can be 

written as 

    
 

   
                                                        (45) 

While the equation for the circle is 

       .                                                           (46) 

To find the points where both curves cross, solve for   in Eq. 

(45) and substitute into Eq. (46) to obtain 

   
  

 
  

     

 
  .                                          (47) 

   The solutions to this last equation give the real coordinates 

of the crossing points. The corresponding imaginary 

coordinates can then calculated as    √    . The 

solutions of Eq. (47) are 

   
 

 
 

 

 
√     ,                                             (48) 

 

   
 

 
 

 

 
√      ,                                            (49) 

with      ⁄  and           ⁄ . From its definition 

and the fact that A and D are positive, L is also positive and so 

     . In Fig. 4, the plot of   ,    and  is shown. Notice 

that    and    there are no common points. Therefore, the 

parabola of Eq. (41) never crosses the unitary circle given by 

Eq. (45), because   ,   >  implies that  takes imaginary 

values  and the endoreversible Curzon-Ahlborn engine using a 

Van der Waals gas working at maximum power output regime 

cannot be destabilized by any time delay. In Fig.4 is shown 

this result, it is important to remark that there are no common 

points on both surfaces. 

 

 
Figure 4. Plot of (  1,  2), as given by Eqs. (48) and (49), vs. α 

and   , for an endoreversible Curzon-Ahlborn engine using a Van der 

Waals working at maximum power output regime. 

 

Analogously we can do the same calculus for an 

endoreversible Curzon-Ahlborn engine using a Van der Waals 

gas working at maximum ecological regime, and we find a 

similar behavior and this is shown in Fig. 5. 

NON-ENDOREVERSIBLE CURZON-AHLBORN 

ENGINE 

   Following Páez-Hernández et al. [8], we obtain the 

relaxation times, the phase portrait diagram and also 

investigate the effect of delays in time, for reasons of space, 

here we only show in Fig. 6 the behavior of the effects of 

delays for a non-endoreversible Curzon-Ahlborn engine using 

a Van der Waals gas working at maximum power output 

regime 

 
Figure 5. Plot of (  1,  2), as given by Eqs. (48) and (49), vs. α 

and   , for an endoreversible Curzon-Ahlborn engine using a Van der 

Waals working at maximum ecological regime. 

 

 

Figure 6. Plot of (  1,  2), as given by Eqs. (48) and (49), vs. α 

and   , for a non-endoreversible Curzon-Ahlborn engine using a Van 

der Waals working at maximum power output regime. 

 

CONCLUDING REMARKS 

 

   In this paper we have extended a previous work by R. Páez-

Hernández et al. [5,6] in which the local stability of an 

endoreversible Curzon-Ahlborn engine working in both 

maximum power output and maximum ecological regimes. 

Here, we have considered a Curzon-Ahlborn engine using a 

Van der Waals gas working at maximum power output 

regime, also we present the analysis to a non-endoreversible 

Curzon-Ahlborn in the maximum power regime, taking into 

account the engine inherent time delays.  

   Our results indicate that the only effect of different regimes 

is a rotation in the corresponding eigenvectors in the phase 

portrait. 

   Time delays are present in many systems subject to dynamic 

regulation. In the endoreversible and non-endoreversible 

Curzon-Ahlborn engine, the inherent time delays are not 

capable of destabilizing the steady state; thus, they not to play 

a role in the trade-off between energetic and dynamic 

properties. This does not have to be true for all energetic-

converting systems, though. For instance, time delays are 

essential to understand the origin of clonus (sustained 

oscillations in muscle contraction). 
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NOMENCLATURE  

Symbol Quantity              SI Unit 

b    constant which depend on the gas      (m
3
/kg mol) 

C          Heat capacity                                                (J/K)                             
 ̅         steady-state power output                         (W)                                           
t           time                                                                     (s)                                                      
 ̅          steady-state working hot temperature  
            of the Carnot cycle                                          (K)     

 ̅        steady-state working cool temperature  

      of the Carnot cycle                                      (K) 

α       thermal conductance                            (W/K·m) 

       small disturbances from the corresponding  

         fixed point values                                         (m) 

       small disturbances from the corresponding  

     fixed point values                                         (m) 

        eigenvalue 1                                                (Hz)                                                                            

        eigenvalue 2                                                (Hz) 

         time delays                                                    (s)                                                                                                                

  ̅       steady-state heat flow from hot  

          to the engine                                                (W) 

  ̅       steady-state heat flow from   

     the engine to cold                                         (W) 

        relaxation time 1                                            (s)                                                            

        relaxation time 2                                            (s)                                                         

        reservoir at temperature hot                          (K)                                                    

        reservoir at temperature cold                        (K)                                                

 ⃗       eigenvector corresponding to eigenvalue    (m) 

 ⃗       eigenvector corresponding to eigenvalue    (m) 

                      

      maximum subtended volume by  

          the gas in a cycle                             (m
3
/kg mol)           

      minimum subtended volumes by  

          the gas in a cycle                             (m
3
/kg mol) 

 

Dimensionless Quantities 

 

    the ratio of the constant-pressure and constant-volume 

 heat capacities 

 ̅    steady-state efficiency 

τ     ratio of the hot and cold temperatures 

    efficiency of a Curzon-Ahlborn engine working at     

   maximum power output using a van der Waals gas 

   as working substance     

A1   arbitrary constant 1 

A2   arbitrary constant 2 

B1   arbitrary constant 3 

B2   arbitrary constant 4 

rC   volumetric compression ratio 
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ABSTRACT
Within isothermal analysis of Stirling engine analytical expressions for a pressure as a function of crank angle and for a work are
found. The efficiency is numerical calculated for a wide range of temperatures. In contrast to the efficiency of the Carnot cycle,
which is monotonically increasing function of the ratio of temperatures of heat baths, the efficiency of the Stirling engine has its
maximum. The value of this maximum, as well as the corresponding ratio of heat baths temperatures, depends on a molar heat
capacity of the working substance.

INTRODUCTION

In 1816 Stirling brothers patented an engine known as the
Stirling engine. Stirling brothers patented five different kinds.
Although there are several different kinds of Stirling engines
they all have two major things in common. A gas as working
substance never leave the engine. This engine uses an exter-
nal heat source of any kind like, Sun, geothermal water, fossil
resources, biomass or nuclear reactor.

BASIC ASSUMPTIONS

In this paper we consider α type of Stirling engine. It con-
sists of two power pistons situated in mutually perpendicular
cylinders. Pistons are interconnected via flying wheel as it is
shown in Fig. 1.

Figure 1. α Stirling engine.

We assume isothermal process between gas and heat baths.
This assumption is in common with the Schmidt theory [1; 2] of
Stirling engine. The basic difference between Schmidt analysis
and one in this paper is the method of calculation of absorbed

heat. Schmidt theory assumes that gas absorbs heat in expansion
part of the cycle. In contrary to this, rather arbitrary assumption,
we keep track of sign of infinitesimal heat exchange between
gas and hot cylinder. In this way the regions of heat absorption
is clearly determined. This allow us to find the efficiency as
a function of ratio of bath temperatures. Parameters is the gas
molar heat capacity.

CYCLE

The speed of pressure transmission is equal to the sound
speed. Pistons speeds are much less than speed of sound, Ne-
glecting viscous effects pressures in both cylinders are practi-
cally equal. For the sake of simplicity the following assump-
tions are made:

There is no dead volume. Pistons move from the bottom of
cylinders.
A lengths of shafts (l) are much longer than radius (r) of
circle described by shafts ends, r/l� 1.
Working substance is an ideal gas.

From the mechanical point of view Stirling engine has one
degree of freedom, the crank angle. A branch of crank angle is
defined with radius of flying wheel that ends at shafts ends. The
coincidence of this radius with the line of symmetry of Stirling
engine, depicted in Fig. 1, at minimum value of the total gas
volume defines the zero angle.

Taking into account above mentioned assumptions volumes
of the gas in cylinders are,

V1 = Ar
[
1− cos

(
ϕ− π

4

)]
, (1)

V2 = Ar
[
1+ sin

(
ϕ+

π

4

)]
, (2)

where A is the area of the cross section of cylinders. The total
volume is

V = Ar
(

2−
√

2cosϕ

)
. (3)
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Assuming isothermal processes in cylinders and using ideal gas
equation of state we find the dependence of the pressure on the
crank angle,

p =
nRT1B

Ar
(

1+B−
√

1+B2 cos(ϕ−δ)
) . (4)

Here n is the total number of moles, B = T2/T1 where T1 and T2
are bath temperatures, and

δ = arctgB− π

4
(5)

is delay angle. It shows how many degrees a maximum of pres-
sure follows after the total volume has achieved its minimum
value. In the case of equal bath temperatures these extrema oc-
curs at the same value of the crank angle (ϕ = 0), as it should
be. The delay angle tends to its maximum value , π/4, when
ratio of bath temperatures goes to infinity.

The cycle of Stirling engine in the (p,V ) diagram is depicted
in Fig. 2. Note that points in this (p,V ) diagram do not represent
a state of working substance. Within isothermal approach. gas
is in equilibrium state only within cylinders while gas as a whole
is in nonequilibrium state.

Figure 2. Cycle of Stirling engine for a different values of the ration of
bath temperatures.

WORK

Work done by working substance within one cycle is equal
to the surface within cycle in (p,V ) diagram (Fig. 2),

W =
∫ 2π

0
pdV. (6)

Inserting pressure from Eq. (4) into above expression work be-
comes,

W =
√

2nRT1π(B−1)
√

B
1+B−

√
2B

1+B2 . (7)

The dependence of work on the bath temperatures ratio, B, is
shown in the Fig. 3.

Figure 3. Work done by the Stirling engine as a function of the ratio of
bath temperatures.

ABSORBED HEAT

Only the working substance that enters into warm cylinder
absorbs heat. Infinitesimal heat exchanged between hot bath
and working substance is, according to the first law of thermo-
dynamics,

dQ = dn2CV (T2−T1)+ pdV. (8)

In order to find absorbed heat we have to find out the angle in-
terval characterised with dQ > 0. Using the principle of mass
conservation (fixed number of moles of working substance) and
Eq.(3), after lengthily, but otherwise straightforward calcula-
tions we get,

dQ = BnRT1

[
CV
R (B−1)

[
cos
(
ϕ− π

4

)
− sin

(
ϕ− π

4

)
−1
]

(1+B− sin
(
ϕ− π

4

)
−Bcos

(
ϕ− π

4

)
)2

+

+

√
2sinϕ

{
1+ sin

(
ϕ− π

4

)
+B

[
1− cos

(
ϕ− π

4

)]}
(1+B− sin

(
ϕ− π

4

)
−Bcos

(
ϕ− π

4

)
)2

]
dϕ. (9)

Equation dQ = 0 defines the region of heat absorption. We have
found numerically solutions of following equation,

CV

R
(B−1)

[
cos
(

ϕ− π

4

)
− sin

(
ϕ− π

4

)
−1
]
+

+
√

2sin(ϕ)
{

1+ sin
(

ϕ− π

4

)
+B

[
1− cos

(
ϕ− π

4

)]}
= 0.(10)

The results are shown in Fig. 4.
As it has been expected gas absorbs heat during expansion

(0 < ϕ < π) and releases it during compression for B = 1. As
ratio of temperatures goes to infinity gas absorbs heat within
interval −π/6 < ϕ < π/4.

Absorbed heat is

Q+ =
∫

ϕ2

ϕ1

dE +
∫

ϕ2

ϕ1

pdV, (11)
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where limits of integrations are the zero points of infinitesimal
change of heat.

Heat absorbed and released by working substance and work
are shown as a function of ratio of bath temperatures in the Fig.
5.

 

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

Q
+
, 

 Q
-  ,

 W
 /

 n
R

T
2

 

T2 / T1 

Q- 

W 

Q+
 

Figure 5. Absorbed, released heat and work as a function of the ratio
of bath temperatures.

EFFICIENCY

The most important parameter of any engine is efficiency.
Having calculated absorbed heat and work it is easy to deter-
mine efficiency of the Stirling engine. Efficiency is compared
with the efficiency of the Carnot cycle as it is shown in Fig. 6.

In contrast to the efficiency of Carnot cycle that is increas-
ing function of the temperature ratio the efficiency of Stir-
ling engine exhibits its maximum. The position of maximum
and its value are functions of working gas heat capacity (see
Fig. 7). One gets the highest possible efficiency achieves for
monoatomic gases at ≈ T2/T1 = 3,4.

DISCUSSION AND CONCLUSION

The efficiency of Stirling engine is calculated within isother-
mal approach. The basic assumption is isothermal process be-

Figure 6. The efficiency of the Stirling engine compared to the effi-
ciency of the Carnot cycle as a function of ratio of temperatures.

Figure 7. The efficiency of the Stirling engine. A parameter is the molar
heat capacity, CV = i ·R/2.

tween gas and heat baths. Most cylinders are closed with disc-
like pistons. This design does not ensure isothermal process.
An adiabatic process better describes gas state then isothermal
ones. In order to ensure absorption of heat one have to add ther-
mal regenerator which is in fact heat exchanger. Heat exchanger
introduce dead volume. Dead volume as well as adiabatic pro-
cess cause the reduction of efficiency. Regenerator keeps a part
of working gas that does not exchange heat between hot and
cold cylinder. Due to the adiabatic process there is reduced heat
exchange between working gas and he baths.

According to analysis exposed in this paper efficiency of
the Stirling engine can be even higher than 50% in the case
of monoatomic gas as a working substance. The fact that
monoatomic gas gives higher efficiency then polyatomic gases
is in accordance with kinetic theory of gases. Namely, only
translation degrees of freedom contributes to work.
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NOMENCLATURE

Symbol Quantity SI Unit
l Length of shaft m
r Radius of circle described by shafts ends m
ϕ Crank angle rad
A Area of piston basis m2

V1 Volume of working substance in cold cylinder m3

V2 Volume of working substance in hot cylinder m3

V Total Volume of working substance m3

p Pressure Pa
n Amount of substance mol
R Gas constant J/(mol K)
T1 Temperature of the cold bath K
T2 Temperature of the hot bath K
W Work J
Q Heat J
E Internal energy J

CV Molar heat capacity J/mol
η Efficiency
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INTRODUCTION 

The production of cheap membranes for CO2 
separation is of primary importance for the realization of 
carbon capture and sequestration technologies.

1
 Nano-porous, 

fibrous, carbonaceous materials are promising candidates from 
an experimental point of view. In order to make further 
progress to produce molecular sieve membranes, better 
knowledge of several issues is needed. Central for good 
membrane functionality are pore size, surface binding, surface 
wall transport, pore inlet control, carbon structure and 
composition. 
 

There are many experimental works and simulations 
devoted to understand the adsorption of CO2 on carbon based 
material such as activated carbon and graphite.

2-5
 The 

adsorption isotherm of CO2 on active carbon is well described 
by several models such as Langmuir,

2
 Tóth, 

6
 

Dubinin-Astakhov (D-A),
3,7

 Reported values for iso-steric 
enthalpy of adsorption differ a lot and depend on the sorbent 
used and the condition of adsorption. Saha et al. reported that 
heats of adsorption of CO2 in Maxsorb II and ACF (A-20) 
material were around -20 kJ/mol.

3
 If one uses another untreated 

activated carbon C3345 material, the heat of adsorption was -14 
kJ/mol. 

2
 Guo et al. reported that the heat of adsorption can vary 

in the range of (-10     -28 kJ/mol) depending on the modification 
condition of the activated carbon material. 

5
 Himeno et al. also 

reported an adsorption enthalpy which was in range -16     -25 
kJ/mol) of pure CO2 on five different commercial activated 
carbons.

6
 

Several theories have motivated the adsorption 
isotherm of CO2 on graphite surface and in the slit pores of 
graphite. Lim et al. presented a Langmuir adsorption model and 
diffusion coefficient (Ds= 10

-9
 – 10

-10
 m

2
/s) of CO2 in a narrow 

pore width (H=0.65     0.75 nm) and for temperatures T=298    
318K.

8
  While Zhou et al. reported these value in wider range of 

slit pore size (H= 0.7 – 3.4 nm) and the values were comparable 
with Lim et al., Levesque et al. calculated the heat of CO2 
adsorption on activated carbon using Monte-Carlo 
simulations.

4
 The authors discussed the dependence of 

adsorption enthalpy on the distribution of pore sizes. These 
works had no distinct CO2 layers in the pores or on the surface.  

This work aims to establish a thermodynamic model 
for the layers of CO2 on the graphite surface and find diffusion 
coefficient for the surface. We use molecular dynamics 
simulation (see Figure 1) for wide range of temperatures 
(T=300-550K)  

THEORY AND MODEL 

Isotherm adsorption 
 

The reaction between the gas phase and the adsorbed 
phase on the surface can be written: 

2 2CO (gas)+graphite CO (graphite)    (1) 

At equilibrium, the gas chemical potential is equal to the 
surface chemical potential: 

g s       (2) 

0

0

lng g

p
RT

p
 

 
   

 
    (3) 

where 0

g is the standard chemical potential of the gas phase, 

i.e., the chemical potential at the reference pressure 0p . 

We may also write the chemical potential for surface as 
* lns s sRT a       (4) 

where aa  is the activity of the adsorbed phase: 

 

SIMULATING CO2 ADSORPTION AND DIFFUSION ON A GRAPHITE SURFACE 
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ABSTRACT 
We performed classical molecular dynamics (MD) simulation to understand the mechanism of CO2 adsorption and 

transport on graphite surface. The temperature of the system in our simulation was in the range 300-500K. The simulation data 

show that there are two layers of CO2 molecules absorbed on the surface. These two layers have a different behavior. The first 
CO2 layer is isolated as it does not exchange molecules with the second layer and is liquid-like, while the second layer exchanges 
molecules with the gas phase. The layers are separate thermodynamic systems. We use the simple Langmuir model to fit the 

adsorption isotherm for the second layer. The enthalpy of adsorption is calculated H0 = -16 kJ/mol. This value is in good 
agreement with experimental data of adsorption of CO2 on activated carbon. Along the graphite surface, the diffusion coefficient 
of CO2 in the first layer and the second layer are roughly of 10-11 m2/s, 10-10 m2/s respectively. These values are much smaller than 
for H2.  
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*

s
s

s

C
a

C
      (5) 

 

where 
*

a  is the standard state chemical potential at standard 

state. It follows from equation 2 that 

* 0

0
lna g

s

p
RT

p a
 

 
   

 

     (6) 

Hence the adsorption equilibrium constant is given by 
0

sp a
K

p

 
  
 

     (7) 

If we choose the standard state such that 0 1 atmp  , 

* max

s sC C then we obtain the Langmuir model isotherm  

 

max 1

s

s

C Kp

C Kp



     (8) 

 
K is the Langmuir equilibrium constant. The van’t Hoff 
relationship to describe the temperature dependence of K 

0

0 exp
H

K K
RT

 
  

 

    (9) 

where 
0K  is the pre-exponential factor, and 0H  is the 

constant iso-steric enthalpy of adsorption. Plotting K  semi 
logarithmically versus 1/T gives a linear fit from which the 

slope 0 /H R  is extracted.  

 

Surface Excess Densities 

In a thermodynamic description, the surface excess 

concentration sC  is determined. From that we can describe the 

adsorption isotherm by plotting the surface excess density 
versus the gas pressure. We use the Gibbs surface excess for 
systems in global equilibrium as described in the book of 
Kjelstrup and Bedeaux. 

9
 An interface is considered as a thin 

layer between phases. We restrict ourselves to surfaces parallel 
to the graphite surface, so  
 

 2nd gas

sC C C dz





 
    (10) 

where 
sC is the surface excess concentration, and C

gas
, C

2nd
 are 

the concentration of CO2 in the gas and in the second layer, 
respectively. (See Figure 2) 

Simulation details 

We performed classical molecular dynamic (MD) 
simulation with the DL_POLY classic package 

10
 to understand 

the mechanism of CO2 adsorption and transport on the graphite 
surface. The system consists of a sheet of crystalline graphite 
and CO2 molecules. The graphite has hexagonal structure with 
P63/mmc without any defects. The crystal is constructed from 5 
sheets of graphene and contains 4284 carbon atoms. We orient 
graphene sheets in our simulation box such that the surfaces of 
the sheets are perpendicular to the z direction. The size of the 
box is around 42x51x84 Å

3
. We use periodic boundary 

conditions in all directions. At least ten systems with different 
number of CO2 molecules ranging from NCO2=50-700 were 

simulated. For each NCO2, simulations were performed at 
different 10 temperatures in the range 300-500K.  

The MD simulation had time steps of 0.001ps. The 
initial configuration was constructed by randomly distributing 
of CO2 molecules above the graphite surface. The system was 
stabilized during 1000 ps by NVT runs with the Nosé-Hoover 
thermostat.

11
 When the system was in the thermal equilibrium, 

we performed another 1000 ps run with microcanonical 
ensemble (NVE) to study adsorption and transport properties. 
The trajectory is printed every 100 time step and stored for 
further analysis.    
 

 

Figure 1. Typical snapshot of CO2 adsorption on graphite 

surface at T=350K with NCO2=50 (a) and NCO2=600 (b). In the 

time scale of simulation there is no CO2 molecule in the gas phase 

at low concentration (a). At high concentration, there are two 

layers of CO2 forming on the surface (b). The green, red are 

represented carbon and oxygen atom, respectively.  

 

Potential energy interaction 

We fix the graphite layer and use the rigid body model 
TraPPE for CO2.

12
 The intermolecular potential consist of the 

long range Columbic interactions handled using the Ewald sum 
technique

13
 and the shifted and truncated 12-6 Lennard-Jones 

(LJ) potential. 
13

   
 

nb LJ columbic

ij ij ijV V V       (11) 

 
12 6

( ) 4
ij ij

ij ij ij

ij ij

V r
r r

 

    
             

    (12)  

 

( ) ( )         
( )

0                        

ij ij ij c ij cLJ

ij ij

ij c

V r V r r r
V r

r r

 
 



   (13) 

where ijr is the distance between atoms i and j, ii  and ij are 

LJ potential parameters, and ijr is the cutoff radius. The LJ 

interaction parameters between different types of atoms are 
calculated from the Lorentz-Berthlot mixing rules 

13
 

 

ij ii jj         (14) 

 
1

2
ij ii jj         (15) 

 

515



 
The parameters is taken from the DREIDING 

14
 and TraPPE 

12
 

force field are listed on table 1.  
 
 
 

Table 1. LJ potential parameters used in simulation 

Atom  (Å) /kB (K) charge (e) 

C (in CO2) 2.80 27 0.7 

O (in CO2) 3.05 79 -0.35 

C (graphite) 3.34 26 0 
 

 

RESULTS AND DISCUSSION 

Two distinct CO2 surface layers 
Figure 2 depicts the distribution of CO2 molecules 

along the surface of graphite with system NCO2=700 at different 
temperatures. It is shown that there are different regions of CO2 
on the surface. The first adsorption layer is located around 
0-5Å, the second adsorption layer is located around 5-12Å and 
the CO2 gas above 12 Å. The first layer is well separable from 

the second, see bar indicated with . The separation between 

the second layer and the gas  is less precise. In the first layer, 
there are two peaks, the higher one is big and corresponds to the 
CO2 molecule that are parallel to the surface. The second small 
peak corresponds CO2 molecules that do not touch completely 
the surface (the angle surface-C-O is around 30

0
). 

 
Figure 2. The distribution of CO2 molecules along the surface 

in different layer with NCO2=700 at selected temperatures. There 

are three zones, from 0-: first adsorbed layer, -: second 

adsorbed layer, above : gas phase.  

 
The radial distribution function (RDF) of CO2-CO2 

molecules of the different layers along is reported in Figure 3. 
In the first adsorption layer (Nad1) the RDF of CO2 has a liquid 
like form. Molecules are more organized than in the second 
layer (Nad2) and the gas phase (Ngas). The position of 
maximum RDF of the first layer is slightly below that of the 
second layer and the gas.  

 
Figure 4 depicts the trajectories of CO2 molecules 

during 100 ps. The lines indicate the motion of CO2 during the 
trajectory. The first layer (dark color in Figure 4) does not 
exchange molecules with the second layer. Only CO2 from the 
second layer go in and out of the gas phase (the blue lines in 
Figure 4). This behavior occurs during the whole simulation of 
1000 ps. 
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Figure 3. Radial distribution function of CO2-CO2 in different 

layers 

   

Figure 4. Trajectory plot of CO2 movement in different layers 

in time scale of 100ps. Only carbon atom is shown. The dark color 

is the adsorbed first layer. There is only the second layer exchange 

molecule with gas phase. 

 

The Langmuir model for the adsorption isotherm 

In the previous section we have shown that the first 
layer and the second layer of adsorbed CO2 show very different 
behavior. So we only use the second layer to construct the 
adsorption isotherm.  
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Figure 5. CO2 adsorption isotherm on graphite surface at 

selected temperatures. The continuous line is the fitted Langmuir 

model. 

 
 
 
Table 2. Langmuir parameters isotherm of CO2 on graphite 

T (K) 
max

sC  (molecule/nm
2
) K 

300 13.2 2.48 × 10
-1

 

320 12.2 1.53 × 10
-1

 

350 10.5 1.08 × 10
-1

 

380 9.6 5.74 × 10
-2

 

400 9.1 4.57 × 10
-2

 

420 8.7 3.65 × 10
-2

 

450 7.9 2.49 × 10
-2

 

480 6.8 2.06 × 10
-2

 

500 6.4 1.82 × 10
-2

 

550 5.6 1.27 × 10
-2

 

   
 
 
The Langmuir model can be fitted quite well to 

experimental adsorption isotherms for CO2 on activated 

carbon.
2
 We extended the number of CO2 molecules to 2000 in 

an additional calculation to see if we could obtain more than 
two adsorbed layers. However the system formed only two 
layers as in Figure 2. The Langmuir model was chosen to fit our 
data. The isotherms are presented in Figure 5. The excess 
surface adsorption of the second layer reaches a plateau when 
the pressure increases. This type of adsorption is typically for a 
CO2 isotherm not only on graphite, activated carbon but also on 
other material such as zeolite, MOF, COF, etc.  

The parameters for Langmuir equation 8 are presented 
in Table 2. The maximum excess adsorption decreases when 
the temperature increases (Figure 6).  

A plot of the logarithm of the equilibrium constant K 
versus the inverse temperature is given in Figure 7. The 
dependence is linear and from the slope, a value of the isosteric 

enthalpy of adsorption H
0
 = -16 kJ/mol is obtained. This value 

is typical for physisorption and in the range (-10.5, -28.4 
kJ/mol) of experimental data of adsorption of CO2 on activated 
carbons.

3,7,15
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Figure 6. Maximum excess surface adsorption as a function of 

temperature 
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Figure 7. Logarithm of the adsorption equlibirum constants 

versus the inverse temperature for adsorption of CO2 on graphite 

 
 

Surface self-diffusion  
 

We limited our study to the self-diffusion of adsorbed 
CO2 on the surface. This gives an important contribution to the 
transport of CO2 inside the slit pores. The self-diffusion 
coefficient of molecule can be obtained from:  

 

2

||

1

1
lim ( ) (0)

2

N
s

i i
t

i

D r t r
dNt



 
  

 
   (16) 

 
where d is the dimensionality (for surface d = 2), N is the total 

molecules, ( )ir t and (0)ir  is the position of molecule at time t 

and time initial. 
By plotting the logarithm of the diffusion coefficients 

found versus the inverse of temperature, we obtained an 
Arrhenius plot. This was used to estimate the temperature 
dependence of the diffusion coefficient according to 

 

act

0( ) exp
B

E
D T D

k T

 
  

 
    (17) 
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where 
0D is the pre-exponential factor, Bk is the Boltzmann 

constant, and actE is the activation energy.   
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Figure 8. The mean-squared displacement of CO2 in the first 

and second layer at T=500K and NCO2=700 

 
Figure 8 shows an example of mean-squared displacement of 

CO2 in the first layer and in the second layer. It is clearly shown 
that CO2 in the first layer also mobile but slower. 
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Figure 9. Natural logarithm of the self-diffusion coefficients as 

a function of inverse temperature. 

  
 
  The activation barrier for self-diffusion is obtained by 
calculating the slope of linear relationship between the natural 
logarithm of self-diffusion and 1/T (Figure 9). We found that 
for the activation barriers of the first and second layer were 
Eact1= 5.5 and Eact2 =2.3 kJ/mol, respectively.   

Along the graphite surface, the diffusion coefficient of 
first and second layers of CO2 on graphite surface is roughly 
10

-11
 m

2
/s and 10

-10
 m

2
/s, respectively which are in good 

agreement with previous simulations.
8,16

 The value is much 
smaller than for diffusion of H2 on graphite (10

-7
 m

2
/s). It is 

interesting that the first layer of adsorbed CO2 is mobile along 
the surface. The mobility is less than that of the second layer 
because the first layer is confined between graphite surface and 
the second layer and has a strong interaction with the graphite 
surface. The figure is comparable with the picture of mobile H2 
molecule on graphite by Simon et al.

17,18
  

CONCLUSION 

In this work, we have used Equilibrium Molecular 
Dynamics to study the adsorption isotherm and diffusion of 
CO2 on a graphite surface. The results show that there are two 
CO2 adsorbed layers. The two layers have very different 
diffusion and exchange possibilities with the gas phase. A 
simple Langmuir model was used to fit the isotherm of the 

second layer. The heat of adsorption was estimated (H
0 
= -16 

kJ/mol). The rate of self-diffusion of CO2 on graphite (~ 10
-10

 
m

2
/s) is small compared to H2 adsorbed (~ 10

-7
 m

2
/s) and CO2 

dense gas (~ 10
-9

 m
2
/s). These results of the equilibrium system 

form the basis for further studies of non-equilibrium properties 
of pure CO2 and mixture CO2/H2 systems.   
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ABSTRACT
Heat conduction experiments are performed in order to identify effects beyond Fourier. Two experimental setups are discussed.
First, a simple experiment by a heterogeneous material is investigated from the point of view of generalized heat conduction,
then the classical laser flash method is analysed.

INTRODUCTION

The theory of heat conduction is the parade ground of test-
ing and developing generalized thermodynamic theories [1; 2;
3]. Recently, a linear irreversible thermodynamic framework of
heat conduction was introduced, where the deviation from local
equilibrium is characterized by a single internal variable and by
the generalization of the entropy current density via a current in-
tensity factor [4; 5; 6]. A general constitutive evolution equation
of the current density of internal energy was derived via intro-
ducing linear relationship between the thermodynamic forces
and fluxes. The Fourier, Maxwell-Cattaneo-Vernotte, Guyer-
Krumhansl, Jeffreys type and Green-Naghdi type equations of
heat conduction were obtained as special cases [7]. This con-
stitutive equation incorporates memory effects and weak nonlo-
cality at the same time, however, only a local entropy function
is assumed, that does not depend on the space derivatives of the
internal energy, the basic state variable.

The balance of internal energy is written as

ρ
∂e
∂t

+∂
iqi = 0, (1)

where ρ is the density, e is the specific internal energy and qi

is the conductive current density of the internal energy, the heat
flux. For the internal energy we assume a constant specific heat
c in the equation of state e = cT , where T is the temperature.
The above evolution equation is written in a substantial form,
assuming negligible production of internal energy. ∂t denotes
the substantial time derivative, the partial time derivative of the
corresponding scalar quantity on the material manifold [8]. The
heat flux is interpreted accordingly. The space derivative ∂i is
used for the gradient in the material framework.

Then one may introduce two kind of irreversibilities. A vec-
torial internal variable together with the assumption that the heat
is not parallel to the entropy current density, j0

s = Bi jq j, leads
to the following nonlocal, relaxation type constitutive evolution

equation of heat flux qi is obtained in the following form [7]:

τ
∂

∂t
qi +qi = λ1∂

i 1
T
+λ2

∂

∂t

(
∂

i 1
T

)
+a1∂

i jq j +a2∂
j jqi +

b1
∂

∂t
(∂i jq j)+b2

∂

∂t
(∂ j jqi). (2)

The material parameters τ, λ1, λ2, a1, a2, b1, b2 are nonneg-
ative and not independent, because

a1λ2 = b1λ1, a2λ2 = b2λ1. (3)

Based on these theoretical considerations, the universality of
the theory was demonstrated by showing that various heat con-
duction mechanisms and material structures lead to the above
form of the constitutive relation. For example, material hetero-
geneity, with the possibility of two temperatures, is one such
possible substructure. Therefore, (2) is interpreted as a univer-
sal, effective approach to heat conduction beyond Fourier.

This rendering leads to a new point of view for the experi-
mental investigations. Phonon propagation is not the only pos-
sibility of non-Fourier heat conduction, but new, mesoscopic
structural effects can also play a role. The question is whether
and under what conditions we can observe these deviations.
One may think, and can also partially show, that in (2) the ad-
ditional terms have the effect of driving the solution toward the
solution of the Fourier equation. Therefore, suppressing the dis-
sipation – as it was performed in the classical experiments of
phonon based low temperature heat conduction (see e.g. [9]) –
is not an option.

We show some results of the analysis of two experimental
setups in order to identify possible deviations from the Fourier
heat conduction:

1. Simple heterogeneous materials. In these experiments, a
layered periodical heterogeneous structure is the subject of
abrupt temperature jump at one of the boundaries. The heat
transfer properties of the layers (paper and air) are differ-
ent. The additional material parameters of the equation are
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Figure 1. Experimental setup. The position of the thermometers is in-
dicated by the numbers.

determined by the experiments, fitting the solutions of dif-
ferent models of heat conduction.

2. Heat conduction measurements with flash method. Here,
we analyse models of ordinary flash experiments from the
point of view of beyond-Fourier heat conduction. Some
benchmarks are established for the parameters of the ma-
terial, the device and the operation for the identification of
non-Fourier effects.

BOOK EXPERIMENT

In this simple measurement we constructed a layered struc-
ture of 200 paper sheets, initially at ambient temperature TL =
29.9◦C. At the beginning of the measurement, the structure
has been contacted to a thermostat, while measuring the tem-
perature at 5 different points of the structure. The experimen-
tal setup is sketched in Fig 1. The sample contained 200 lay-
ers of 19cm × 15cm sheets that were fastened at one of the
shorter sides. The total thickness of the sample was L = 20mm.
The pages were 0.09mm thick and the air between them ini-
tially 0.01mm, an estimation based on the difference of the
total and compressed thickness. The density of the paper is
800kg/m3 and the isobaric specific heat 1340J/kgK. The tem-
perature was measured by a K-type thermometer at the ther-
mostat and by copper-constantan thermocouple wires with di-
ameter d = 0.1mm between the papers. The first thermometer
was built in at the copper plate surface of the thermostat, and
the second, third and fourth thermometers were 1mm, 2mm and
3mm distant from the surface of the sample at the side of the
thermostat, respectively. The position of the fifth thermometer
was 19mm from the thermostat surface. The thermometers were
positioned 7.5cm from the free, not fastened sides.

The measured temperatures are shown in Fig 2 as a func-
tion of time. One can see that the thermostat cannot be consid-
ered homogeneous at the beginning, the temperature of the first
thermometer drops by some centigrades in the first seconds of
the measurement. The temperature of the farthest thermometer,
number 5, increases only a few centigrades during the measure-
ment. We have introduced two effective models for the evalu-
ation of the data. In both cases, the thickness of the thermo-
couple wires was neglected and the problem was considered as
one dimensional, the x axis being perpendicular to the surface

Figure 2. Temperatures of the thermometers 1-5, the serial numbers
are increasing downward.

of the layers. The thermometers were comoving with the mate-
rial, therefore the heat conduction models were interpreted in a
material, i.e. first Piola-Kirchhoff framework.

Effective nonlinear Fourier equation

Here, we introduced the Fourier equation with linearly tem-
perature dependent heat conductivity,

q =−λF [1+b(T −Tre f )]
∂T
∂x

. (4)

where q is the x component of the heat flux and the space deriva-
tive is a material one at the x direction. λF is the Fourier heat
conduction coefficient at Tre f = 0◦C, and b characterizes the lin-
ear temperature dependence of the thermal conductivity.

The initial temperature of the sample was uniform T (t =
0,x) = TL = 29.9◦C. The boundary condition in the free surface
was constant, at the ambient temperature T (t,x = L) = TL. At
the side of the thermostat we have assumed a constant thermal
conductance α, therefore, the corresponding boundary condi-
tion is

λF [1+b(T (t,x = 0)−Tre f )]
∂T
∂x

(t,x = 0) = α[T (t,x = 0)−T0].

The free parameters of the model were the heat conduction coef-
ficient λF , the thermal conductance α, the parameter b, and the
temperature of the thermostat T0. In order to determine the best
effective model parameters we considered the measured tem-
perature data of thermometers 2,3,4 in every 5s to be fitted by
the following partial differential equation, subject to the above
boundary and initial conditions:

ρc
∂T
∂t

−λF
∂

∂x

(
[1+b(T −Tre f )]

∂T
∂x

)
= 0. (5)

The best fit parameters are the following:

λF [W/mK] b[1/K] T2[
◦C]

Values 0.140 −0.008 69.65

Stand. err. 0.006 0.0003 0.15

Table 1. Fitted parameters of the nonlinear Fourier model
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Figure 3. Fitted nonlinear Fourier equation. Black, uncertain line: ther-
mometer data, blue dots: data points of the fit, red smooth line: fitted
model.

The calculations resulted in a high and uncertain value of
the thermal conductance α, indicating that the boundary can be
considered at a constant temperature, and that the fit is not sen-
sitive to this parameter. The negative b may indicate the role of
the weight on the top of the sheets. The goodness of the fit can
be characterised by R2 = 0.9992. We have plotted the data and
the fit together in Fig 3. The red lines denote the fitted func-
tion, the blue dots indicate the data points used for the fit from
thermometers 2, 3 and 4, and the black lines show the complete
measurement data according to Fig 2.

Effective Guyer-Krumhansl equation

Our second model introduces the same number of fit param-
eters with a reduced version of the generalized constitutive heat
conduction, where λ2 = 0, therefore, b1 = b2 = 0. The one di-
mensional form of (2) can be written as

τ
∂

∂t
q+q =−λF

∂T
∂x

+a
∂2q
∂x2 . (6)

The Jeffreys type heat conduction could be a similar sim-
plification, with a similar number of parameters. The role of
the nonlocal terms with these boundary and initial conditions is
probably similar [7].

In this case, the initial temperature distribution in the sam-
ple is the same as in the nonlinear Fourier case T (t = 0,x) =
T1 = 29.9◦C and the boundary conditions are similar: T (t,x =
L) = TL and q(t,x = 0) =−α0[T (t,x = 0)−T0]. However, this
model requires an additional initial and also a further bound-
ary condition. We assume that in case of uniform tempera-
ture distribution the initial heat flux was zero q(t = 0,x) = 0
and at the free side of the sample we assume constant ther-
mal conductance, with a large constant coefficient q(t,x = L) =
−αL[T (t,L)− TL] in order to ensure approximately constant
boundary temperature. The thermal conductances were cho-
sen α0 = αL = 50000± 40000W/m2K. The error estimate is
based on sensitivity calculations, the heat conduction model is
not sensitive in these parameters, similarly to the previous non-
linear Fourier one. The free parameters of the model are the
heat conduction coefficient λF , the relaxation time τ, the Guyer-
Krumhansl parameter a and the temperature of the thermostat
T0.

Figure 4. Fitted Guyer-Krumhansl equation. Black, uncertain line: ther-
mometer data, blue dots: data points of the fit, red smooth line: fitted
model.

In order to determine the best effective model parameters,
we considered the same temperature data as in the case of the
nonlinear Fourier model. The model introduces the following
system of partial differential equations:

ρc
∂T
∂t

+
∂q
∂x

= 0, (7)

τ
∂

∂t
q+q = −λF

∂T
∂x

+a
∂2q
∂x2 . (8)

The best fit parameters are the following:

λ [W/mK] τ [s] a [m2] T0 [
◦C]

Values 0.05243 194.9 1.415×10−5 69.52

Stand. err. 0.00003 0.1 9×10−8 0.05

Table 2. Fitted parameters of the Guyer-Krumhansl model.

The goodness of the fit can be characterised by R2 = 0.99997.
We have plotted the data and the fit together in Fig 4. The red
lines denote the fitted function, the blue dots indicate the data
points used for the fit from thermometers 2, 3 and 4, and the
black lines show the complete measurement data according to
Fig 2.

The Guyer-Krumhansl equation seems to fit the data slightly
better than the nonlinear Fourier model. The thermostat tem-
peratures are approximately the same. However, neither fits are
perfect, there are visible deviations. Remarkable is the large
difference of the Fourier heat conduction coefficients in case of
the different models. The heat conduction of paper is λpaper =
0.11− 0.13W/mK, and that of air is λair = 0.024W/mK. In
our evaluation, the temperature dependent heat conduction co-
efficient is λF(T = TL) = 0.11W/mK at air temperature and
λF(T = T0) = 0.063W/mK at the termostat.

FLASH SIMULATIONS

The laser flash method is a common method to measure the
thermal diffusivity (D, see its definition below) of solid materi-
als having medium and high thermal conductivity (λF ). During
the measurement, a small disk-shaped specimen (with 1-3mm
thickness and 10-30mm diameter) is subjected to a short and
high intensity laser pulse on the front face, and the temperature
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response is recorded on the rear face. D is then calculated based
on the time to reach half of the maximum temperature rise of the
rear face. The method was originally proposed by Parker et al.
[10] in 1961, then further improved by applying corrections for
finite pulse time [11] and heat loss effects [12; 13]. Since the
1960s, numerous extensions of the original method have been
introduced including e.g., the application for liquids, heteroge-
neous materials, and two- or three-layered specimens. Recently,
the ultrafast laser flash method has been proposed by Baba et al.
[14] for the measurement of thin films attached to a substrate.
The thickness of the film can be less than 100nm, for which the
laser pulse duration should be in the order of magnitude of pi-
coseconds. In this parameter domain, the application of hyper-
bolic heat conduction models might be necessary. (It should be
noted that the ultrafast laser flash method has significant differ-
ences in the way of temperature measurement compared to the
classical laser flash method.) In the present study the Maxwell-
Cattaneo-Vernotte (MCV) type heat conduction model was ap-
plied to simulate laser flash experiments. Our aim was to find
the parameters for which the relaxation effect of the MCV equa-
tion can be observed via the measurement.

The laser flash experiment was simulated for a single layer
specimen that is solid, homogeneous and material properties are
constant. One-dimensional heat conduction through the thick-
ness of the specimen was assumed; heat losses were neglected.
Heat conduction was modeled according to the MCV equation:

τ
∂

∂t
q+q = λF

∂T
∂x

, (9)

which is identical to (6) when a = 0. With the help of (1), one
can obtain the following partial differential equation for the tem-
perature:

τ
∂2T
∂t2 +

∂T
∂t

= D
∂2T
∂x2 , (10)

where D = λF
ρc is the thermal diffusivity. We solve the differen-

tial equation with the following initial conditions T (t = 0,x) =
T0, ∂T

∂t (t = 0,x) = 0. At the front boundary, x = 0, a heat pulse
is introduced, with the following form (Fig 5):

q0(t) =

 1
2 qmax [1− cos(2πt/tp)] , 0 < t ≤ tp,

0, t > tp.
(11)

The front boundary condition itself can be given with the help
of the MCV equation (9)

τ
d
dt

q0 +q0 =−λF
∂T
∂x

(t,x = 0). (12)

At the rear face, the boundary condition is required to be
∂T
∂x (t,x = L) = 0.

In order to find the parameters, for which the relaxation ef-
fect of the MCV equation can be observed, we introduced the

Figure 5. The shape of the applied pulse.

following dimensionless variables and parameters:

θ =
T −T0

TL −T0
, where TL = T0 +

1
ρcL

∫ tp

0
q0(t)dt,(13)

Fo =
Dt
L2 , (14)

ξ =
x
L
, therefore 0 ≤ ξ ≤ 1, (15)

Π
2 =

Dτ

L2 , (16)

g(Fo) =
q0(Fo)

q̄
, where q̄ =

1
Fop

∫ Fop

0
q0(Fo)dFo. (17)

Then we obtain the differential equation (10) in a dimensionless
form as follows:

Π
2 ∂2θ

∂Fo2 +
∂θ

∂Fo
=

∂2θ

∂ξ2 , (18)

The initial conditions are θ(Fo = 0,ξ) = 0 and ∂θ

∂Fo (Fo = 0,ξ) =
0. The heat pulse is

g(Fo) =

1− cos
(

2π
Fo

Fop

)
, 0 < Fo ≤ Fop,

0, Fo > Fop.
(19)

and the front boundary condition

Π
2 d

dt
g+g =−Fop

∂θ

∂ξ
(Fo,ξ = 0). (20)

The rear face boundary condition is ∂θ

∂ξ
(Fo,ξ = 1) = 0.

The problem was solved numerically, using a simple explicit
finite difference method. The key for obtaining a stable numer-

ical solution was to keep the Courant number, Cou = δt
δx

√
D
τ
=

δFo
δξΠ

, close to but less than 1. (Cou = 0.99 was applied.)
The shape of the laser pulse q(t) is shown in Fig 5. This func-

tion was chosen because it starts with 0 derivative, its derivative
is finite everywhere, and it has finite height and length. (Start-
ing with non-zero derivative and/or a jump in the function can
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Figure 6. Rear side temperature history, Π2 = 0.005. Black solid
lines Fop = 0.5Π2, grey dashed lines Fop = 2Π2, black dotted lines
Fop = 8Π2

Figure 7. Rear side temperature history, Π2 = 0.02. Black solid lines
Fop = 0.5Π2, grey dashed lines Fop = 2Π2, black dotted lines
Fop = 8Π2

cause instability in the numerical solution.) Looking at the di-
mensionless equations we can conclude that the problem can be
fully characterized by two dimensionless parameters: Π2 and
Fop. In a laser flash experiment, the rear face temperature his-
tory, θ(Fo,ξ = 1), is recorded. Hence, the effect of these two
parameters on the rear face temperature history is to be exam-
ined.

Results of the numerical solution of the dimensionless prob-
lem are shown in Figs 6-8 for various values of Π2 and Fop. In
Fig 6, where Π2 = 0.005, only a slight relaxation effect can be
seen for Fop = 0.5Π2. For longer pulses, waves are not present
in the temperature histories. The main difference in these tem-
perature histories compared to the ones calculated using the
classical Fourier model is that the temperature remains 0 for a
specified time before it starts increasing. In real measurements,
it is difficult to detect this because of the noise in the temper-
ature measurement, and applying a finite pulse time correction
might appear to fix the deviance from the Fourier model. In Fig
7, where Π2 = 0.02, a wave can be clearly seen in the temper-
ature history for Fop = 0.5Π2 and Fop = 2Π2, which is a clear
and easily detectable sign of the MCV equation. Increasing Π2

further (see Fig 8 where Π2 = 0.08), a second wave can be seen
in the temperature history for the shortest pulse. This means

Figure 8. Rear side temperature history, Π2 = 0.08. Black solid lines
Fop = 0.5Π2, grey dashed lines Fop = 2Π2, black dotted lines
Fop = 8Π2

Figure 9. Dimensionless temperature distribution for Π2 = 0.02 and
Fop = 2Π2.

that the wave bounces back from the front side and reaches the
rear side for the second time. The temperature histories for all
three Fop values rise above the steady state value, which is again
a detectable sign of the MCV equation. The length of the pulse
(Fop) has a significant effect on the temperature history. When
Fop is much less than Π2 then the wave is very sharp, which
causes high maximum temperature on the front side. When Fop
is much more than Π2 then the wave might disappear from the
temperature history. This effect can be understood by compar-
ing the two terms on the left hand side of equation (20). We
found that the optimal value of Fop is around 2Π2, because in
this case the two terms have the same order of magnitude.

The value of Π2 in case of the classical laser flash measure-
ments is very low. In order to obtain higher values, special con-
ditions are necessary. This is why it is desirable to find the
smallest value of Π2 for which the relaxation effect of the MCV
equation can be reliably observed. Considering the results of the
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numerical calculations, we suggest Π2 = 0.02 and Fop = 2Π2

as target values for the detection of the relaxation effect with
the laser flash method. The complete temperature distribution
in time and space for this case is shown in Fig 9. The propa-
gation of the wave caused by the laser pulse can be followed
along the thickness. The wave bounces back from the rear side
but does not reach the front side again. The maximum temper-
ature on the front side is about 9 times higher than the steady
state temperature.

Al @293K NaF @15K

D [m2/s] 9.2 ·10−5 2.6

τ [s] 2.6 ·10−12 6.8 ·10−7

L [m] 1.1 ·10−7 9.4 ·10−3

tp [s] 5.2 ·10−12 1.4 ·10−6

Table 3. Parameters according to Π2 = 0.02 and Fop = 2Π2 for
aluminium at 293K and for NaF at 15K (NaF properties are

based on [9].

Finally, we calculated the recommended thickness (L) and
pulse time (tp) according to Π2 = 0.02 and Fop = 2Π2 for alu-
minum at 293K and NaF at 15K. The results are summarized
in Table 3. For aluminium at 293K the recommended thick-
ness is about 110nm, and the pulse time is about 5.2ps. With
this thickness, the measurement cannot be performed on a stan-
dalone sample, however, measurements on two-layer configura-
tions might be possible [14]. This, naturally needs the modifi-
cation of the mathematical model, and the target values of the
dimensionless parameters must be revised. Regarding NaF at
15K, the recommended thickness is 9.4mm, and the pulse time
is 1.4µs. These are close to the experimental values in [9] and
not extreme, customised laser flash instruments are able to per-
form measurements with these parameters. The big challenge
is to perform the measurement at 15K. The second difficulty
is that the thermal conductivity of NaF around 15K changes
rapidly with temperature, which has to be considered in the
mathematical model. Another option is to keep the tempera-
ture change caused by the pulse very small, which makes the
temperature measurement very challenging.

In conclusion, the detection of the relaxation effect of the
MCV equation by the laser flash method in the classical con-
figuration might be possible only for materials with extremely
high conductivity and very sophisticated instrumentation. How-
ever, the possibility of detecting the relaxation effect seems to
be open for a wider range of materials applying a modified mul-
tilayer configuration of the classical method like in [14]. For
this the mathematical model must be modified to match the mul-
tilayer configuration, and the target values of the dimensionless
parameters must be revised.

DISCUSSION

The book experiment can be modeled reasonably well by
both a nonlinear Fourier equation, with time dependent heat
conductivity and by a linear Guyer-Krumhansl equation. These
results are not conclusive, one cannot decide which model is
better. Especially, the high value of the relaxation time in
the GK model should be handled by care. First, because there
are uncertainties in the fitting, and in the modeling of the con-
tact with the thermostat. Moreover, here the special qualitative
phenomena of the Maxwell-Cattaneo-Vernotte equation may be

suppressed by the higher order dissipation due to the last term
of (7).

The analysis of the laser flash method highlighted the exper-
imental parameters where qualitative effects due to the MCV
equation can be identified. When dissipation beyond the Fourier
equation cannot be suppressed, a similar analysis of the Guyer-
Krumhansl and the Jeffreys type model is necessary.
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4 Montavid Thermodynamic Research Group, Igmándi u. 26, H-1112 Budapest, Hungary

5 E-mail: fulop.tamas@wigner.mta.hu

ABSTRACT

We present a thermodynamical formulation of elastic, plastic, rheological and thermal stress phenomena of solids that is based

on two pillars. One of them is a recent novel definition of kinematic quantities that enables the description of finite deformation

elastic, plastic and thermal expansion changes in an automatically objective way. In parallel, the other pillar is irreversible

thermodynamics. We show how naturally the well-known aspects of plasticity, as well as the inclusion of rheology, meet the

requirement of positive definite entropy production. The general framework is illustrated via a simulation example and an

experimental example.

INTRODUCTION

In nonquantitative/heuristic terms, objectivity may be formu-

lated as the requirement that the physical content of a theory

must be independent from the description used for the formu-

lation of the theory. It might be expected that it is nontrivial

to ensure objectivity for a theory, and paradoxes, controversies

and errors indicate that indeed this is the case.

Motivated by the need for a safely objective formulation of

continuum physics, in a recent work, we have introduced a

novel definition of kinematic quantities [1; 2]. By working on

Galilean spacetime directly, it was possible to avoid the use of

any auxiliary element—reference frame, reference time, refer-

ence configuration etc.—, which are sources of possible viola-

tion of objectivity in the conventional approaches. In our frame-

work, all kinematic quantities and equations are automatically

objective.

The logical continuation of this program is to reformulate

the mechanical and thermodynamical theories in terms of these

quantities, as well as to look for possible improvements and

possibly emerging new opportunities for theory building. The

present work reports on results obtained in this direction. We

show here a small deformation thermodynamical framework for

elastic, plastic, thermal expansion and rheological phenomena

of solids. Our original aim was an illustration of that, with

the spacetime-based quantities, one can express anything that

is needed in continuum physics. In parallel, it has gradually

turned out that these quantities enable and suggest some such

improvements and possibilities in continuum physics that have

not been apparent before.

To see how our thermodynamical theory performs in prac-

tice, we provide here two illustrations, a numerical calculation

of a concrete example process and an experiment, where the

results demonstrate the features of the theoretical framework.

KINEMATIC QUANTITIES

Based on Matolcsi’s reference frame free approach to theo-

retical physics [3; 4; 5], the problems of objectivity and material

frame indifference [6; 7; 8; 9; 10] have been investigated in a

series of papers [11; 12; 13; 14; 1]. In particular, in [1], the

kinematic quantities for elastic and plastic processes of solids

have been presented in a way that is free from any auxiliary el-

ements like reference frame, reference time and reference con-

figuration. During the birth of [1], it has been realized that this

new approach incorporates thermal expansion also in a natural

way and reveals some nontrivial kinematic and dynamical con-

sequences of thermal expansion [2].

This kinematic background of the subsequent thermodynam-

ical framework can be summarized as follows.

The motion of the continuum

The continuum is considered as a three dimensional smooth

manifold. Each material point of it moves along a smooth world

line in spacetime—which we will take here as a Galilean (“non-

relativistic”) spacetime—, at time t, the spacetime location of P

is rt(P). Its material gradient ∇˜ , i.e., the derivative with respect

to the variable P,

Jt(P) := (rt ⊗ ∇˜)(P) , (1)

is the world line gradient (and is the spacetime compatible

generalization of the traditional deformation gradient) [spatial

derivatives will act to the left or to the right according to the

context, always to indicate the correct tensorial order]. This ten-

sor maps tangent vectors of the material manifold to spacelike

spacetime vectors, which form a three dimensional Euclidean

vector space with Euclidean scalar product h. At any instant

t, the current spatial distance of two material points P,Q is the
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distance of rt(P) and rt(Q) with respect to the spatial Euclidean

metric h,

dt(P,Q) = ‖rt(Q)− rt(P)‖h
. (2)

This induces a current metric

h˜t := J
T

t hJt (3)

on the material manifold ( T standing for transpose) , a scalar

product for the tangent vectors at each material point.

The spacetime velocity of material point P at t is the

time derivative ṙt(P) = vt(P). If we change from the La-

grangian/material/comoving variable to the Eulerian/spacetime

variable then the material gradient ∇˜ is mapped to the spatial

spacetime derivative ∇ via Jt , and we find

Lt = J̇tJ
−1
t (4)

for the velocity gradient

Lt(P) := (vt ⊗ ∇˜)(P). (5)

(Naturally, the substantial/comoving time derivative coincides

with the partial time derivative in the Lagrangian picture.)

Elasticity

So far, our continuum could have been a solid as well as a

liquid (and even a laminarly flowing gas). What could be the

mathematical formulation of the distinction between a solid and

a liquid? Expressing that ‘a solid has a structure’, we can say

that a solid possesses a self-metric (natural metric) structure,

with which its current metric coincides when the solid is under

no external influence. Namely, we assign to a solid a certain

metric g˜ on the material manifold. This metric tells the distances

of material points—i.e., coincides with the current metric h˜t—

when the solid is relaxed.

Our intention with an elastic kinematic quantity is to be the

variable on which elastic stress depends, which, under classical

mechanical experience, may be expected to depend on the dis-

tances between nearby material points. Taking into account that

g˜ describes the distances in unstressed state, the elastic kine-

matic quantity could measure the deviation of the current metric

h˜t from the self-metric g˜. To this end, we can define

A˜ t := g˜
−1

h˜t (6)

(elastic shape tensor), which proves to be the spacetime com-

patible generalization of the ‘right’ Cauchy-Green tensor, and

D˜ t := ln

√

A˜ t =
1
2

lnA˜ t (7)

(elastic deformedness tensor), which is the generalization of the

‘right’ Hencky strain.

These tensors have been defined on the material manifold—

acting on material tangent vectors—but can be transported to

spacetime via J. For the spacetime version (the ‘left’ version),

we can derive the evolution equation

Ȧ = LA+AL
T. (8)

Thermal expansion

As far as elasticity is concerned, the relaxed metric can be

regarded as a constant tensor. However, we are aware of phys-

ical phenomena where the structure of a solid changes, where

its relaxed distances change. One such phenomenon is thermal

expansion. Restricting ourselves to isotropic solids, if l(T ) de-

notes a characteristic length (edge length of a cube, or radius

of a sphere) of a unit amount (mass, or molar number) of the

material at temperature T then, for the temperature dependence

of the relaxed metric, we have

g˜(T2) =

(

l(T2)

l(T1)

)2

g˜(T1) (9)

[in accord with that the metric expresses squared distances].

The usual definition of the linear thermal expansion coefficient

is

α(T ) :=
dl(T )/dT

l(T )
. (10)

When temperature changes in time at a material point, we have

ġ˜=

(

d

dT
g˜

)

Ṫ = 2α(T )Ṫ g˜ (11)

following from Eq. (9), implying

Ȧ = LA+AL
T
−2αA. (12)

Let us note that, in a theory, l(T ), and thus α(T ), must be

given constitutively.

Plasticity

Another phenomenon where the structure of a solid changes

is plasticity. Therefore, plasticity is another source of ġ˜ 6= 0.

Putting elasticity, thermal expansion and plasticity together, we

have

Ȧ = LA+AL
T
−2αA−2Z, (13)

where Z, the plastic change rate tensor is responsible for the

additional change rate of g˜, and is also to be given constitutively.

Remarks

We can see that, actually, g˜ is not purely a kinematic quantity.

Still, since elastic, plastic and thermal expansion deformations

are traditionally considered as kinematic, we must speak about

it here, where these kinematic definitions are given. Also, g˜ is

not purely dynamical, either.

As another remark, useful for the applications, strain can be

defined only with respect to a reference time t0, as

Et0→t :=
∫ t

t0

L
S d˜t, (14)
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where S denotes symmetric part and d˜t indicates comoving inte-

gration. In parallel, the conventional deformation gradient can

be expressed in the present formalism as

Ft0→t = JtJ
−1
t0

, (15)

and satisfies

At = Ft0→tAt0
F
T

t0→t . (16)

Small deformation

From now on, we restrict our treatment to the small defor-

mation regime, where (i) A is near to I, thus also satisfying

A ≈ I+2D, (ii) J does not change considerably during the time

scale on which we consider a process, and (iii) α can also be re-

garded as a constant. Then Eq. (13) simplifies, in leading order,

to

Ȧ = L+L
T
−2αI−2Z, (17)

rearrangable as

L
S = Ḋ+αṪ 1+Z. (18)

A consequence of the small deformation approximation is

that we do not have to pay attention to the difference between

‘right’ and ‘left’, i.e., material and spacetime tensorial quanti-

ties.

MECHANICS AND THERMODYNAMICS

Stress

Let us start building the dynamical theory by choosing what

we expect on the mechanical side: let our elastic constitutive

equation be the simple linear one:

σσσσσσ =Ud
D

d +U s
D

s (19)

with

D
s = 1

3
(trD)1, D

d = D−D
s, Us = 3K, Ud = 2G. (20)

Actually, a nonlinear choice could also be incorporated, but let

us now pursue a simple, yet interesting, setting.

At this point, we can already observe that the classic

Duhamel-Neumann formula for thermoelasticity [15] is recov-

ered as a special case. To see this, we must assume what are

assumed there: that, at an initial time t0, the temperature is T0

and elastic deformedness is considered zero (Dt0 = 0, At0 = I),

that is, we start with an unstressed, relaxed, natural initial state.

We also stay in the small deformation regime, and neglect plas-

tic changes. Then, at time t, in the leading order approximation,

Dt =
1
2
(At − I) = 1

2

(

Ft0→tF
T

t0→t − I
)

= Et0→t −α(T −T0)I. (21)

Inserting this into Eq. (19) yields

σσσσσσt ≈ 2GEt0→t +
(

K −

2
3
G
)

(trEt0→t)I−3Kα(T −T0)I, (22)

which is precisely the Duhamel-Neumann expression.

Thermodynamical quantities for elasticity, thermal expan-

sion and plasticity

Our first step towards thermodynamics is that we expect the

first law to be satisfied:

ρu̇ =−ju ·∇+σσσσσσ : L
S (23)

for the specific internal energy u and its current ju, both to be

specified constitutively later (and the density ρ being constant

in the small deformation regime) [: denotes trace]. Let us then

construct the rest of the thermodynamical build-up as follows:

our aim is to rewrite Eq. (23) assuming js = ju/T for the entropy

current js, and with an appropriate specific entropy s(D,T ), as

T ρṡ = T (−js ·∇+σs) , (24)

where the positive definiteness of the entropy production, σs ≥ 0

is also to be ensured constitutively.

If we choose again a simple internal energy function, i.e.,

consisting of an elastic energy part and a thermal term corre-

sponding to a constant specific heat c,

u = cT +
Ud

2ρ
D

d : D
d +

U s

2ρ
D

s : D
s +

U s

ρ
T αtrDs, (25)

then, omitting the straightforward details, that appropriate en-

tropy function proves to be

s = c ln
T

T0
+

U s

ρ
αtrDs + s0 (26)

with any temperature value T0 and constant s0, and the corre-

sponding entropy production is found to be

σs =∇
1

T
·ju+

1

T
σσσσσσ : Z=∇

1

T
·ju+

Ud

T
D

d : Z+
U s

T
D

s : Z. (27)

Our remaining task is to ensure the positive definiteness of the

latter.

One simple choice guaranteeing this is when we take the

standard constitutive formula for heat conduction,

ju = λ∇
1

T
(28)

(with, say, a constant positive λ), and prescribe the plastic con-

stitutive equation as

Z = ΓḊ
d with Γ = γH

(

D
d : D

d
−B

)

H
(

D
d : Ḋ

d
)

, (29)
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where γ and B are positive constants, and H is the Heaviside

function.

The choice Eq. (29) is fairly plausible from the plasticity

point of view: the plastic change rate is deviatoric and is pro-

portional to the elastic change rate, the first Heaviside term de-

scribes a von Mises yield criterion (recall that stress is in a linear

relationship with D), and the second Heaviside term expresses

the natural expectation that plastic change is switched off during

unloading.

On the other, thermodynamical, side, the second Heaviside

term ensures that entropy production is positive definite. One

may actually dare to put this reversely: plasticity must be

switched off during unloading, as otherwise positive definite-

ness of entropy production would be violated.

We remark that it poses no difficulty to incorporate tempera-

ture dependent coefficients U s, Ud, α, c.

Adding rheology

The thermodynamical formulation of rheological models is

possible with the aid of internal variables (dynamical degrees

of freedom [16]). The details [17] of this derivation cannot be

given here, but the outline is similar to what happens in [18].

Namely, we assume the presence of an additional internal

variable, a symmetric tensor ξξξξξξ, and extend our previous entropy

function as

s = sprevious −
1

2
ξξξξξξ : ξξξξξξ. (30)

If plasticity and thermal expansion are neglected then the pos-

itive definiteness of entropy production leads to, in the linear

Onsagerian setting, after eliminating the internal variable, a lin-

ear rheological model with σσσσσσ, σ̇σσσσσ, D, Ḋ, D̈ terms. Therefore, we

arrive at a common generalization of the Poynting–Thomson–

Zener and the Jeffreys models, which we may call the inertial

Poynting–Thomson–Zener model.

A SIMULATION

The evolution equations Eq. (18), Eq. (23), together with the

approximate mechanical equation of motion

σσσσσσ ·∇ = 0 (31)

and the constitutive prescriptions Eq. (19), Eq. (25), Eq. (28),

Eq. (29), form a closed set of equations, thus being capable to

calculate a concrete process. To demonstrate this, we have per-

formed a numerical calculation for a cylindrical rod uniaxially

stretched by an increasing force, linear in time.

Figure 1. shows the strains and the temperature as the func-

tion of time. Plastic change (blue line) begins only above the

critical stress. Below this, temperature decreases, similarly to

what happens for an adiabatically expanded gas. Therefore,

the total strain (black line) runs a bit below the elastic strain

(green line), the difference caused by the nonzero thermal ex-

pansion coefficient. When the plastic change also appears, the

total strain increases faster, and, due to the dissipative power

term σσσσσσ : Z, temperature also starts to increase.

Figure 2. shows the modification of the setup, where the

rod has slightly nonconstant cross section: then plasticity (blue

0

 

0.2

15

0.1

105
0

Figure 1. Uniaxially stretched rod. The temperature (red line) first de-

creases and then increases, the elastic strain (green line) increases fol-

lowing the increased stress, the plastic strain (blue line) appears only

above the critical stress, causing that the total strain (black line) starts to

increase faster.

❵❵❵❵❵❵
②

③
rod

❵❵❵②stretching

❵❵❵ ③ stretching

�
��✒
time

✻
stress

Figure 2. Stretching a rod with slightly nonconstant cross section. Plas-

tic change (blue region) starts where the rod is the thinnest, and failure

(red region) also occurs there, the remaining part of the rod has only

elastic and thermal expansion deformations (green region).

region) appears first at the location where the sample is thin-

ner, and failure (red region) would also appear there, if a simple

stress failure criterion is added for illustration and for the sake

of the following Section.

AN EXPERIMENT

We have carried out the above stretching example not only in

simulation but also as an experiment on a plastic (“Docamid 6G-

H” polyamide) sample. In addition to measuring the extensions,

a thermal camera has measured the surface temperature of the

sample during the process. We can observe on the snapshots in

Fig. 3 the initial decrease of temperature and then its increase,

observable where plastic change has already started.
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Figure 3. Stretching a rod with slightly nonconstant cross section —

experiment. The outline (upper left figure) displays the two spots whose

temperature was not only recorded by the thermal camera but also nu-

merically displayed, together with the maximal temperature in the rect-

angle area. The subsequent five figures are snapshots taken by thermal

camera. The first shows the initial state, then the quasi-adiabatic cooling

is observable, then heat dissipation appears due to plastic change, then

the plastic change reaches the whole thinner part of the sample, and

finally failure occurs.

CONCLUSION

We intended to illustrate that our recent kinematic formu-

lation can be incorporated in mechanical and thermodynami-

cal theories, with thermal expansion and plastic processes de-

scribed naturally and realistically, even when considering only

simple constitutive choices and small deformations. Rheology

can also be added—when plasticity and thermal expansion are

also kept then interesting cross effects are expected to emerge,

offering new theoretical possibilities for explaining experimen-

tal observations.

The finite deformation version of the presented theory is also

possible, though some formulae become nontrivial due to the

fact that the multiplication of tensors is not commutative. This

work is in progress currently. Finally, we wish to strengthen the

connection between theory and experiment, evaluating quanti-

tatively the already performed experiments and to devise new

ones.
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INTRODUCTION 

Boiling shocks are formed in flows with accelerations of 
tens-hundreds metres per second. Such flows are most of 
interest since they are realized under loss-of-coolant nuclear 
power stations accidents.  

In a classic experiment on a high-pressure vessel 
depressurization of Edwards and O’Brien [1], the vessel was 
a 4 m length horizontal tube with 7.3 cm internal diameter. 
The tube initially contained hot water with temperature 515 
K. The pressure in the tube, P0=6.9 MPa, was twice the 
pressure of saturation and the water did not boil. The right-
hand end of the tube was closed with a glass disc. On 
destroying the disc, the liquid efflux accompanied by boiling 
started. A uniform pressure of 2.7 MPa, which was less than 
the pressure of saturation (3.5 MPa) but greater than an 
atmospheric one, settled all over the vessel. 

In large-scale experimental pressure oscillograms (figure 
1), the first waves crossing the channel within 3 ms looked 
like an instant pressure drop up to P=2.7 MPa at zero time. 
The pressure remained constant for a long time: only after 0.2 
s did it start to decrease rapidly at the 3rd point, and then at 
the 4th and 5th points. This was the second wave of 
rarefaction, a ‘slow wave’, moving with the speed of only 10 
m s-1. The experimental oscillograms of the pressure and 
volumetric vapor fraction measured at the 4th point (solid 
lines in figure 3a,b) showed that the pressure drop in the 
‘slow wave’ was accompanied by the increase in the 
volumetric vapour content from 0.2 to 0.9. 

Slow waves of boiling were observed in Edwards and 
O’Brien’s experiments at different initial parameters of water 
and in the experiments with the other fluids: CO2 [2] and 
dichlorodifluoromethane [3]. 

HIGH-PRESSURE VESSEL DECOMPRESSION IN 
THE FRAMES OF AN EQUILIBRIUM MODEL 

An equilibrium model [4] includes the equations of 
conservation for mixture mass, momentum and entropy: 
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The equation of state for an equilibrium mixture is a 
sectionally continuous dependence between the mixture 
density, pressure and entropy. It consists of two parts. At the 
point of their intersection (the point of boiling inception) the 
derivative of density with respect to pressure breaks: 
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The first part of (4) is the equation of state for a pure liquid 
and the second one is that for an equilibrium mixture.  

The isoentropic curve for an equilibrium mixture 
expansion is shown by a dashed line in figure 3c. 

 
MAXIMUM ENTROPY PRODUCTION IN BOILING SHOCKS 

 
Oleg Ivashnyov, Marina Ivashneva 
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ABSTRACT 
Experimental studies of hot water depressurization have shown that liquid boiling proceeds in a shock which moves at a speed 
of approximately 10 m/s from the open end deep into the tube. The ‘boiling shock’ was obtained in a numerical experiment 
using the flow model that considered temperature and velocity non-equilibrium of phases. To analyse the mechanism of an 
instantaneous evaporation, the wave structure was described with model’s stationary version in the moving frame linked with 
the wave front. From the numerical experiment there were taken all the parameters of nonequilibrium mixture ahead of the 
wave front but the velocity of the oncoming flow. The velocity was varied to see if a stationary wave-type solution could be 
obtained. Among the integral curves there was a series of regimes in which the flow velocity went over on a steady level and 
the mixture reached an equilibrium state. Their analysis showed that an instantaneous transformation of the non-equilibrium 
boiling mixture into an equilibrium state was caused by a chain bubble fragmentation which led to a sharp increase in the 
interfacial area, intensification of the vaporization process and loss of liquid’s excess heat. Each of stationary wave-type 
regimes was characterized by a definite meaning of the entropy increase in the shock. It occurred that, in a numerical 
experiment using a full, non-stationary, system of model equations that was in good agreement with a physical experiment, 
there realized the regime with a maximum entropy production. 
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Figure 1. Experimental pressure oscillograms at five different 
tube cross-section locations (shown in the insert). 
 

 
It follows from the equation of state (4) that at P=Ps(To), 
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changes instantaneously from the speed of sound in a pure 
liquid, 1100 m s-1, down to the speed of sound in an 
equilibrium two-phase mixture 
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which is much less, 26 m s-1 (at 515 K). Therefore the wave 
of rarefaction is split into two waves moving with different 
velocities. The first wave where the pressure drops down to 
the pressure Ps(T0) spreads with the speed 1100m s-1. The 
second wave, where further diminishing of the pressure 
occurs, moves with the speed of 26 m s-1. These two waves 
are separated by a zone of constant pressure. 

The calculations using the equilibrium model are shown in 
figure 2 and by dashed lines in figure 3. The two parts of the 
rarefaction wave are seen (in multi-scale oscillograms, the 
first one looks like a vertical pressure drop at zero time). 
According to calculations the pressure behind the first wave 
of rarefaction is equal to the pressure of saturation, 3.5 MPa, 
while in the experiment it is much less, 2.7 MPa. 

Using experimental oscillograms of pressure and 
volumetric vapour content the curves of the mixture 
expansion in P-V (pressure-specific volume) coordinates have 
been built (figure 3c). Their comparison with curves for an 
adiabatic expansion of an equilibrium mixture have shown 
that the 1st rarefaction wave converts the mixture into a 
metastable, overheated, state and the 2nd one turns it back to 
equilibrium.  

  
Figure 2. Calculations using an equilibrium and 
nonequilibrium models of boiling. 
 

DECOMPRESSION IN THE FRAMES OF THE 
MODEL ACCOUNTING FOR THEMPERATURE AND 
VELOCITY NON-EQUILIBRIUM OF PHASES 

In the model, the boiling is considered to start up at centers 
of nucleation. The pressures in the phases are assumed to be 
equal; the parameters in a bubble are uniform and equal to the 
parameters on the line of saturation; the vapour density is 
much less that the liquid density; the phase slip is much less 
than the flow velocity. 

Along with the equations (1), (2) for mixture mass and 
momentum conservation, the model comprises the equations 
of conservation for internal energy, vapour mass, bubble 
number, and the equation of motion of an individual bubble: 

 

01
=−

∂
∂

dt
Pd

t
i

ρ
,  (5) 

( ) ( )
nj

x
u

t
gg =
∂

∂
+

∂

∂ αραρ
,  (6) 

( ) ψρ=
∂

∂
+

∂
∂

x
un

t
n , (7) 

( )

( ) ( )uuuuC
atd

rd
uuC

a

tD
uDC

tD
uD

td
ud

C

ggl
g

glvm

lvml
gg

lvmg

−





 −−−−

−+=+

ρρ

ρρρρ

µ2
33

, (8) 

( ) gl ραραρ +−= 1 , 

gl iii χχ +−= )1( ,    
ρ
αρ

χ g= , (9) 

x
u

tdt
d

x
u

tDt
D

g
g

∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

= , . 

 
Virtual mass coefficient vmC is equal to 1/2 for spherical 

bubbles. D/Dt is the material derivative following the mixture 
and dg/dt is that following the bubbles. 
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Figure 3. (a,b) A comparison of experimental and theoretical 
oscillograms of pressure and volumetric vapour content for point 4 
(see figure 1). (c) Experimental (built using parameters’ values at 
points ABCDE marked in a,b) and theoretical pressure-specific 
volume dependencies. 
 

Neglecting the dependence of liquid density on 
temperature, and considering that, nearby the saturation line, 
the isotherms built in P-V coordinates are strait lines, we used 
the equation of the liquid state in the following form: 
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Then thermal-energy equation for the liquid state is: 
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where lSi  is the liquid enthalpy on the line of saturation, 
B=5000 m2/(c2 K), D=305 K are approximation parameters. 

Differentiating (11) we obtain specific isobaric thermal 
capacity of the liquid h 
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where )(Pϕ  is the derivative taken along the line of 
saturation. 

For the wide range of temperatures, K590K450 ≤≤ ST , 
the approximation 5102A,A ⋅== gg Pρ m2/s2 describes the 
vapour state on the line of saturation with a relative error of 
2%. 

The intensity of bubble breakup ψ  is defined with a 
relaxation ratio: 
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where c* is the number of bubbles that would be formed if the 
fragmentation were instantaneous, and ∗τ  is the characteristic 
fragmentation time which are specified using the solution of 
the problem about the rise in amplitude of a small harmonic 

perturbation with wavelength λ  arising on a plane interphase 
boundary [5]:  
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From the condition that a bubble is divided by the wave with 
the fastest growing amplitude,  
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the number of fragments appeared as a result of a bubble 
breakup (c*/c) is determined as the ratio of the bubble 
diameter to the length of the wave ∗λ . A characteristic time 
of breakup is adopted to be the time of e-time (e=2.7...) rise in 
amplitude of the perturbation with wavelength ∗λ . From an 
evident condition: r2≤∗λ , one obtains the criterion of the 
surface stability of the bubble overflowing by fluid, the 
Weber number: 
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and the evaluation of its critical value, π3=∗We . 
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u∆  in the equation (14) is determined from the equation 
for motion of an individual dispersed unit (8) by: 
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Where tDD /  is the material derivative following the 
mixture which substitutes the material derivative following 
the bubbles tdd g /  taking into account the assumption about 

the smallness of the phase slip, llg uuu <<− . 

The expression for the interfacial drag coefficient µC  is: 
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Following [6] the intensity of liquid evaporation into a 

bubble j is defined using an automodel solution about a 
motionless bubble growth in an overheated liquid [7] as: 
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From (16), it follows that the liquid acceleration is the only 
reason of the disturbance of the equality in the phase 
velocities.  

The number of initial bubbles and the critical Weber 
number are specified as: 5

0 104×=c  kg-1, We*=1. 
The numerical results obtained using the model (for more 

details one may see [8]) correspond to experimental ones: the 
pressure level (2.7 MPa) remains constant for a long time and 
then suddenly drops (figure 2, upper section); the decrease of 
pressure is accompanied by the increase in the volumetric 
vapour content (dashed-dotted lines in figure 3). Thus the 
shock of boiling has been obtained in the numerical 
experiment. 

THE STRUCTURE OF THE BOILING SHOCK 

The width of the ‘boiling wave’ is small and does not 
increase in time that allows us to suppose that it can be 
described by stationary equations in the coordinate system 
linked with it:  
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The frozen speed of sound af , the velocity of high-
frequency indignations spread in the absence of interphase 
transfer processes, is determined as: 
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All the parameters at z=0 but the velocity of the oncoming 
flow u* are taken from the numerical experiment given in 
figure 2 (upper section): P=2.7 MPa, T=513 К, 2.0=α  
c=c0=4×105 kg-1  and We=We*. 

Parameters profiles obtained at different u* values are 
presented in figure 4. At a starting point of the wave, the 
Weber number reaches its critical value and bubbles begin to 
break-up. Due to the fragmentation the interfacial area 
increases and boiling intensifies. The pressure decreases 
(since the bubble number c is in the numerator of 20). The 
increase in velocity gradient du/dz causes an increase in the 
difference of phase velocities u∆  (see 21). The increase in 

u∆  is why the Weber number (14) does not decrease after 
breakup in spite of the diminishing of bubble radius and so 
breakup is repeated. Thus, it proceeds like a chain reaction, 
i.e. one breakup creates the conditions for the next one. That 
leads to the great increase in bubble number. The bubble 
fragmentation comes to an end when the mixture reaches an 
equilibrium state   ( gl TT = ).       Then, the intensity of the 

 
 
 
 
 
Figure 4. The structure of the boiling wave calculated using 
stationary model equations. The parameters at z=0 (except for 
the velocity of the oncoming flow) are specified being equal 
to that ahead of the wave front obtained in the numerical 
experiment using nonstationary model version. The curves 
correspond to different values of the flow velocity in front of 
the wave (shown in m s-1). 
(a,b) The distribution of the pressure and entropy along the 
channel for different regimes. 
(c,d,e,f) The distribution of the other parameters for 3 wave-
type regimes. 
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Figure 6. The Hugoniot curve with energy release, the 
dependence of the specific mixture volume on the pressure 
behind the wave. Points marked correspond to regimes with 
different velocities of the flow ahead of the wave’s front 
(shown in m s-1). 

 
interphase heat exchange j approaches to zero, 0/ →zdud  
and the chain fragmentation is switched off. 0/ →zdPd  as 
well. As a result, ‘step like’ solutions (solid lines in figure 4a) 
are obtained. The regimes of this type are realized under the 
oncoming velocity 10m/s ≤ u* ≤ 15.666m/s. Entropy 
distribution along the channel shows entropy peak in the 
coordinate of the wave front. (The explanation why the 
entropy increase in a rarefaction wave does not contradict the 
2nd law of thermodynamics may be found in the next 
paragraph.) The entropy value in the peak corresponds to the 
pressure wave amplitude, the greater the pressure fall the 
greater the rise in the entropy. Maximum entropy production 
is attained under a limit oncoming velocity value u*=15.666 
m s-1 when the flow accelerates up to the equilibrium sonic 
speed ae (figure 4f). This is the regime that is realized in the 
calculations with the full model, as the condition u=ae ensures 
the ‘linkage’ of the wave of boiling with the waves following 
it.  

At u* greater than 15.666 m s-1, the flow velocity increases 
up to the sonic one u=ae earlier than the phases come to 
equilibrium. The denominator in right part of (20) becomes 
equal to zero, parameters’ gradients tend to infinity and the 
solutions break off (the regimes under u*>15.666 m s-1 are 
shown by dashed-dotted lines in figure 4a). Broken-off 
solutions are of two types: with the pressure break-down 
behind the wave front section (15.666<u*<16), and with the 
pressure tearing off at once (u* ≥ 16 m/s). The ‘broken’ 
entropy distributions are of two types as well (figure 4b).  

 

INTEGRAL RATIOS IN FRONT OF THE BOILING 
SHOCK 

Let us now explain why the regime with the flow velocity 
behind the wave equal to the equilibrium sonic speed is the 
one realised in a numerical experiment using a full, non-
stationary, model. 

The state with parameters fixed ahead of the wave front in 
the numerical experiment will be considered to be an initial 
one. For the terminal state, we claim boiling to be 
equilibrium: )(PTT sl = . We will link the states by the laws 
of the mass, impulse and energy conservation (17-19). 

Let us build the dependence of the specific mixture volume 
on the pressure behind the wave (the Hugoniot curve).  

Excluding velocities from (17-19) we obtain: 

( ) ( ) ( )( )00000 2
1,,, PPVVTVPiVPi le −+=∆−   (22) 

Where the 1st and the 2nd terms in the left-hand part are the 
enthalpies of an equilibrium and nonequilibrium (ahead of the 
wave) mixture, correspondingly; 0lT∆  is the liquid’s 
overheat. Inserting 
 

( ) ( )VPiTVPi el ,,, 000 −∆  = ( )000 ,, ll TVPQ ∆ , (23) 
we obtain the equation for an equilibrium Hugoniot curve 
from (22): 
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Since )(),,( PiiVP gg == χχ , the only component of 
mixture enthalpy (9) depending on the mixture overheats is 
the liquid enthalpy. In correspondence with (11), (12) this 
dependence may be presented as follows: 
 

( ) ( ) ( ) ( )( )0000000 ,, PTiPiTcPiTPi slslelllell =∆+=∆ . 
 

Having substituted this equation for 0li  into (9) we obtain the 
expression for the inequilibrium mixture enthalpy in the form: 
 

( ) ( ) ( ) 0000000 1,,, llel TcVPiTVPi ∆−+=∆ χ . (25) 
The second term in the right-hand part of this expression is 
the energy of an initial liquids’ overheat. Comparing (23) 
with (25) we see that 
 

( ) ( ) 00000 1,, lll ThTVPQ ∆−=∆ χ . 
That is lQ  is positive. For waves with 0>lQ , it has been 
shown that the entropy increases across the wave front for 
both compression and rarefaction waves, in contrast to waves 
with 0≤lQ . Thus the entropy increase in a rarefaction wave 
(figure 4a,b) does not contradict the second law of 
thermodynamics.  

The equation for the equilibrium sonic speed may be 
obtained by differentiating of the equation for the equilibrium 
mixture state: 
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Under the analysis usually carried for Hugoniot curves 

with heat release [9], it has been shown that a maximal flow 
rate through the shock wave front is attained when the flow 
rate behind the wave front is equal to the equilibrium sonic 
speed since the flow is equilibrium behind the wave. 

Among the wave-type stationary regimes there is one with 
the flow speed equal to the equilibrium sonic speed behind 
the wave front (under u*=15.666 m/s in figure 4f), this regime 
being just the one obtained in a numerical experiment using 
full, nonstationary, boiling flow model equations. The 
realization of the regime with a maximum mass flow rate may 
be regarded as the implementation of Jouguet’s hypothesis set 
up for combustion waves for the waves of boiling.  
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CONCLUSIONS 

The phenomenon of shock boiling under a high-pressure-
vessel decompression has been simulated using boiling flow 
model which considers phases to be non-equilibrium in 
temperatures and velocities. 

The shock wave structure investigation using stationary 
equations in the moving frame linked with the wave’s front 
has shown that a quick boiling mixture transformation into an 
equilibrium state is caused by a chain bubble fragmentation 
which led to a fast loss of liquid’s excess heat by means of a 
sharp increase in the interfacial area. 

For the stationary model system solution, all the 
parameters ahead of the wave front but the velocity of the 
oncoming flow were taken from the numerical experiment 
using a full, non-stationary, system of model equations. There 
were obtained a set of wave-type regimes each characterizing 
by a definite meaning of the entropy increase in a shock. It 
occurred that, in a numerical experiment on depressurization 
that was in good agreement with the physical one there 
realized the regime with the maximum entropy production.  
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NOMENCLATURE 

Symbol Quantity SI Unit 
   
a Speed of sound m s-1 
A Approximation parameter m2 s-2 
c Bubble number per unit mixture 

mass 
kg-1 

B specific heat of the liquid on 
saturation curve 

m2 s-2 K-1 

Cvm Virtual mass coefficient dimensionless 
µC  Interfacial drag coefficient dimensionless 

D Constant in the approximation 
dependence for liquid enthalpy 
on a saturation curve 

K 

G Mass flow rate kg m-2 s-1 
h Specific heat capacity of the 

liquid 
m2 s-2 K-1 

i Specific enthalpy m2 s-2 
I ( )λ  Decrement of a wave s-1 

j Intensity of liquid evaporation 
into a bubble 

kg s-1 

Ja Jacob number  dimensionless 
k Constant in the equation for the 

liquid state 
m3 kg-1 

K Constant number symbol dimensionless 
l Specific heat of liquid 

vaporization 
m2 s-2 

n Bubble number per unit mixture 
volume 

m-3 

Nu Nusselt number dimensionless 
P Pressure kg m-1 s-2 
r Bubble radius m 
Re Bubble Reynolds number dimensionless 
S Entropy m2  s-2 K-1 

   
t time s 
T Temperature K 
u Velocity  m s-1 
V Specific volume m3 kg-1 

We Weber number dimensionless 
x Coordinate m 
z Coordinate in a moving frame m 
   
α  Volumetric vapour fraction dimensionless 
β  Coefficient of the liquid 

compressibility 
kg m-2 s-1 

χ  Mass vapour fraction dimensionless 
γ  Coefficient of the thermal 

conductivity for the liquid 
kg m  s-3 K  

λ  Wavelength m 
µ  Dynamic viscosity coefficient kg m-1 s-1 
ρ  Mixture density kg m-3 
σ  Coefficient of the surface tension kg s-2 
τ  Fragmentation time s 
ξ  Perturbation amplitude m 
ψ  Intensity of bubble fragmentation kg-1 s-1 
   
e Refers to the ‘equilibrium’ 

mixture characteristic 
 

f Refers to the ‘frozen’ mixture 
characteristic 

 

g Refers to the vapour phase  
l Refers to the liquid phase  
s Refers to a saturation condition  
0 Refers to an initial condition  
∗  Refers to a critical condition   
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ABSTRACT
In the classical experiment of Joule and Thomson, a gas passes through a porous plug. The pressure difference between the
upstream and the downstream side of the porous plug causes a temperature difference. Here, the flow process is described for
the case that the fluid may condense, and the pressure loss is caused by a thin capillary. The process is calculated assuming local
thermodynamic equilibrium and one-dimensional temperature and pressure distributions, respectively.

A vapor far from saturation does not condense, and the temperature and pressure distribution for the common Joule-Thomson
process is recovered. A vapor close enough to saturation may condense partially or completely, and a liquid or a two-phase
mixture flows through a part of the capillary. The thermodynamic path of the fluid is presented in temperature-entropy and
pressure-temperature diagrams.

INTRODUCTION

In an adiabatic throttling or Joule-Thomson process, the con-
tribution of the kinetic energy to the energy balance is negligi-
ble. The enthalpies of the fluid are the same upstream and down-
stream of the region where a pressure loss occurs. For gases,
the Joule-Thomson coefficient, i.e., the change of temperature
with respect to pressure at constant enthalpy, µJT = (∂T/∂ p)h,
may be positive or negative. Vapors, i.e., fluids in a gaseous
state below the critical temperature, always have a positive
Joule-Thomson coefficient. Hence, a vapor undergoing a Joule-
Thomson process always has a downstream temperature which
is smaller than the upstream temperature.

The temperature difference causes the transport of heat, usu-
ally by conduction, in downstream direction. However, a vapor
at or close to saturation upstream of the tube may not be able
to release a sufficient amount of heat by cooling down. Instead,
the vapor must condense, either partially or completely. The
heat released by condensation is consumed further downstream
by evaporation of the partially or fully condensed fluid.

The temperature field of the flow through a long, thin cap-
illary may be approximated by a one-dimensional temperature
distribution, and a one-dimensional description of the flow be-
comes possible. A one-dimensional description is also applica-
ble to the flow through a porous medium, if the porous medium
is modeled as a bundle of equivalent capillaries. Hence, results
obtained for the flow through a porous medium may also be ap-
plied to the flow of a fluid through a capillary.

Schneider [1] described the one-dimensional flow of a fluid
that is in an upstream state of a saturated vapor through a porous
medium. Schneider did not account for effects of capillarity,
such as capillary condensation or the pressure difference across
curved menisci, but assumed that phase changes occur at plane
interfaces. He observed that, due to the Joule-Thomson effect, a
saturated vapor that flows through a porous medium must con-
dense.

A critical permeability was given for the porous medium.
With respect to the flow through a capillary, this is equivalent
to a critical radius. For a radius of the capillary below the crit-
ical value, the vapor condenses completely. For a radius of the
capillary larger than the critical radius, the fluid condenses par-
tially, and a two-phase mixture flows through a part of the cap-
illary. The value of the critical radius depends on the properties
of the fluid and on the thermal conductivity in the flow region.
For common substances, the critical radius is of the order of
10 nm. The critical radius may be much larger for very good
heat conductors.

The, usually, very small value of the critical radius may be
the reason that the Joule-Thomson effect did not receive much
attention under conditions where phase changes occur. Con-
fer, for instance, the remark of Tien [2], who stated, with re-
spect to the flow of vapors through porous media, that ‘Another
basic thermodynamic phenomenon that my play an interesting
role in heat-pipe performance under certain conditions has never
been mentioned or analyzed in the literature. This is the Joule-
Thomson effect of real gas flow.’

Capillary effects, which dominate the flow, were investigated
more thoroughly. Rhim and Hwang [3] investigated the flow of
vapors near saturation through porous Vycor glass. They did not
account for the Joule-Thomson effect, but for capillary conden-
sation, adsorption and the large capillary pressure across curved
interfaces between the liquid and the vapor phase. They found
that the mass flow of a fluid under conditions where condensa-
tion occurs is greatly enhanced with respect to the mass flow of a
vapor that does not condense. They also observed that, because
a large amount of heat is evolved due to condensation and evap-
oration within the porous medium, the fluid can not stay isother-
mal. However, later, in their seminal work Lee and Hwang [4]
described the flow of a vapor through a porous medium as an
isothermal process.

Based on the approach of Schneider [1], the Joule-Thomson
process of a vapor was analyzed, including also the effects of
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p2 < p1

L
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Figure 1. Sketch of the flow.

capillarity [5; 6]. A modified expression for the critical per-
meability [6] or for the critical radius of a capillary [7] was
given. It was found that the mass flow rates calculated by ap-
plying an isothermal description were an order of magnitude
larger than the mass flow rates calculated from an adiabatic,
non-isothermal description [8]. Experimentally measured mass
flow rates were still smaller than those obtained from the adia-
batic description [8].

These results suggest that capillary forces may dominate the
flow. However, in turn, the capillary forces are notably influ-
enced by the small variation due to the Joule-Thomson effect.
Consider a situation where a liquid plug is located inside a cap-
illary. At both ends of the liquid plug curved interfaces are
formed. The pressure differences across the curved interfaces
are large, and large forces are exerted on the liquid on both ends
of the liquid plug. However, because these forces act in op-
posite directions, they sum up to zero. If the thermodynamic
equilibrium at one end of the plug changes, e.g., by heating up
one end, a large force equal to the difference of the capillary
forces remains and acts on the liquid plug. This perception is
somehow supported by the observation that, over a wide range
of contact angles, the mass flow rate is independent of the con-
tact angle [7].

The states of a fluid that flows through a small capillary, with
and without phase changes, are presented further below.

THEORETICAL DESCRIPTION

The flow configuration is sketched in Fig. 1. A vapor is in
a state p1, T1 upstream of the end of a tube. The pressure p2

downstream of the tube is smaller than the pressure at the up-
stream side, p2 < p1. Due to the Joule-Thomson effect, the
temperature T2 at the downstream side is also smaller than the
temperature T1 upstream of the tube. The length of the capil-
lary is L, which is large compared to the inner diameter 2r. The
walls of the tube contribute to the heat transfer in longitudinal
direction. However, there is no heat transfer in radial direc-
tion, which can be achieved either by isolating the tube adiabat-
ically against the surrounding or by placing a large number of
the same tubes in parallel.

Governing equations

The flow is governed by the balances of mass, momentum
and energy,

ṁ = constant, (1)

ṁ =− r4π

8ν

dp
dz

, (2)

ṁh+ r2
π q̇/ε = constant. (3)

Here, ṁ denotes the mass flow rate, ν refers to the viscosity of
the fluid, p is the pressure, z the spatial coordinate, h refers to

the specific enthalpy of the fluid and q̇ denotes the heat flux. The
ratio of the inner to the outer cross-sectional area of the tube is
given by ε . The Reynolds-number is small, hence the law of
Hagen-Poiseuille is applied, Eq. (2). The heat flux is given by
Fourier’s law of heat conduction,

q̇ =−kmf
dT
dz

, (4)

where T is the absolute temperature and kmf is the effective ther-
mal conductivity of the fluid-filled tube,

kmf = (1− ε)km + εkf. (5)

Here, km and kf refer to the thermal conductivities of the solid
tube material and the fluid, respectively.

Two-phase flow within the membrane is modeled as homo-
geneous flow,

x =
αv2ph

vg
, ẋ = x, (6)

v2ph =

(
1−α

vl
+

α

vg

)−1

. (7)

Here, x and ẋ are the mass fraction and the mass flow fraction
of the vapor, respectively, α is the vapor volume fraction and
vl, vg and v2ph refer to the specific volumes of the liquid phase,
the gaseous phase and the two-phase mixture of the fluid, re-
spectively. The effective kinematic viscosity and the effective
thermal conductivity of the two-phase mixture, ν2ph and k2ph,
are given by

ν2ph = (αµg +(1−α)µl)v2ph, (8)

k2ph = αkg +(1−α)kl. (9)

Here, µg and µl refer to the dynamic viscosities and kg and kl to
the thermal conductivities of the gaseous and the liquid phase,
respectively.

At interfaces between the liquid and the gaseous phase of
the fluid within the tube, the pressure difference is given by the
Young-Laplace equation,

pcap =
2σ cosθ

r
, (10)

where σ refers to the surface tension and θ is the contact angle.
The pressure of the vapor phase of the fluid at a front of phase
change, pK, is given by Kelvin’s equation,

ln

(
pK

psat

)
=−2σ cosθ

r
vl

RT
. (11)

Here, psat is the saturation pressure at a plane interface and
R refers to the specific gas constant. Within the tube, a
phase change occurs if the pressure of a vapor rises to p =
pK(T ), or if the pressure in the liquid falls below p = pK(T )−
2σ(T )cosθ/r. With respect to the condition at a plane in-
terface, the pressures at a curved interface are different in the
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gaseous and the liquid phase. On both sides of the interface
work is done on the fluids to bring them from their states at a
plane interface to their respective states at a curved interface.
These works must be added to the enthalpy of vaporization at a
plane interface. Therefore, the specific enthalpy of vaporization
at fronts of phase change within the porous membrane, hvap,K,
is given by

∆hvap,K = ∆hvap +(pK− psat)

×
((

∂hg

∂ p

)
T
−
(

∂hl

∂ p

)
T

)
+

(
∂hl

∂ p

)
T

2σ cosθ

r
. (12)

Here, ∆hvap is the specific enthalpy of vaporization at a plane in-
terface and hl and hg denote the specific enthalpies of the liquid
and the gaseous phase, respectively.

For the flow of a single phase of a fluid, Eqs. (1) to (3) and (4)
yield, together with, e.g., initial conditions for ṁ, ṁh+ q̇, T
and p, a well-posed initial value problem for the variables T
and p in dependence of z. For two-phase flow, pressure and
temperature are not independent of each other. Instead, two
independent variables are, e.g., T and α , and the dependence
between T and p must be formulated. To determine the gra-
dient (dp/dT )2ph in a two-phase region in dependence of T
and α , the marginal cases of α → 1 and α → 0 are consid-
ered. The first case is equivalent to the state of a vapor that
is in equilibrium with its liquid phase at a curved meniscus,
hence, (dp/dT )α→1 = dpK/dT . The second case is equiva-
lent to the state of the liquid at the other side of the menis-
cus, (dp/dT )α→0 = d(pK−2σ cosθ/r)/dT . For homogeneous
two-phase flow the pressure gradient is put as the volume-
averaged mean of the pressures in the liquid and the gaseous
phases, respectively,

(
dp
dT

)
2ph

=
dpK

dT
− (1−α)

2cosθ

r
dσ

dT
. (13)

The boundary conditions complete the governing system of
equations. They are

T = T1, p = p1, q̇ = 0 at z→−∞, (14)

p = p2, q̇ = 0 at z = L. (15)

The system of governing equations is solved numerically.
A shooting method is used to solve the boundary value prob-
lem. First, the downstream state of the fluid is completely de-
termined. With h2 = h1, the downstream temperature T2 is cal-
culated by integration along an isenthalpic line,

T2 = T1 +

p2∫
p1

(
∂T
∂ p

)
h

dp. (16)

Applying the initial conditions T = T2, p = p2 and q̇ = 0 at
z = L, the governing equations are integrated in negative z-
direction. Integration is iteratively repeated, each time chang-
ing the value of ṁ, until the condition p(z = 0) = p1 is fulfilled
within a tolerance of (p1− p2)/1000.

−2 −1.5 −1 −0.5 0 0.5 1
294
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Figure 2. Temperature distribution in a Joule-Thomson process of a
vapor without phase change. The tube extends from z/L = 0 to z/L = 1.

RESULTS

Results are presented for the flow of butane through a glass
capillary. The thickness of the wall is half the inner radius,
hence ε = 0.44. The thermal conductivity of glass is 0.5 W/m K.
At a temperature of 300 K, the saturation pressure of butane
is psat(300 K) = 2.57 bar. For a vapor that does not con-
dense, the temperature-entropy and the pressure-temperature di-
agram is shown in Fig. 3. In this case, the upstream pressure is
p1 = 2.1 bar and the downstream pressure is p2 = 0.5 bar. The
vapor cools down isobarically in front of the tube. Within the
tube, the vapor expands nearly isothermally until it reaches the
downstream pressure p2. Figure 2 shows the temperature distri-
bution. The vapor expands nearly isothermally within the tube
because the thermal conductivity of the tube material is much
larger than the thermal conductivity of the vapor, 0.5 W/m K vs.
0.016 W/m K.

The path of the process in the temperature-entropy diagram
in Fig. 3 shows that, even though the upstream state 1 and the
downstream state 2 are both unsaturated vapors, condensation
must occur if the path of the process crosses the line p = pK.
The line p = pK is depicted as a dotted line close to the line
of saturated vapor in the T -s diagram. In the p-T diagram, the
dashed line refers to p = pK.

The states of a fluid when partial condensation occurs are
shown in Fig. 4. With respect to the case shown in Fig. 3, the
only condition which is changed is the upstream pressure, from
p1 = 2.1 to p1 = 2.3 bar. The two-phase mixture that flows
through a part of the tube has a vapor mass fraction and also a
liquid mass fraction of order unity. Hence, because the density
of the liquid phase of the fluid is much larger than the density of
the vapor phase, the volume fraction of the vapor is very close to
one. The p-T diagram shows that the pressure in the two-phase
mixture within the tube is close to pK, the pressure of a vapor in
the tube.

ACKNOWLEDGMENT

Financial support by Androsch International Management
Consulting GmbH and by the OeAd-GmbH (Austrian Agency
for International Cooperation in Education and Research),
grants no. CZ 08/2012 and 09/2006, is gratefully acknowledged.

539



1200 1300 1400 1500 1600

294

296

298

300

302

1

2

s− s0 [J/kg K]

T [K]

saturated vapor
p = pK
p = p1, p = p2

h = h1

path of the process

294 296 298 300 302
0

1

2

3

1

2

T [K]

p [bar]

psat
pK

path of the process
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NOMENCLATURE

h Specific enthalpy [J/kg]
k Thermal conductivity [W/m K]
ṁ Mass flow rate [kg/s]
p Pressure [Pa]
q̇ Heat flux [W/m2

R Specific gas constant [J/kg K]
r Radius [m]
T Absolute temperature [K]
v Specific volume [m3/kg]
x Vapor mass fraction
ẋ Vapor mass flow fraction
z Spatial coordinate [m]

α Greek letters to follow
α Vapor volume fraction [-]
ε Void fraction [-]
θ Contact angle [-]
µ Dynamic viscosity [Pa s]
ν Kinematic viscosity [m2/s]
σ Surface tension [N/m]

Subscripts

0 Reference state
1 Upstream state
2 Downstream state
2ph Two-phase

cap Capillary pressure, cf. Eq. (10)
f Fluid
g Gaseous
l Liquid
K Vapor pressure at a curved interface, cf. Eq.(11)
m Solid material
sat Saturation pressure
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12th Joint European Thermodynamis ConfereneBresia, July 1-5, 2013ON THE LAGRANGE MULTIPLIERS METHOD IN EXTENDEDTHERMODYNAMICS OF IRREVERSIBLE PROCESSESS.I. SerdyukovDepartment of Chemistry, Mosow State University, 119992 Mosow, Russiaserdkv�teh.hem.msu.ruABSTRACTIn this paper we onsider extended thermodynami theory based on the postulate that entropy density is a funtionof the internal energy density and its time derivative. Using fundamental equation and the balane equation forthe internal energy density, we an write the entropy balane equation and obtain expressions for the entropy �uxand the entropy soure. Further we onsider tools of the rational thermodynamis, namely Lagrange multipliesmethod. We start from the entropy balane equation (entropy inequality) and suppose that entropy �ux andentropy prodution are funtions of the heat �ux and heat �ux rate. De�nitions of the generalized temperatureand new intensive quantity as funtions of the Lagrange multipliers lead to the fundamental equation (generalizedGibbs equation) and expliit expressions for the entropy �ux and entropy prodution.INTRODUCTIONConventional version of extended irreversible thermo-dynamis [1-5℄ is based on the postulate that entropy den-sity s is funtion of the dissipative �uxes. Let us onsiderthe heat ondution in a rigid isotropi body at rest with-out soure term. For the system under onsideration
s = s(u,q), (1)where u is the internal energy density, q the heat �ux. Inthis paper, we onsider extended thermodynami theory[6-9℄ based on the postulate that the entropy density sis a funtion of the internal energy density u and timederivative u̇:
s = s(u, u̇), (2)where u̇ = ∂u/∂t and t is the time. The total di�erentialof the entropy density has the form

ds =
∂s

∂u
du+

∂s

∂u̇
du̇. (3)Let us de�ne generalized temperature θ and new intensivequantity Λ in analogy with the lassial theory:

θ−1 =
∂s

∂u
, θ−1Λ =

∂s

∂u̇
, (4)where θ = θ(u, u̇) and Λ = Λ(u, u̇) depend on the addi-tional variable u̇. Then, the fundamental equation is givenby

θds = du + Λdu̇,and
∂s

∂t
= θ−1

∂u

∂t
+ θ−1Λ

∂u̇

∂t
. (5)The seond di�erential of the entropy density has theform

d2s = dθ−1 du+ d(θ−1Λ) du̇. (6)

Further, let us postulate the onvexity of s as funtion of
u and u̇. Then, we have inequality

∂θ−1

∂t

∂u

∂t
+

∂(θ−1Λ)

∂t

∂u̇

∂t
≤ 0. (7)GENERAL THEORYThe balane equations for the variable u,

ρu̇ = −∇ · q, (8)(ρ is the mass denity) relates the extra variables u̇ and q.Di�erentiating equation (8) with respet to time leads tothe balane equation for the variable u̇:
ρ
∂u̇

∂t
= −∇ · q̇, (9)where q̇ = ∂q/∂t. Using balane equations (8), (9), fromthe fundamental equation (5), we obtain the entropy bal-ane equation:

ρ
∂s

∂t
= −∇·(θ−1q+θ−1Λq̇)+q·∇θ−1+q̇ ·∇(θ−1Λ). (10)We an see that equation (10) is written in the standardform

ρṡ = −∇ · Js + σ, (11)where
Js = θ−1q+ θ−1Λq̇ (12)is the entropy �ux,

σ = q · ∇θ−1 + q̇ · ∇(θ−1Λ) ≥ 0 (13)is the entropy soure. Aording to the seond law of ther-modynamis, the entropy prodution is non-negative. Ex-pression (13) shows that, to the heat �ux q, the thermody-nami fore ∇θ−1 orresponds, and to the time derivative
q̇, the thermodynami fore ∇(θ−1Λ) orresponds.
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As in lassial irreversible thermodynamis we onsidertotal entropy prodution
P =

∫

σ dV =

∫

[q · ∇θ−1 + q̇ · ∇(θ−1Λ)] dV, (14)where V is the volume of the system. A part of the timederivative of the entropy prodution, dXP/dt, has the form
dXP

dt
=

∫
[

q ·

∂

∂t
∇θ−1 + q̇ ·

∂

∂t
∇(θ−1Λ)

]

dV. (15)Let us transform (15) into
dXP

dt
= −

∫
[

∂θ−1

∂t
∇ · q+

∂(θ−1Λ)

∂t
∇ · q̇

]

dV + (16)
+

∮
[

∂θ−1

∂t
q+

∂(θ−1Λ)

∂t
q̇

]

· n dΣ,where n is a unit vetor direted outside along the nor-mal to the surfae, dΣ is a surfae element. When time-independed boundary onditions take plae (θ and Λ aregiven), the surfae integral beones zero. Using equations(8), (9) and inequality (7), we obtain from (16) that
dXP

dt
=

∫

ρ

[

∂θ−1

∂t

∂u

∂t
+

∂(θ−1Λ)

∂t

∂u̇

∂t

]

dV ≤ 0 (17)Inequality (17) is extended evolution riterion, whih isgeneralization of the Glansdor�-Prigogine riterion.LINEAR THEORYTo a �rst approximation, the thermodynami fores arelinearly related to the orresponding �uxes and �ux rates.Therefore, from expression (13), we have
∇θ−1 = R11q+R12q̇, (18)

∇(θ−1Λ) = R21q+R22q̇. (19)Thus, for a single irreversible proess, we have obtainedtwo phenomenologial equations. Aording to the Onsager-Casimir priniple, the matrix of the oe�ients Rij is an-tisymmetri, i.e.,
R12 = −R21. (20)Using phenomenologial equations (18) and (19), wereplae the thermodynami fores in expression (13) forthe entropy prodution and obtain expression

σ = R11q · q+R22q̇ · q̇ ≥ 0, (21)from whih it follows that the diagonal oe�ients are pos-itive: R11 > 0, R22 > 0.Let us transform phenomenologial equation (18) in theform
R12

R11

∂q

∂t
+ q = −

1

R11θ2
∇θ, (22)and onsider Maxwell-Cattaneo law

τ
∂q

∂t
+ q = −λ∇T, (23)where T is the loal-equilibrium temperature, τ is the re-laxation time, λ is the thermal ondutivity. Comparing

equations (22) and Maxwell-Cattaneo law (23), we �nd theexpression for generalized temperature,
θ = T, (24)and relationship between the oe�ients: R11 = 1/λT 2,

R12 = τ/λT 2.Howeve, if heat ondution is governed by the dual-phase-lag equation,
τ
∂q

∂t
+ q = −λ

(

∇T + ε
∂∇T

∂t

)

, (25)then the omparison of the equation (22) with equation(25) gives a more omplex linear approximation for thegeneralized temperature:
θ = T + ε

∂T

∂t
. (26)Thus, in the propozed theory the generalized temperatureis de�ned by the form of the onstitutive equation.LAGRANGE MULTIPLIES METHODIn the previous setions the methods of lassial irre-versible thermodynamis was used. Further let us onsidertools of the rational thermodynamis, namely Lagrangemultiplies method proposed by Liu [10℄. We start fromthe entropy balane equation whih we write in the form

ρṡ+∇ · J = σ ≥ 0. (27)Apart from we suppose that entropy �ux and entropy pro-dution are funtions of the heat �ux q and heat �ux rate
q̇. So that onstitutive relations are

s = s(u, u̇), Js = Js(q, q̇), σ = σ(q, q̇). (28)Within this theory the onstrains are given by the energybalane equation and time derivative of the energy balaneequation whih an be written in the form
ρu̇+∇ · q = 0, ρü+∇ · q̇ = 0. (29)Multipliation of the balane equations by Lagrangemultipliers λ1, λ2 and insertion this terms to the left-handside of the entropy inequality (27) give more general ex-pression:

ρṡ+∇ · Js
− λ1(ρu̇+∇ · q)− λ2(ρü+∇ · q̇) ≥ 0. (30)Let us represent time derivative of u and divergene of Jsin the form

ṡ =
∂s

∂u
u̇+

∂s

∂u̇
ü, (31)

∇ · Js =
∂Js

∂q
: ∇q+

∂Js

∂q̇
: ∇q̇. (32)Using (31) let us make substitution in (30). After rear-rangement we obtain inequality

(

∂s

∂u
− λ1

)

ρu̇+

(

∂s

∂u̇
− λ2

)

ρü+

(

∂Js

∂q
− λ1U

)

: ∇q+(33)
+

(

∂Js

∂q̇
− λ2U

)

: ∇q̇ ≥ 0,
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where we used equalities
∇ · q = U : ∇q, ∇ · q̇ = U : ∇q̇. (34)Sine inequality (33) beomes valid for ompletely arbi-trary variation of the values u̇, ü, ∇q, ∇q̇ (time derivativesof the independent variables u, u̇ and gradients of the �ux

q and �ux rate q̇), we have
∂s

∂u
− λ1 = 0,

∂s

∂u̇
− λ2 = 0, (35)

∂Js

∂q
− λ1U = 0,

∂Js

∂q̇
− λ2U = 0. (36)Further, let us de�ne generalized temperature θ and newintensive quantity Λ orresponding to variable u̇ by theequalities

λ1 = θ−1, λ2 = θ−1Λ. (37)The �rst supposition of the lassial approah is de�nitionsof the intensive quantities (4). Within proposed theory,based on the Lagrange multipliers methods, de�nitions ofthe generalized temperature θ and new intensive quantity
Λ (37) are last supposition.Then, (31), (35) and (37) lead to the expression for ṡ:

ṡ = θ−1u̇+ θ−1Λü. (38)We an see that Lagrange multipliers are funtions of uand u̇. From (36) we obtain that entropy �ux Js is linearfuntion of q and q̇:
Js = θ−1q+ θ−1Λq̇. (12a)Entropy balane equation (27) and equalities (38), (12a)lead to expression for the entropy prodution:

σ = q · ∇θ−1 + q̇ · ∇(θ−1Λ) ≥ 0. (13a)Linear theory on the basis of the expression (13a) an beobtained as in the previous setion (see formulas (18)-(26)).Equations (38), (12a) and (13a) are �nal result of thegeneral theory. Using lassial approah, we started from

the fundamental equation (5) and obtained the entropybalane equation (11). Lagrange multipliers method per-mits us to obtain fundamental equation (38) from the en-tropy balane equation (27).REFERENCES[1℄ D. Jou, J. Casas-V�azquez and G. Lebon, Extended Ir-reversible Thermodynamis, 3rd edn., Springer, Ber-lin, 1996.[2℄ D. Jou, J. Casas-V�azquez and G. Lebon, Extended Ir-reversible Thermodynamis Revisited (1988-98), Rep.Prog. Phys. vol. 62, pp. 1035-1142, 1999.[3℄ I. M�uller and T. Ruggeri, Extended Thermodynam-is, Springer, New York, 1993.[4℄ L.S. Garsia-C�olin and F.J. Uribe, Extended irreversi-ble thermodynamis beyond the linear regime: A rit-ial overview, J. Non-Equilib. Thermodyn., vol. 16,pp. 89-128, 1991.[5℄ R.E. Netletton and S.L. Sobolev, Appliations of ex-tended thermodynamis to hemial, rheologial andtransport proesses. Part I. Approahes and salarrate proesses, J. Non-Equilib. Thermodyn. vol. 20,pp. 205-229, 1995.[6℄ S.I. Serdyukov, A new version of extended irreversiblethermodynamis and dual-phase-lag model in heat tra-nsfer, Phys. Lett. A, vol. 281, pp. 16-20, 2001.[7℄ S.I. Serdyukov and N.M. Voskresenskii, Behavior ofentropy in non-lassial heat ondution of inom-pressible media, J. Non-Equilib. Thermodyn., vol.35, pp. 323-335, 2010.[8℄ S.I. Serdyukov, Dual-phase-lag equations and entropybehavior inrelaxation hydrodynamis, Physia A., vol.391, pp. 5871-5882, 2012.[9℄ S.I. Serdyukov,Generalized temperature and non-la-ssial heat ondution in rigid bodies, J. Non-Equilib.Thermodyn., vol. 38, pp. 81-96, 2013.[10℄ I.-S. Liu,Method of Lagrange multipliers for exploita-tion of the entropy priniple, Arh. Rat. Meh.Anal., vol. 46, pp. 131-148, 1972.
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EXTENDED ABSTRACT

In the past decades the need for more efficient materials for electronic refrigeration and power generation has driven a heightening interest in the
field of thermoelectricity. Different thermoelectric materials are currently under investigation by many research groups. Some of them are focusing
their efforts on minimizing the lattice thermal conductivity and others on getting large power factors.

Usually, the analysis is especially focused on computer simulations, or statistical mechanical analyses, while scant attention is paid to continuous
models which may give strong physical grounds to practical research and to investigate new frontiers.

In this poster we present a mesoscopic model of thermoelectric effects in rigid bodies, leading to a system of enhanced thermoelectric balance
equations, accounting for different phonon and electron temperatures and mutual energy exchanges. In particular, following the way drawn in recent
papers [1; 2], we assume that the overall heat flux q has two different contributions: the electron heat-flux contribution q(e) and the phonon heat-flux
one q(p), such that

q = q(e)+q(p).

We regard the phonons and electrons as a mixture of gases flowing through the crystal lattice, each of which is endowed with its own temperature.
Accounting for two different temperatures may be important, for instance, in

1. Time-dependent situations: fast laser pulses. When a laser pulse hits the surface of a system, initially the electrons capture the main amount
of the incoming energy, with respect to the phonons. Subsequently, through the electron-phonon collisions, they give a part of it to the phonons.
This may be of interest, for example, in the Raman thermometry (which is often utilized to measure the temperature in small electronic devices)
or in information recording on optical discs (CD, DVD, Blu-Ray).

2. Steady-state situations: nonequilibrium temperatures. As the electron mean-free path `e is usually shorter than the phonon mean-free path
`p, in heat propagation and when the longitudinal distance z is such that `e < z< `p, it is expected a very high number of electron collisions, and
only scant phonon collisions. This yields that the electron temperature may reach its local-equilibrium value, whereas the phonon temperature
is still far from its own local-equilibrium value.

Our goal will be pursued in the framework of Extended Irreversible Thermodynamics, the theory in which the dissipative fluxes are updated to
the rank of thermodynamic variables and the gradients of the unknown fields are allowed to enter the state space [3; 4]. We also take advantage
from the theory of mixtures of fluids with different temperatures, recently proposed in the literature [5; 6].
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ABSTRACT
We associate the following physical co-mover conditions of to different frame choices: i) Eckart: particle flow, ii) Landau-
Lifshitz: energy flow, iii) Jüttner: moving thermometer frame. The role of fixing a flow-frame is analysed with respect to local
equilibrium concentrating on dissipative currents and forces in single component relativistic fluids. The special role of a ”Jüttner
frame” is explored and contrasted to the more common Eckart and Landau-Lifshitz choices.

INTRODUCTION

In dissipative theories of relativistic fluids we deal with four
fundamental questions.

The first considers causality. Only divergence type theories
are, in general, causal because there the symmetric hyperbolic-
ity of the system of nonlinear evolution equations is established
by construction [1; 2; 3; 4; 5; 6]. The weaker version of causal-
ity requires for the symmetric hyperbolicity only for the lin-
earized equations, and allows for characteristic speeds less than
the speed of light [7]. This weak causality was studied in the
Israel-Stewart theory; numerous resulting inequalities are given
in [8]. From a physical point of view the causality of theories
with parabolic differential equations should also be possible. In
this case the validity of the continuum description is restricted
by the characteristic maximal speeds [9; 10; 11; 12]. A neces-
sary condition for this type of restrictions requires the damping
of the perturbations, equivalent to the the linear stability of the
theory [13].

The second question deals with generic stability. Generic
stability is the linear stability of the homogeneous equilibrium
solutions. The simplest relativistic generalization of the nonrel-
ativistic Fourier-Navier-Stokes equations was proved to be un-
stable by Hiscock and Lindblom [14]. In the sequel they formu-
lated mathematical conditions of generic stability of the Israel-
Stewart theory [8]specified to the Eckart frame. However, due
to the overwhelming complexity of these conditions they are
not connected to reasonable properties of equations of state or
transport coefficients. Since then several different propositions
arose suggesting a first order theory, mostly motivated by the
restoration of the generic stability [15; 16; 12; 17; 18; 19; 20;
21].

The third question is the correct distinction between ideal
and dissipative fluids, especially in a relativistic context. It is
customary to assume that perfect, nondissipative fluids are char-
acterized by a special form of the energy-momentum tensor and
the particle current density vector [22; 23]. On the other hand
physical dissipation is accompanied by nonzero entropy produc-

tion. From this point of view there is a more extended family of
perfect fluids beyond the customarily treated ones [24]. These
distinctions are technically addressed by the so called matching
conditions [25; 20; 21; 26].

Finally the proper choice of flow-frames continues to be an
unsettled question [16]. One generally believes that in relativis-
tic fluids the flow field ua can be chosen arbitrarily, since it is
a somewhat vaguely defined physical property, belonging to the
flow of volatile quantities, once the energy, once the conserved
charge. In this situation it is customary to fix the flow either to
the motion of particles (Eckart frame) [27], or that of the energy
density (Landau-Lifshitz frame) [28]. The flow fixing deter-
mines a continuous set of local rest frames in the fluid: we shall
refer to the different choices of fixing the flow as flow-frames or
frames. Contrary to the belief in a free choice of the flow-frame
we point out that this may not be completely arbitrary, as one
associates a given physical content of the dissipation to each.
Further choices than the two classical ones should be preferred
by demanding a given form of local Gibbs relations.

In this paper we present the general flow-frame, the separa-
tion of perfect and dissipative parts of energy-momentum and
particle number current density and their relation to generic sta-
bility. The key theoretical aspect connecting these problems is
relativistic thermodynamics. Our most important observation
is that the usual assumption of kinetic equilibrium by introduc-
ing the velocity field parallel to the local thermometer and La-
grange multiplier field βa also appearing in the collision invari-
ant ψ = α + βaka, already acts as a flow-frame fixing. This
choice we tag as thermometer frame or Jüttner frame, distin-
guishing from the Eckart, Landau-Lifshitz and other conven-
tions.

GENERAL ONE COMPONENT DISSIPATIVE RELA-
TIVISTIC FLUIDS

In this paper the Lorentz form is given as gab =
diag(1,1,1,1) and all indexes a,b,c, ... run over 0,1,2,3. We
use natural units, h = k = c = 1.
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A single component fluid is characterized by the particle
number four-vector Na and the symmetric energy-momentum
density tensor T ab. The velocity field of the fluid, the flow-
frame ua, introduces a local rest frame and the basic fields Na

and T ab can be expanded by their local rest frame components
parallel and perpendicular to the flow:

Na = nua + ja, (1)
T ab = euaub +qaub +uaqb +Pab. (2)

Here n is the flow-frame particle number density, ja is in this
frame the non-convective particle number current density, e is
the energy density, qa is the momentum density and Pab is the
pressure tensor. These components are flow-frame dependent,
in particular jaua = 0, qaua = 0 and Pabub = 0. Introducing
the substantial time derivative d

dt := ua∂a denoted by and over-
dot, the balances of the particle current density and energy-
momentum are expressed by the local rest frame quantities:

∂aNa = ṅ+n∂aua +∂a ja = 0, (3)
∂bT ab = ėua + eu̇a + eua

∂bub + q̇a +qa
∂bub +

ua
∂bqb +qb

∂bua +∂bPab = 0a. (4)

The energy and momentum balances are the time and space-
like components of the energy-momentum balance projected in
the flow-frame:

ua∂bT ab = ė+ e∂bub +uaq̇a +∂bqb−Pab
∂bua = 0, (5)

∆
a
c∂bT cb = eu̇a +∆

a
bq̇b +qa

∂bub +qb
∂bua +∆

a
c∂bPcb = 0a.(6)

The frame related quantities are important in the separation
of the ideal and dissipative parts of the basic fields. This separa-
tion is best performed by analyzing the thermodynamical rela-
tions. In order to achieve this one postulates the existence of an
additional vector field, the entropy current as a function of the
basic fields Sa(Na,T ab). It must not decrease by fulfilling the
condition of the balances (3) and (4). That conditional inequal-
ity can be best represented by introducing the Lagrange-Farkas
multipliers1 α and βa, respectively:

Σ := ∂aSa +α∂aNa−βb∂aT ba ≥ 0. (7)

The left hand side of this inequality shows, that the definition
of the entropy production is done before specifying the flow-
frame. However, the separation of ideal and dissipative parts
of basic physical quantities, is a consequence to the choice of
that flow-frame. Citing the authors of [32], when arguing about
the uniqueness of the Landau-Lifshitz frame “The uniqueness
of the energy frame comes from ... the physical assumption that
the dissipative effect comes from only the spatial inhomogene-
ity.“. However, what is spacelike is a frame dependent question
and one hopes only that physical systems may reveal by their
internal dynamics a physical ground for such a separation. A
possible candidate for this separation can be the thermometer
vector, βa, reconstructable from observations of a multiparticle
spectra stemming from a relativistic fluid.

1Lagrange multipliers are introduced for conditional extrema. For condi-
tional inequalities Gyula Farkas suggested analogous quantities and proved the
corresponding theorem of linear algebra, called Farkas’ lemma [29; 30; 31].

THERMODYNAMICS OF RELATIVISTIC FLUIDS –
EQUILIBRIUM

The concept of perfect fluids deals with the absence of dissi-
pation, the entropy production vanishes:

Σ0 = ∂aSa
0 +α∂aNa

0 −βb∂aT ba
0 = 0. (8)

The equilibrium entropy density Sa
0 is connected to the equi-

librium particle number density Na
0 and equilibrium energy-

momentum density T ab
0 by the following definition of the

isotropic pressure:

p0β
a = Sa

0 +αNa
0 −βbT ab

0 . (9)

Standard kinetic theory definitions and calculations satisfy
the above expressions. Then α and βa are coefficients in the
collision invariant of the equilibrium distribution function, ψ =
α+βaka, and the pressure is that of an ideal gas p0 = n0T .

Kinetic theory describes a perfect fluid by the detailed bal-
ance requirement. Out of equilibrium dissipation can occur.
In a dissipative fluid all physical quantities in principle devi-
ate from their local equilibrium values. There also may exist
non-dissipative currents (presumably driven by non-dissipating
forces, like the Lorentz force in magnetic fields). The thermo-
dynamic approach aims at the separation of dissipative and non-
dissipative local currents, in order to ensure the positivity of the
expression (7). Physical freedom in the choice of a flow-frame
should be restricted to different handlings of non-dissipative
currents.

It is natural to introduce the Jüttner frame ua
J defined by the

direction of βa (thermometer motion):

ua
J =

βa√
‖βaβa‖

. (10)

In that frame the equilibrium fields are decomposed as:

Na
0 = nJua

J , (11)
T ab

0 = eJua
Jub

J− p∆
ab
J , (12)

Sa
0 = (βJhJ−αnJ)ua

J , (13)

where hJ = eJ + p0 is the equilibrium enthalpy density in the
Jüttner frame, and βJ = βaua

J = 1/TJ is the reciprocal Jüttner
temperature. α, βa and p0 do not carry a frame index, because
they are introduced before specifying the flow-frame. On the
other hand the representations (11)-(13) are frame dependent. In
case of a general flow-frame ua, that is not parallel to βa, one can
characterize this difference by introducing wa = βa/(βbub)−ua.
Then wa is orthogonal to ua (waua = 0) and spacelike (wawa =
−w2). The Lagrange multiplier four-vector, βa, can be splitted
as

β
a = βJua

J = β(ua +wa), (14)

where β = βaua is the reciprocal temperature in a general frame
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defined by ua. The equilibrium fields in this frame are given as

Na
0 = n0ua + ja

0, (15)

T ab
0 = e0uaub +qa

0ub +qb
0ua− p∆

ab +
qa

0qb
0

h0
, (16)

Sa
0 = (βh0 +βwbqb

0−αn0)ua +βqa
0−α ja

0. (17)

Here β = βJ/
√

1−w2, n0 = nJ/
√

1−w2, e0 =
(eJ + pw2)/(1−w2), α and p0 does not change, ja

0 = n0wa,
qa

0 = h0wa [24]. (15)-(17) and (11)-(13) are the forms of the
same equilibrium fields in the Jüttner and in the general frames
respectively. In the specific equilibrium the Jüttner, Eckart and
Landau-Lifshitz frames coincide, the different choices lead to
the same condition: wa = 0.

THERMODYNAMICS OF RELATIVISTIC FLUIDS –
OUT OF EQUILIBRIUM

In classical non-equilibrium thermodynamics, without inter-
nal variables, one assumes that the gradients of the equilibrium
fields characterize the deviation from local kinetic equilibrium.
In that case the concept of local equilibrium is not modified.
The internal variable theories, like the Israel-Stewart theory [33;
34; 25; 35; 36] or GENERIC [37; 38], choose a different char-
acterization: local equilibrium is modified, some formerly dis-
sipative currents appear among the state variables and as a
conseqence their contribution may reduce the entropy produc-
tion. The relativistic theories revealed that the flow-frame fixing
plays a special role in the specification of local equilibrium. It
has been an observation of Planck and Einstein, that the mo-
mentum density (energy current density) is not purely dissipa-
tive and therefore in relativistic theories it has to be taken into
account even in local equilibrium [39; 40].

Our starting point is the fundamental inequality of the second
law (7). We introduce the following relation of the fields out of
equilibrium, as a generalization of (9):

Sa +αNa−βaT ab = Φ
a. (18)

With a general Φa this relation is valid without any restriction.
In a general flow-frame, ua, we define the thermostatic pressure
as:

p =
uaΦa

β
. (19)

Therefore the general form of the potential Φa can be written as

Φ
a = βp(ua +ga), where uaga = 0. (20)

The parallel and perpendicular components of (18) to the flow
ua are

s+αn−β(h+wbqb) = 0, (21)
Ja +α ja−β(qa +wbΠ

ab)+βp(wa−ga) = 0a, (22)

where h = e+ p and Πab = Pab + p∆ab is the viscous pressure.
Then we rewrite the entropy production (7) with flow related

quantities:

Σ = ∂aSa +α∂aNa−βa∂bT ab =−Na
∂aα+T ab

∂aβb +∂aΦ
a =

−nα̇+hβ̇+qa(βwa)̇+β ṗ+Π
ab

∂aβb− ja
∂aα+qa

∂aβ+

βu̇b(qb−hwb)+βqaub
∂awb + p(ga−wa)∂aβ+

pβ∂
a(ga−wa)+ga

β∂a p. (23)

Thermodynamics is taken into account by the following two
postulates.

1) The underlined part in the above expression with proper
time derivatives (total differentials) is zero.

β
d
dt

p = n
d
dt

α−h
d
dt

tβ−qa d
dt
(βwa). (24)

This is the relativistic Gibbs-Duhem relation. Considering this
together with the vanishing differential of (21), we obtain the
Gibbs relation [41]:

β(de+wadqa) = ds+αdn. (25)

Based on this result we conclude that the entropy has to be given
by a functional relationship between the local densities (but cer-
tainly including the momentum density qa), i.e. the proper rela-
tivistic and local equation of state is a function s(e,qa,n). It has
the following partial derivatives:

∂s
∂e

∣∣∣∣
qa,n

= β,
∂s
∂n

∣∣∣∣
e,qa

=−α,
∂s

∂qa

∣∣∣∣
e,n

= βwa, (26)

identifying the thermodynamical entropic intensive parameters
as being β, α = βµ and βwa. The four-vector wa is constrained
by its orthogonality to the local flow, so it contains independent
information on a spatial three-vector only. In isotropic media
this degree of freedom is reduced to the length of this vector, w2.
In cases containing radiation it appears as a velocity parameter
of the Doppler shift [41].

By utilizing the above functional form of the equation of state
one derives that the pressure, the intensive parameter associated
to mechanical work, satisfies the following four-vector general-
ized Gibbs-Duhem relation, now written by the traditional dif-
ferentials:

β∂a p = n∂aα−h∂aβ−qb
∂a(βwb). (27)

2) Our second postulate is ga = wa. By doing so we spell
out the fundamental compatibility of non-equilibrium (18) with
the equilibrium (9) definitions of pressure. In this way we treat
the non-dissipative part of the thermodynamical potential, and
with that the influence of the pressure gradient on the entropy
production rate possibly closest to the ideal gas behavior. This is
a special matching condition known from kinetic theory (δn =
0, δe = 0): in this case the pressure four-vector Φa is parallel to
the thermometer vector βa.

Now a short calculation reduces (23) to a form collecting
terms according to the gradients of intensives. A chemical dif-
fusion part is associated to ∂aα, a heat diffusion (Fourier-) part
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to the gradient of β, and finally a viscosity term with the sym-
metric gradient tensor of the full four-vector ∂aβb. We also gain
one further term containing the gradient of the difference be-
tween ua and wa. The antisymmetry of the multiplier enforces
the antisymmetry of this velocity related gradient, therefore this
term we tag as ”vorticity”. We arrive at the following expres-
sion:

Σ = (nwa− ja)∂aα+(qa−hwa)(∂aβ+βu̇a)

+ (Πab−q(awb))∂aβb +q[bwa]
∂a(β(ub−wb))≥ 0. (28)

Here q(awb) and q[awb] denotes the symmetric and antisymmet-
ric parts of qawb respectively. (28) is the entropy production
rate without fixing the flow-frame. For a perfect fluid, charac-
terized by (15)-(16), the local entropy production is zero. Now it
is straightforward to identify thermodynamic fluxes and forces
and establish functional relationships, that are strictly linear in
the first approximation2:

Diffusive Thermal Viscous Vortical
Fluxes nwa− ja qa−hwa Πab−q(awb) q[bwa]

Forces ∇aα ∇aβ+βu̇a ∆(bc∇a)βc ∆[bc∇a](β(uc−wc))

Table 1. Thermodynamic fluxes and forces in a general flow
frame

Here ∇a =∆b
a∂b. The corresponding linear response relations

for isotropic continua are:

nwa− ja = D∇
a
α+σ(∇a

β+βu̇a), (29)
qa−hwa = σ∇

a
α+λ(∇a

β+βu̇a), (30)

Π
ab−q(awb) = ζ∆

ab
∂

c
βc +2η∆

〈bc
∇

a〉
βc, (31)

q[bwa] = χ∆
[bc

∇
a](β(uc−wc)). (32)

Here 〈〉 denotes the symmetric traceless part in the bracketed
indices, λ is the heat conduction coefficient, D is the diffusion
coefficient, σ is the Soret-Dufour coefficient of thermal diffu-
sion. ζ is the bulk viscosity, η is the shear viscosity, and χ is
the vortical viscosity coefficient. Because of the nonnegative
entropy production (28) the linear transport coefficients must
fulfill the following inequalities:

D≥ 0, λ≥ 0, λD−σ
2 ≥ 0, ζ≥ 0, η≥ 0, χ > 0. (33)

Here the first three inequalities are coupled channel conditions
for stability, while the last three are independent ones.

The procedure described here ensures the existence of a ho-
mogeneous flow field as a time independent solution of the
equations of motion of the fluid. That is why deviation from
local equilibrium is best characterized by gradients of the basic
fields in the first approximation.

In the following we study some important particular choices
for the flow-frame.

THERMOMETER FRAME

The thermometer or Jüttner frame is the natural choice in ki-
netic theory calculations. In this case the direction of βa defines
the flow-frame similarly to the natural frame in perfect fluids:

2Since dissipative fluxes are orthogonal to ua, only the projected gradient
terms, ∆a

b∂b, constitute thermodynamical forces.

β =
√
‖βbβa‖ and ua = βa/β. In this section we apply this def-

inition of the flow-frame. Then the local equilibrium relations
are:

s+αn−βh = 0, ds+αdn−βde = 0. (34)

The entropy current density, Ja satisfies

Ja +α ja−βqa = 0a, (35)

and the entropy production rate fulfills the inequality,

Σ =− ja
∂aα+qa(∂aβ+βu̇a)+βΠ

ab
∂aub ≥ 0. (36)

This form of the entropy production was derived originally
by Eckart restricting to the case ga = wa = 0.

Eckart identified the following thermodynamic fluxes and
forces

Diffusive Thermal Mechanical
Fluxes − ja qa βΠab

Forces ∇aα ∇aβ+βu̇a ∆(bc∇a)uc

Table 2. Thermodynamic fluxes and forces by Eckart.

Unfortunately in this case a generic instability occurs, the lin-
ear instability of the homogeneous equilibrium, as it was proved
by Hiscock and Lindblom in [14]. Nonnegative entropy produc-
tion is established only if considering the basic balance equa-
tions (for energy, momentum and further conserved Noether-
charges) as constraints. However, by deriving (36) the balance
of momentum does not enter the calculations. Therefore the
linear relation between the thermal part of the fluxes and forces
with the acceleration term, βu̇a, connects changes in these quan-
tities irrespective to the momentum balance equation (6). A cor-
rect treatment of thermodynamic forces and fluxes on the other
hand should introduce the momentum balance into the above
entropy production formula. A short calculation leads to:

Σ =
(n

h
qa− ja

)
∂aα− β

h
qa
(

q̇a +qa∂bub +qb
∂bua +∂bΠ

b
a

)
+ βΠ

ab
∂aub ≥ 0. (37)

This step makes an important difference with respect to stabil-
ity properties of the homogeneous equilibrium of a fluid. The
corresponding thermodynamic fluxes and forces in the Jüttner
frame are

Diffusive Thermal Mechanical
Fluxes n

h qa− ja −β

h qa βΠab

Forces ∇aα Xa = ∆abq̇b +qa∂bub +qb∂bua +∆ac∂bΠb
c ∆(bc∇a)uc

Table 3. Thermodynamic fluxes and forces in Jüttner frame
providing generic stability

Here Xa is a convenient abbreviation for the thermal force,
the thermodynamical force associated to the dissipative current
of the heat. Linear transport relations for isotropic continua in
the Jüttner frame can now be easily established:

n
h

qa− ja = D∇
a
α+σ Xa, (38)

−β

h
qa = σ∇

a
α+λXa, (39)

βΠ
ab = ζ∆

ab
∂cuc +2η∆

〈b
c ∇

a〉uc. (40)
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With this modification the generic stability of the theory in
Jüttner fframe is established: the heat transfer vector qa receives
a positive relaxation factor, β/hλ > 0. It is easy to realize that
by ignoring viscosity, component diffusion and cross effects, in
homogeneous equilibrium, where all spacelike projected gradi-
ents of the velocity field vanish, the only surviving term in the
thermal force is that with the total time derivative of the heat
vector:

λXa = λ∆
abq̇b =−

β

h
qa. (41)

Multiplied by qa this leads to a relaxation equation for the length
of the vector, Q =−qaqa as follows

Q̇ =−2
β

hλ
Q. (42)

This means a relaxation towards the qa = 0 value of the energy
current density.

An important property of these equations is the expected
generic statiblity of the homogeneous equilibrium. Without the
detailed calculations (to be shown elswhere) we want to empha-
size that the conditions of generic stability are purely thermody-
namic. Namely, it is fulfilled whenever the transport coefficients
λ, η̃ are nonnegative and the following inequalities for thermo-
dynamic stability i.e. the concavity of the entropy s(e,n,qa) are
satisfied:

∂eT > 0, ∂n
µ
T

> 0 ∂eT ∂n
µ
T
−
(

∂nT
T

)2

≥ 0. (43)

OTHER FLOW-FRAMES

The other flow frames can be conveniently defined in our
general framework.

The Eckart frame is defined by the direction of the particle
current density vector ua = Na/

√
‖NbNb‖. One realizes that in

case of dissipative fluids the Jüttner and Eckart frames do not
coincide.

In case of a Landau-Lifshitz frame the flow field is de-
fined by the direction of the momentum density vector ua =
ubT a

b /‖ucT d
c ‖, therefore qa = 0a. In case of dissipative fluids

the Jüttner and Landau-Lifshitz frames also do not coincide.
However, in the absence of qa, the thermodynamic relations are
similar to the ones in a Jüttner frame

s+αn−βh = 0, ds+αdn−βde = 0, ndα−hdβ−βdp = 0.
(44)

In principle there are several further possibilities of frame
fixing. One of them introduces wa = βa/h. This choice fixes
the velocity field compatible to some kinetic theory calculations
[24; 18].

Once a choice of the linear response has been made, one can
transform the description in one frame to the other. The differ-
ent transport coefficients are not equivalent, a constant invariant
coefficient may become flow-frame dependent in other frames.
Wether the primary flow-frame independent choice is preferred
or not requires further investigations.

SUMMARY

Thermodynamic relations in relativistic fluids adhore to flow-
frames, while dividing spacial homogeneous changes from the
forces enforcing this homogeneity. It is made transparent in
the train of thoughts from (18) to (23), where we calculated
entropy production separating comoving time derivatives and
spacial gradients. We have seen, that α, βa and p are flow-
frame independent. Then local equilibrium was postulated by
the thermodynamic relation (25), containing homogeneous ther-
modynamics. In [41], presenting a different reasoning, we have
shown that the different transformation formulas of the relativis-
tic temperature, due to Planck-Einstein, Blanus̆a-Ott, Landsberg
and Doppler, can be unified and reasonably explained in exactly
this thermodynamic framework.

We propose that the thermometer frame, defined in (10),
should be a preferred choice. In general βa can be divided into
parts orthogonal and parallel to the flow ua: βa = β(ua +wa),
where uawa = 0. We have revealed how far this choice differs
from the Eckart and Landau-Lifshitz frames. There are argu-
ments, that the widely used Landau-Lifshitz frame should be
perferred [10; 42]. However, these studies do not distinguish
the thermometer frame.

The entropy production in a general frame (28) helps to rec-
ognize

– that viscous pressure is damps the inhomogeneities in βa,
– that there are perfect fluids with zero entropy production
but ja/n = qa/h = wa 6= 0 and Πab = hwawb 6= 0,
– there is a vorticity related dissipative term.

Furthermore we have mentioned, that generic stability is prop-
erly derived if the momentum balance constraint is also consid-
ered in the calculation of the entropy production (36).

In our previous works we have shown further examples of
flow-frames. In [12; 17; 43; 41] the wa = qa/e case was ex-
plored and in [24] and [18] we have analyzed the kinetic theory
compatibility and thermodynamics when wa = qa/h. Thermo-
dynamic considerations show, that the coupling of the momen-
tum balance to the entropy production cannot be avoided [43].
It was proven independently of the Eckart or Landau-Lifshitz
frame for wa = qa/e in [17], for the wa = qa/h case a partial
proof was given in [18].
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[29] Gy. Farkas. A Fourier-féle mechanikai elv alkalmazásai.
Mathematikai és Természettudományi Értesı́tő, 12:457–
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[40] A. Einstein. Über das Relativitätsprinzip und die aus dem-
selben gezogenen Folgerungen. Jahrbuch der Radioak-
tivität und Elektronik, 4:411–462, 1907.
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INT RODUCTION 

The energy requirement of industry is supplied mainly by 
fossil and nuclear fuels. According to New Policies Scenario, 
global primary energy demand rises by over one-third in the 
period to 2035. Oil demand reaches 99.7 mb/d in 2035, up from 
87.4 mb/d in 2011. Coal demand rises by 21% and natural gas 
by a remarkable 50%. Renewables are deployed rapidly, 
particularly in the power sector, where their share of generation 
increases from around 20% today to 31%. Growth in nuclear 
power is revised down relative to our previous projections, in 
large part due to policy moves following Fukushima Daiichi. 
These trends call for $37 trillion of investment in the world’s 
energy supply infrastructure to 2035. All those projections 
show that energy demand is growing up by coming years 
besides policy makers confronted with the twin challenges of 
ensuring reliable and affordable energy supplies and dealing 
with climate change have consistently identified energy 
efficiency as an essential means of moving to a more 
sustainable energy future. Energy and economic analysis point 
to the same conclusion: improving energy efficiency in 
energy-importing countries reduces import needs or slows their 
growth; measures can be implemented quickly compared with 
often lengthy projects to expand production; it is among the 
cheapest of the large-scale carbon dioxide (CO2) abatement 
options; and it can play a role in spurring economic growth and 
reducing energy bills, both of particular importance during this 
period of economic uncertainty and persistently high energy 
prices [1]. 

For this reason, the studies on alternative energy resources 
and new techniques in order to utilize the energy resources 
more efficiently have increased. The optimization of energy 
conversion systems becomes one of the most important subjects 
in the industry. Engineers and scientists dealing with the design 

and operation of an energy conversion system want to improve 
or optimize it by maximizing efficiency, and minimizing 
product cost and environmental impact associated with this 
plant [2]. In order to optimize such systems, firstly the real 
mechanism should be understood according to which 
thermodynamic inefficiencies, costs, and environmental 
impacts are formed within the system. 

In 2011 all major energy-consuming countries introduced 
new legislation on energy efficiency, making provisions for a 
16% reduction in energy intensity by 2015 in China, new 
fuel-economy standards in the United States and a cut of 20% in 
energy demand in the European Union in 2020. Japan also aims 
to achieve a 10% reduction in electricity demand by 2030 in its 
new energy strategy. Implementation of those policies and of 
those under discussion in many other countries, at the level 
assumed in our New Policies Scenario, would result in annual 
improvements in energy intensity of 1.8% over 2010-2035, a 
very significant increase compared with 1.0% per year achieved 
over 1980-2010. In the absence of those gains, global energy 
demand in 2010 would have been 35% higher, almost 
equivalent to the combined energy use of the United States and 
China. According to the New Policies Scenario of WEO 2012, 
efficiency accounts for about 70% of the reduction in projected 
global energy demand in 2035, compared with the Current 
Policies Scenario [3]. 

The performance of energy conversion systems is reduced 
by the presence of irreversibilities. Entropy is used as a 
quantitative measure of irreversibilities associated with a 
process, and can also be used to determine the performance of 
process and its equipment. For this purpose a technique called 
exergy analysis is used. Exergy analysis is a thermodynamic 
tool for assessing and improving the efficiency of processes and 
their equipment, and for increasing environmental and 
economic performance. The exergy analysis is used to identify 

ADVANCED EXERGY ANALYSIS OF THE STEAM TURBINE OPERATIONS 
OPTIMISATION 

 
Dilek Celenk*, Zehra Ozcelik°, Sadi Senocak* 

 
*PhD Student at Chemical Engineering Department, Ege University, Bornova – Izmir /Turkey,  Senior R&D 

Engineer / Energy, Petkim Petrochemicals Inc. Office I, 35800  Aliaga – Izmir/Turkey 
 °Ass.Prof. Dr., Chemical Engineering Department, Ege University, Bornova – Izmir /Turkey 

* Energy Manager, Petkim Petrochemicals Inc. Office I, 35800 Aliaga – Izmir/Turkey 

ABSTRACT 
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the location, the magnitude, and the causes of thermodynamic 
inefficiencies in systems, which are exergy loss and exergy 
destruction [2]. The sum of exergy destruction and exergy loss 
within an energy conversion system represents the real 
thermodynamic inefficiencies of this system. The exergy loss in 
a component is caused by the transfer of thermal exergy to the 
environment. When the boundaries for the component analysis 
are drawn at the ambient temperature, the exergy loss is zero 
and the thermodynamic inefficiencies consist exclusively of 
exergy destruction [3]. 

The exergy destruction is caused chemical reaction, heat 
transfer, mixing of matter at different compositions or states, 
unrestrained expansion, and friction. At any given state of 
technological development, some exergy destruction within a 
system component will always be unavoidable due to physical 
and economic constraints [4]. 

A conventional exergetic analysis does not evaluate the 
mutual independencies among the system components nor the 
potential for improving a component [2]. This can be achieved 
by an advanced analysis, in which the exergy destruction in 
each component is split into endogenous and exogenous parts; 
also avoidable and unavoidable parts, and a combination of 
these two splitting approaches. Such an approach can provide 
an energy conversion system with valuable detailed information 
in order improve the overall efficiency of a system. 

After investments of plants in Petkim, power generation and 
utility operations in the petrochemical complex had had a 
complicated structure. Optimisation of the big sized and 
complicated power generation operations was getting higher 
importance. 

After investments of plants in Petkim, power generation and 
utility operations in the petrochemical complex had had a 
complicated structure.  

 
 

Optimisation of the big sized and complicated power 
generation operations was getting higher importance. It was 
really too important to monitor and to optimise the energy 
consumption and power generation operations in order to 
perform energy saving studies. By optimising energy 
consumption of the complex continuously it is possible to save 
2 – 5 % of energy consumption of the complex. 

In this study advanced exergy analysis of the steam turbines 
which are running in the power plant of a petrochemical 
complex, operations optimisation was performed. At the initial 
state two backpressure turbines having 64 MW power output 
each, and two condensing turbines having 20 and 22 MW 
power outputs were running in the power plant. After making 
some what – if scenarios by using HSPO (Heat – Steam – 
Power – Optimisation software), one of the backpressure steam 
turbine was shut down. What – if study and the exergy analysis 
results will be examined in coming section. 

 
POWER PLANT 

 
Petkim has its own Power Plant to generate steam at different 

pressure and temperature levels and electricity to use its 
processes. There are 4 steam boilers having 350 tons/h capacity 
to generate XHS (extra high pressure steam) and two 
backpressure turbines to generate HS (high pressure steam), 
MS (medium pressure steam), and LS (low pressure steam) and 
electricity and two condensing turbines for electricity 
generation using LS. Depending on the complex demand steam 
and electricity generation is changed. 420.000 TOE fuel is 
consumed annually to produce 4.400.000 tons XHS and 
920.000 MW electricity in the Power Plant. Steam and power 
system have a dynamic structure and it brings on to optimize the 
generation and consumption of the complex. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. General Scheme of the Steam and Power Generation 
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Fuel oil, natural gas, fuel gas, aromatic oil, hydrogen and 

ethylene oxide plant vent gas are used as primary energy 
sources to produce XHS and electricity in Petkim Power Plant. 
It has 4 steam boilers (B1, B2, B3, and B4) having maximum 
capacity of 350 tons/h XHS; two backpressure turbines (TG2, 
and TG3) having 64 MWh capacity for each; two condensing 
turbines having capacity of 20 MWh (TG1) and 22 MWh 
(TG4); and one gas turbine (TG5) having capacity of 58 MWh, 
(Figure 1). 500 t/h steam and 130 MWh electricity is used by 
plants. There are five main steam levels which are using by 
plants in the complex given in Table 1. 

 
Table 1. Steam Levels Generated by Power Plant 
 
STEAM 
LEVELS 

PRESSURE 
(kg/cm²g) TEMPERATURE ( ⁰⁰⁰⁰C) 

XHS 134 540 

HHS 84 310 

HS 42 390 

MS 18 300 

LS 5.5 190 

 

WHAT – IF STUDY  

Electricity is generated by passing XHS trough backpressure 
turbines and HS, MS, and LS which are used in processes are 
taken from different sections of each turbine. For supplying the 
complex demand for steam and electricity at least three boilers, 
two backpressure turbines and two condensing turbines had 
been running. Depending on the complex demand steam and 
electricity generation is changed. By performing what – if 
scenario by using HSPO software, it was seen that instead of 
two running backpressure turbines at lower loads, one 
backpressure turbine at higher loads and one condensing 
turbine could be supply the complex demand. All analysis 
showed that three boilers, one backpressure turbine, and one 
condensing turbine could be supplied the complex demand for 
steam and electricity without any disturbances on the system 
and complex.  

 
Table 2. What – if Scenario Complex Application Results 
 

 TG2 TG3 Total Difference 

XHS 
Consumption 
of Turbines 

(tons/h) 

Before 
Application 

279 188 467 

-11(tons/h) 

After 
Application 

456 0 456 

Power 
Generation 

(MW) 

Before 
Application 

26 15 41 

+12 (MW) 

After 
Application 

53 0 53 

At the beginning the capacity of the backpressure turbines 
were 35 – 45% and this caused big losses in efficiency. To 
prevent this, one of the back pressure turbine was stopped and 
other backpressure turbine was loaded twice than before. At 
this condition the running backpressure turbine is run 80 – 90% 
of its capacity. The what – if scenario was studied in software 
firstly and then it was applied in the complex gave results that 
XHS consumption was decreased by 11 tons/h and the 
electricity generation was increased by 12 MWh as seen in 
Table 2. 
 

EXERGY ANALYSIS 

Exergy of a thermodynamic system is the maximum 
theoretical useful work (shaft work or electrical work) 
obtainable as the system is brought into complete 
thermodynamic equilibrium with the thermodynamic 
environment while the system interacts with this environment 
only. [5] A conventional exergy analysis can highlight the main 
components having high thermodynamic inefficiencies, but 
cannot consider the interactions among components or the true 
potential for the improvement of each component. By splitting 
the exergy destruction into endogenous/exogenous and 
avoidable/unavoidable parts, the advanced exergy analysis is 
capable of providing additional information to conventional 
exergy analysis for improving the design and operation of 
energy conversion systems [6]. 

 
Like mass, energy, and entropy, exergy is an extensive 
property, so it too can be transferred into or out of a control 
volume where streams of matter enter and exit. The general 
form of such exergy transfer can be expressed as: 

 

(1) 

The first term denotes rate of exergy change, the term  
denotes rate of exergy destruction and the rest of the terms on 
the right side of the equation denote rates of exergy transfer. 

In the absence of nuclear, magnetic, electrical, and surface 
tension effects the total exergy of a system E can be expressed 
as: 

   (2) 

where  is physical exergy,  is kinetic exergy,  is 
potential exergy, and  is chemical exergy. 

The physical exergy can be expressed as: 

 (3) 

Where , , and  denote, respectively, the internal energy, 
volume, and entropy of the specified state, and , , and  
are the values of the same properties when the system is at the 
restricted dead state. 

The chemical exergy per mole of mixture is, 
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  (4) 

and  is the mole fraction of gas k in the environmental gas 
phase and  is the chemical exergy per mole of kth 
component. 

Exergy rate balance at steady – state can be expressed as: 

    (5) 

where  denotes exergy rate at the inlet,  denotes exergy 

rate at the outlet,  denotes exergy destruction, and  
denotes exergy loss. 

The exergetic efficiency  is the ratio between product and fuel 
and is expressed as [7]: 

    (6) 

RESULTS 

In this paper the advanced exergy analysis of the steam 
turbine operations optimisation were studied. Firstly the what – 
if analysis of the turbine operations were examined and then the 
action which was defined in the what – if scenario was applied 
to Power Generation in the complex. According to the scenario 
applied one of the bakpressure turbine TG2 and one of the 
condensing turbine TG4 had been shut down. Before the 
application HS only was taken from TG2 and this amount of HS 
could be supplied to complex HS demand. So, before 
application there was no HS section data to calculate exergy 
and efficiency of the HS section of TG3. After application HS is 
started to be taken from TG3. Before and after application of 
the scenario the exergetic efficiency of the backpressure 
turbines and condensing turbines had been calculated and all 
results are given in Table 3. It is clear that for backpressure 
turbine operation all efficiencies of the turbine sections was 
incresed at least 5%. 
 
Table 3. Exegy and Efficiency Results of the Steam Turbines 
Operation 

 

  Before Application After Application 

  
Exergy 
( kW) 

Efficiency 
% 

Exergy 
( kW) 

Efficiency 
% 

TG1 13591.9 70.3 24838.4 52.7 

TG2-HS 4122.3 85.3   

TG2-MS 9031.6 80.6   

TG2-LS 33139.9 79.0   

TG3-HS   5457.8 80.3 

TG3-MS 10228.5 77.1 21600.7 82.5 

TG3-LS 30456.6 68.1 51781.6 75.4 

TG4 16091.9 43.8   

 
 

 

NOMENCLATURE 
 

Symbol Quantity SI Unit 
   
XHS 
 
HHS 
 
HS 
 
MS 
 
LS 
 
TOE 
 
HSPO 
 
 
B1, B2, 
B3, B4 
TG2, TG3 
 
TG1, TG4 
 
TG5 
ED 
 
E 
 
EPH 

E
KN 

EPT 

ECH 

U 
V 
S 
U0 
 
 
V0 
 
 
S0 
 
 

 

 
 
 

 
 
 
 

 
 
 

 
 

 
 

 
 

 
 

Extra High Pressure 
Steam 
High High Pressure 
Steam 
High Pressure 
Steam 
Medium Pressure 
Steam 
Low Pressure 
Steam 
Tonnes Oil 
Equivalent 
Heat – Staem – 
Power – 
Optimisation 
Boilers 
 
Backpressure 
Turbines 
Condensing 
Turbines 
Gas Turbine 
Rate of Exergy 
Destruction 
The Total Exergy 
of A System 
Physical Exergy 
Kinetic Exergy 
Potential Exergy 
Chemical Exergy 
The Internal Energy 
Volume 
Entropy 
The Internal Energy 
at the Restricted 
Dead State 
Volume at the 
Restricted Dead 
State 
Entropy at the 
Restricted Dead 
State 
 
The Chemical 
Exergy Per Mole of 
Mixture 
The Mole Fraction 
Of Gas k in the 
Environmental Gas 
Phase 
The Chemical 
Exergy Per Mole of 
kth Component 
Exergy Rate at the 
Inlet 
Exergy Rate at the 
Outlet 
Exergy Destruction 
Exergy Loss 
The Exergetic 
Efficiency 

tons/h 
 
tons/h 
 
tons/h 
 
tons/h 
 
tons/h 
 
- 
 
- 
 
- 
 
 
- 
 
- 
 
- 
 
 
kj/kmol 
 
kj/kmol 
kj/kmol 
kj/kmol 
kj/kmol 
kj/kmol 
m3 
kj/kmolK 
kj/kmol 
 
 
m3 

 
 
kj/kmolK 
 
 
 
kj/kmol 
 
 
- 
 
 
 
kj/kmol 
 
 
MW 
 
MW 
 
MW 
 
MW 
 

561



 

 
 

 

Exergy Rate of 
Product 
Exergy Rate of Fuel 

MW 
 
MW 
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INTRODUCTION 

Phase diagrams assessment is an actual part of modern 

theoretical materials science. Most of modern programs for 

calculating multicomponent diagrams are based on the 

conditional minimization of Gibbs energy of the system. The 

sensitivity of this method to the initial approximation and to 

features of used minimization algorithm significantly 

complicates its practical application. Such situation makes a 

development of alternative methods for phase equilibria 

assessment, e.g. geometric, an actual problem. A rather new 

convex hull method belongs to them. 

The convex hull method is based on the fact that 

equilibrium Gibbs energy (G) surface of the system in 

extensive thermodynamic coordinates (e.g. amounts of 

components ni, volume V, etc.) is the convex hull of G 

functions of all set of phases. It has a number of advantages: 

doesn’t require specifying initial conditions, applicable for 

wide range of thermodynamic models, doesn’t use explicit 

minimization of thermodynamic potentials [1]. It should be 

noted that convex hull method allows direct calculations of 

phase diagrams in extensive variables only (ni, volume V, 

etc.). 

For isobaric-isothermal sections of ternary systems this 

method is implemented in the TernAPI program developed at 

the Laboratory of Chemical Thermodynamics of MSU 

Chemistry Department [2]. However in the practical, e.g. 

industrial, applications an assessment and visualization of 

polythermal sections and surfaces (i.e. diagrams in extensive 

coordinates that cannot be obtained by the convex hull 

method directly) are often required. 

So the technique of making polythermal sections of ternary 

phase diagrams using convex hull method was suggested and 

implemented into TernAPI package. 

POLYTHERMAL SECTIONS CONSTRUCTION 

METHOD 

The proposed method of polythermal sections construction 

is based on the assessment of the p,T-sections set within 

specified range of temperatures with their subsequent analysis 

and consists of the next steps: 

(1) The set of phase diagram p,T-sections in the temperature 

range from Tmin to Tmax  with user defined step ΔТ is 

constructed. All sections have the same resolution in 

components molar fractions coordinates (x2, x3). 

(2) The cutting plane parallel to T axis and intersecting AB 

(A and B are the points inside the Gibbs-Rosebom 

triangle) interval in each composition triangle is plotted. 

(3) The rasterization of each p,T-section obtained in item 1 

is carried out. Points situated on the interval AB are 

selected from each rasterized section. Phase composition 

of every point is stored in the matrix, in which every row 

corresponds to one temperature Ti and a column – to a 

definite composition ξi. 

(4) Based on the matrix from item 3 coordinates of 

boundaries between diagram areas are determined. 

(5) Using obtained data array the phase diagram 

polythermal section in the T-ξ coordinates (temperature-

composition) is plotted. 

 

Suggested algorithm is implemented as the computer 

program in MATLAB programming language and uses the 

TernAPI kernel to calculate single p,T-sections. It comprise 

four modules – PolyTSection, CalcPolyTDiagram, 

BuildPolyTSection and ShowPolyTSection, which perform 

next functions: 
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(1) First one (PolyTSection) is designed to setup user input 

data (path to the source file with information about 

system, temperature interval for section calculation, 

composition and temperature step, geometrical 

parameters of required polythermal section) and to call 

other three modules. 

(2) Second one (CalcPolyTDiagram) calculates the set of 

p,T-sections and determines phase composition and 

boundaries inside each of them. 

(3) Third module (BuildPolyTSection) performes 

rasterization of each p,T-section and builds up the matrix 

as described in item 3 of algorithm, then receives 

information about boundaries of diagram phase fields 

from previous module. 

(4) Last one (ShowPolyTSection) makes graphical 

construction of obtained polythermal section. 

 

Such modularization was made to divide the procedure of 

p,T-sections calculations and their analysis as well as to 

facilitate further modernization, addition of another 

functionality and integration with TernAPI.  

It should be emphasized that quality of built polythermal 

section is essentially depends on defined temperature step ΔТ. 

It was emerged during program testing that optimal value of 

ΔТ is about 1% of temperature interval for diagram 

construction. Such ΔТ allows to find adequately most of 

existing phase fields of section and make the representation of 

obtained T-x-diagrams in a user-friendly style. 

Concerning operating time of the algorithm we can say that 

primary rate-controlling factor is the calculation of the 

isobaric-isothermal sections set. Depending on temperature 

and composition step it can take from a few minutes to hours 

on modern personal computer and amount to about 80% of 

program working time, where almost 2/3 of calculation time 

goes to the construction of convex hull and the remainder – to 

the determination of their phase compositions and boundaries. 

Remaining availability is taken be construction of the final T-

x-diagram (usually 5-60 seconds). Therefore we recommend 

begin with calculation and saving the set of p,T-sections for 

chosen system to improve the time for construction of 

arbitrary polythermal section loading it from outside. 

Suggested algorithm tested on the next groups of systems: 

(1) Systems with ternary eutectic (model, LiF-LiCl-LiI etc.) 

(2) Systems with splitting solutions (model, CdTe-HgTe-

ZnTe, Au-Pt-Pd etc.) 

(3) Systems with a large number of phases with non-

permanent composition (Au-Bi-Sb, Al-Mg-Zn etc.) 

 

An agreement between calculated diagrams and literature 

data confirms the applicability of the developed technique of 

polythermal sections assessment for a wide range of ternary 

systems. As an example the comparison between calculated 

and reference sections of ternary Au-Bi-Sb diagram with is 

shown on the Figure 1. Model descriptions for all phases in 

this system were taken from [3] and reference plotted 

polythermal section was taken from [4]. As can be seen 

calculated polythermal section contains phase fields 

boundaries of different colors. The reason for that will be 

described below. 

During the algorithm testing a necessity to upgrade 

TernAPI program for improving accuracy in determination of 

phase boundaries around singular points of phase diagram 

(eutectic, peritectic, critical points etc.) was clearly shown. 

 
 

a) 

 

b) 

 

Figure 1. Polythermal section of Au-Bi-Sb phase diagram 

with constant molar fraction of Bi xBi = 0.2: a – from [4], b – 

calculated using suggested algorithm. 

 

 

a) 

 

b) 

 

Figure 2. Polythermal section of LiF-LiCl-LiI phase 

diagram (0.9;0)-(0;0.5). Coordinates are given as (x2
start

;  

x3
start

)-(x2
final

; x3
final

). a – first version of program, b – 

calculated using refined algorithm. 
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 To illustrate this an arbitrary polythermal section in the 

ternary LiF-LiCl-LiI diagram is shown on Figure 2a. Model 

description for this system was taken from [5] and [6]. One 

can see the splitting of one whole two-phase region L+LiCl 

into two due to “wedging” between them of narrow two-phase 

band L+LiF. Such inaccuracy is caused by the problems of 

discrimination between three- and two-phase diagram regions. 

As can be seen on the Figure 3, narrow three-phase triangle 

near the eutectic point is incorrectly recognized as two-phase. 

Such error distorts the view of polythermal section; it is 

caused by the convex hull projection analysis algorithm 

features (which is based on geometrical principles) used in 

TernAPI.  

 It can be avoided by decreasing composition step that 

results in increasing of the section calculation and 

visualization time. Another possible way is in comparing two 

p,T-sections differed form each other by the value of ΔT in 

temperature with further recognition and automatic repairing 

the “artefacts”, but this method takes additional investigations 

and significant sophistication of the algorithm. We used 

different approach. 

This one and other corrections of algorithm 

implementation drawbacks mentioned above are described in 

the next section of this article. 

ALGORITHM REFINEMENT 

In the new version of algorithm some its parts were 

significantly improved. The most important features are the 

follows: 

(1) Inaccuracy in determination of phase boundaries around 

singular points of phase diagram was eliminated by the 

modification of TernAPI kernel. 

(2) Combining of single points dividing phase diagrams into 

a solid lines of phase boundaries was added. 

(3) Time of polythermal section construction from 

precalculated set of p,T-sections was reduced to one-

tenth as much (now it is less than 10 sec on a typical 

modern personal computer).  

 

 Elimination of errors in phase boundaries determination 

near singular points was achieved by addition of extra 

procedure of phase number assessment inside the triangles of 

the convex hull projection to the (x2, x3) plane. It was made by 

the modification of TernAPI kernel. Old version of algorithm 

includes only one method of its assessment based on 

geometrical properties of the triangles [2]. Extra procedure 

contains two steps: 

(1) Calculate number of phases by counting the number of 

Gibbs energy functions (points, lines, surfaces) touched 

by the triangle. 

(2) Use obtained number of phases if it is greater that 

calculated by the geometrical method 

In this technique geometrical method allows to detect 

miscibility gaps generated by the one phase (e.g. liquid) and 

non-geometrical method can discriminate between three and 

two-phase region near such singular points as eutectic and 

peritectic. 

New feature of program to determine phase regions 

boundaries not as dotted but solid improves the visual 

appearance of phase diagrams and makes its automatic 

analysis easier (e.g. during thermodynamic model parameters 

optimization based on an experimental data set). It can be 

seen on Figures 2b and 3b, where boundaries dividing 

different fields nave distinct colours. Comparing Figures 3a 

and 3b one can see also developments of the algorithm in 

second version vs first one.  

Algorithm performance improvement was achieved by 

means of program code optimization that includes MATLAB 

code refactoring and rewriting of its critical parts (from the 

viewpoint of performance) to the C programming language.  

Comparison of two program versions performance is shown 

in the Table 1. 

 

Table 1. Comparison of the algorithm performance before 

and after optimization. 

 

Section assessment 

stage 

Time elapsed, relative units
a
 

Before 

optimization 

After 

optimization 

Convex hulls 

construction 
1 1 

p,T-sections 

analysis 
0.64 0.42 

Polythermal section 

construction 
0.05 0.0035 

a “Relative unit” is time elapsed on the convex hull construction 

that was not changed after optimization 

 
 

 

 
 

Figure 3. Calculated isothermal sections of LiF-LiCl-LiI 

phase diagram at: a – 779 K, b – 771 K, c – 765 K. 

 

a) 

b) 

c) 
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DISCUSSION OF THE RESULTS 

The algorithm of ternary systems polythermal sections 

calculation has been proposed and refined in the present work; 

and its efficiency and robustness during testing was clearly 

shown. Its key feature is preliminary calculation of p,T-

sections array by the convex hull method with the fixed step 

ΔT between them. Although such procedure requires a lot of 

time (about 5-60 minutes on the modern personal computers) 

it allows further rapid (in several seconds) polythermal 

section construction that can be useful for the phase diagram 

exploration. The process of calculation can be easily 

parallelized on the multicore/multiprocessor computer. 

Obtained p,T-sections array also makes possible a fast 

visualization of three-dimensional boundaries (i.e. surfaces) 

between regions of polythermal phase diagram (e.g. liquidus 

or solidus surface). 

The geometrical approach that is the basis of the developed 

algorithm (see “polythermal sections construction method” 

section) can be generalized to the isothermal and polythermal 

sections of the multicomponent systems (e.g. quaternary). 

Another way of improvement is the minimization of convex 

hull construction elapsed time. It may be achieved by an 

adaptation of existing convex hull building algorithms for a 

phase diagram assessment task. For the case of binary systems 

such approach been described in the literature [7]. 

CONCLUSIONS 

In the present work an effective algorithm for the ternary 

phase diagrams polythermal sections assessment based on the 

convex hull method has been proposed and successfully 

tested. Although it’s significantly slower than the algorithms 

based on the Gibbs energy minimization in the case of single 

polythermal section calculation, it has an important advantage 

over it: after assessment of one polythermal section the next 

ones can be obtained almost instantly. 

Possible ways of further development of the proposed 

algorithm are its generalization for the multicomponent 

system case and increasing its performance by the 

optimization of p,T-sections array assessment. 
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NOMENCLATURE 

Symbol Quantity SI Unit 

   

G Gibbs energy J·mol
-1

 

ni Amount of i-th component mol 

V Volume m
3
 

p Pressure bar 

T Temperature K 

xi Mole fraction of i-th component  

ξ, y Coordinate on section line 

proportional to mixture 

composition 
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INTRODUCTION 

Since the low dimensional behaviours of the thermoelectric 

materials are different than the bulk ones, higher 

thermoelectric efficiencies can be achieved by using low 

dimensional structures like quantum wells, wires and dots  

[1-3]. The conversion efficiency of thermoelectric devices 

depends on the properties of the materials and determined by 

the well known figure of merit relation, 2SZ  , where 

S is the Seebeck coefficient,   is the electrical conductivity 

and  is the thermal conductivity. Since the all variables in 

the figure of merit relation are dependent,   they adversely 

affect each other so that the figure of merit does not vary 

significantly for the bulk thermoelectric materials. However, 

in the literature, it is proposed that quantum confinement 

plays an important role to enhance the figure of merit by 

using low dimensional nanostructures [4-8]. 

  

In contrast to the macroscopic approaches, transport 

properties of materials become size and shape dependent 

when the domain size is comparable to the characteristic 

length scale of the problem. Therefore, size and shape of the 

system are considered as additional control parameters on 

transport properties of nanoscale devices [9, 10]. In 

sufficiently small structures, the wave character of particles 

significantly changes the transport properties by modifying 

probability density distribution, the smallest values of the 

momentum components and momentum spectrum of particles 

[9, 11].  Some contributions arise when the thermal de Broglie 

wavelength of particles are not negligible in comparison with 

the size of the domain. These contributions are called as 

quantum size effects (QSE) in general [9, 11].  

 

In the calculations here, free electrons in the conduction 

band of conductors and semi-conductors are considered as an 

ideal Fermi gas and Seebeck coefficient is analytically 

derived by considering QSE. Through the confinement, sizes 

of the domain are smaller than the mean free path of the 

particles but equal to or greater than the thermal de Broglie 

wave length. Therefore conventional definitions of particle 

flux and transport coefficients are used. Dependencies of 

Seebeck coefficient on domain size and quantum degeneracy 

are investigated. Particle flux equation is derived in terms of 

external potential, chemical potential and temperature 

gradients. Relaxation time approximation is used to obtain 

non-equilibrium distribution function. Furthermore, relaxation 

time is assumed to be equal to the inverse of the collision 

frequencies of the particles. The summations inside the 

particle flux expression are replaced by the Poisson 

summation formula to consider QSE. Since the system size in 

at least one direction is comparable to the thermal de Broglie 

wavelength, the contribution of zero correction term of the 

Poisson summation formula is included. On the other hand, 

discreetness correction term is neglected since all the sizes are 

equal to or larger than the thermal de Broglie wavelength of 

particles. In order to obtain an analytically solvable problem, 

rectangular domain geometry is considered. 

DERIVATION OF PARTICLE FLUX AND SEEBECK 

COEFFICIENT 

Transport domain is a rectangular structure with 

dimensions of zyx LLL ,,  and the domain is strongly confined 

through the direction x. The particle flux in direction x is 

written as, 

 

fvJ
ijk

xwx  ,
N      (1) 
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Seebeck coefficient is analytically derived for Fermi gas by considering quantum size effects to investigate the dependencies of 
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is expressed in terms of external potential, chemical potential and temperature gradient. The summations in the expression of 

particle flux are replaced by the Poisson summation formula to consider quantum size effects. Since the system size considered 

here is comparable to the thermal de Broglie wavelength, the contribution of zero correction term of the Poisson summation 
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results show that quantum size effects cause a significant improvement on Seebeck coefficient when the system size in one 

direction approach to thermal de Broglie wave length. This improvement is due to transition from bulk to quantum well 

behaviour. Variation of quantum size effects with quantum degeneracy, which is represented by dimensionless chemical 

potential, is also examined. It is seen that the chemical potential value for the maximum dimensionless Seebeck coefficient 

decreases with decreasing system size while the Seebeck coefficient increases. 
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where xwv , is the x component of velocity of the carrier at 

quantum state w  and f  is non-equilibrium distribution 

function. The equilibrium distribution function for Fermi-

Dirac statistics is given by, 

 

   1exp

11

b
0




TkV
f

w 
   (2) 

 

where w  is the translational energy of the carriers,   is the 

chemical potential, T is temperature, V is the domain volume, 

bk  is the Boltzmann’s constant. Under the relaxation time 

approximation, the non-equilibrium distribution function in 

direction x can be determined as, 

 

x

f
vff xw




 0

,0      (3) 

 

where   is the relaxation time which is expressed by using 

the particle-boundary mean free path (geometric mean free 

path, Lg=V/2A where A is the surface area of the domain) and 

the particle velocity v as   vLv g . Inserting Eq.(3) into 

Eq.(1), the particle flux in direction x for the particle-

boundary collision dominated transport is derived as [9, 12], 
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    (4) 

 

where   T
xx

T
x FTkFF b   and m is the mass of the 

carrier. Driving forces are defined by the gradients of the 

chemical and electrical (electrochemical) potentials and 

temperature as  xxFx   ,  xTkF b
T
x   

respectively. In Equation.(4), g function is a dimensionless 

quantity given by, 
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where   TkB bww    [9, 12]. By using the parabolic 

dispersion relation, translational kinetic energy of the particles 

is easily written as, 

 





















































2222

8 zyx
ijk

L

k

L

j

L

i

m

h
   (6)      

 

where i,j,k=1,2,3…  . By using Eq.(6), Tkbw is written 

as, 

 

     222
kji

TkTk
zyx

b

ijk

b

w 


   (7) 

where xcx LL , ycy LL , zcz LL  and the length 

TmkhL bc 8  is half of the most probable de Broglie 

wavelength of the particles.  

 In macroscale, sums may be replaced by integrals with a 

negligible error. However, since the system size approachs to 

thermal de Broglie wavelength at nanoscale this replacement  

causes a considerable error. Therefore, instead of replacing 

sum with an integral, Poisson summation formula is used to 

have more accurate result to calculate the sum in Eq.(5). For 

an even function, Poisson summation formula is written in the 

form of, 
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2

0
  (8)  

 

where the first term is the bulk term, the second term is the 

zero correction term which is important when the system size 

approach to the thermal de Broglie wavelength, and the third 

term is the discreteness correction term. Although it is 

possible to calculate sums exactly with Poisson summation 

formula, the third term of the Poisson summation formula is 

negligible compared with the others since the domain sizes 

here are always larger than the thermal de Brolie wavelength 

[9]. Inserting Eq.(7) into Eq.(5) and by using Poisson 

summation formula given in Eq.(8), ga function is analytically 

obtained as, 
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where  is Gamma function and Lin is the Polylogaritm 

function with the degree of n and argument of )exp( bTk . 

In Eq.(9), the first term is the bulk term which could be 

obtained by replacing sum with the integral and the other 

terms in the square bracket come from the second term of 

Poisson summation formula and arise due to wave character 

of particles. Inserting Eq.(9) into Eq.(4), size dependent 

particle flux is obtained. It is clear that the size dependency of 

particle flux appears for the confined directions only since the 

value of   is zero for other directions. 

 

 Seebeck coefficient is defined as the ratio of the 

electrochemical gradient to temperature gradient under zero 

particle flux condition and given by, 
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 (10) 

where q is the charge of the particle. By using Eqs.(9) and 

(10), Seebeck coefficient is obtained in term of ga function as, 
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where Tkb  .  
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RESULTS 

 To show the deviations from the macroscopic picture, 

Seebeck coefficients derived with and without QSE (S and So) 

versus dimensionless chemical potential are plotted for a 

Fermi gas in Fig.1. Transport domain is confined only in x 

direction  1,0  xzy  . 
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Fig.1: Variation of S and So with Tkb . 

 

Fig.1 shows that increasing chemical potential (increasing 

degeneracy) decreases the contribution of the quantum size 

effects on Seebeck coefficient due to decreasing of mean de 

Broglie wave length. Therefore the difference between the 

curves becomes smaller for the higher values of  . The 

dimensionless form of the Seebeck coefficient is defined by 

dividing S  to So and given by,  

 

 
oS

S
S 
~

     (12) 

 

In Fig.2, S
~

 versus   is given for different values of domain 

size in x direction. The results show that QSE cause a 

significant improvement (as high as %30) on Seebeck 

coefficient when the system size approaches to thermal de 

Broglie wave length, ( 1x ). Variation of quantum size 

effects with dimensionless chemical potential shows that there 

is a maximum value for S
~

 which increases with decreasing 

system size or increasing de Broglie wavelength. 
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Fig.2: Variation of S
~

 with   for different values of x . 

In Fig.3, variation of the maximum value of dimensionless 

Seebeck coefficient with dimensionless inverse scale factor in 

x direction is given. The effect of domain size on Seebeck 

coefficient is clearly seen. It is possible to improve Seebeck 

coefficient only by decreasing the domain size without 

making any change in the composition of the material. 

Therefore, size itself becomes a control parameter on material 

properties. This is due to the transition from bulk to quantum 

well behavior. Similarly, size itself play an important role 

during the transition from quantum well to quantum wire and 

from quantum wire to quantum dot behaviors.  
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Fig.3: Variation of maximum dimensionless Seebeck 

coefficient with x  for 0 zy  . 

 

 

NOMENCLATURE 

Symbol Quantity SI Unit 

   

A Surface area of the domain m
2 

f  Nonequilibrium distribution 

function 
dimensionless 

0f  Equilibrium distribution 

function 
dimensionless 


xF  Driving force due to 

electrochemical potential 

gradient 

mJ /  

T
xF  Driving force due to 

temperature gradient 
mJ /  

 h Planck’s constant sJ  

 i,j,k Quantum numbers dimensionless 

bk  Boltzman’s constant KJ /  

cL  Half of the most probable de 

Broglie wave length 
m 

gL  Geometric mean free path m 

 Li Polylogarithm function dimensionless 

zyx LLL ,,  Sizes of domain m 

 m Mass of particle kg 

 q Charge of particle C 

 S Seebeck coefficient KV /  

S
~

 Dimensionless Seebeck 

coefficient 
dimensionless 

oS  Seebeck coefficient without 

QSE 
KV /  

max

~
S  Dimensionless maximum 

Seebeck coefficient 
dimensionless 

 T Temperature K 

Dimensionless  

chemical potential ( ) 
 

Seebeck 

Coefficient, S  KμV  

Dimensionless  

chemical potential ( ) 

   with QSE

    without QSE max

~
S  

x  

Dimensionless Seebeck 

Coefficient, S
~

 

1.0

5.0

1







x

x

x
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 V Volume 3m  

 Z Figure of merit K/1  

zyx  ,,  Inverse scale factors dimensionless 

  Conductivity m/1  

  Gamma function dimensionless 

w  Translational energy J  

  Thermal conductivity KmW /  

  Dimensionless chemical 

potential ( Tkb/ ) 
dimensionless 

  Chemical potential J  

  Relaxation time s  
  External potential J 
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EXTENDED ABSTRACT

The conversion of heat current into electric current through thermoelectric effects, i.e., the direct conversion of temperature differences to electric
voltage and vice-versa, offers a promising avenue in energy management. From the practical point of view, one of the most explored possibilities
is the junction of two nanostructured crystals of different type, in which the heat is carried by phonons and electrons, whose efficiency may be
evaluated through the parameter ZT , being T the absolute temperature, and Z the so-called figure-of-merit, defined as

Z =
ε2σe

λe +λp
,

ε being the Seebeck coefficient, σe the electrical conductivity, and λe and λp the thermal conductivities due to electrons and phonons, respectively.
An interesting aspect of nanosystems is the possibility of an additional control of the transport coefficients by getting sizes comparable to the

mean-free path (MFP) ` of the different heat carriers (phonons, electrons, holes, etc.). For instance, in nanowires it is expected that whenever the
radius of the transversal section is comparable to (or smaller than) the phonon MFP, the phonon contribution to the thermal conductivity λp will be
reduced, leading to an increase of Z.

Thus, incorporating explicitly the effects of the several MFPs is useful to study new strategies for the optimization of these effects.
In the present poster we explore phenomenologically the size dependency of Z in nanowires. To achieve that task we use a phonon-hydrodynamic

approach [1; 2] and a simple thermodynamic model [3], which is developed in the framework of Extended Irreversible Thermodynamics, the theory
in which the dissipative fluxes are updated to the rank of thermodynamic variables and the gradients of the unknown fields are allowed to enter the
state space [1; 2]. Our aim is to bridge the gap between the much detailed microscopic approaches (i.e., kinetic theory or numerical simulations)
and the classical nonequilibrium-thermodynamic approaches lacking the explicit presence of the MFP.

In the particular case of a nanosample made by Bi2Te3 interesting results are also obtained.
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EXTENDED ABSTRACT 
 

Heat capacity, diffusion coefficients, and velocity autocorrelation functions for water mixtures with different nonpolar solutes (methane and 
noble gases) have been studied using molecular dynamics at constant volume and temperature. A combined SPCE + Lennard-Jones potential 
was chosen for these systems with Lorentz-Berthelot combining rules. The use of such a potential for water-solute and solute-solute interactions 
allows us to study the system in a single phase region over the wide pressure-temperature range and solute molar fractions up to 15%. The heat 
capacities were calculated using the formalism developed in works of Lustig [1] for NVT ensemble. Comparison with experimental data for pure 
water [2] in the temperature range 298 - 650 K has been done. Simulations show good agreement of bulk water Cv with experimental data in the 
high temperature region, and slight overestimation at ambient temperatures.  

 
FIG. 1. Isochoric heat capacity as a function of temperature at 0.998 g/cm3: water + 0% CH4 (black �),  

water + 6% CH4 (blue ▲), water + 10% CH4 (red ●), water + 15% CH4 (green ▼), and IAPWS-95 reference data[2] for 
water (��). The lines through the data points are given only for guidance. 

 
The first MD simulations of heat capacity changes in water induced by the solvation of nonpolar solutes (methane, krypton) at solute molar 

fractions up to 15% are reported (see Fig. 1). Heat capacities of aqueous nonpolar solute mixtures are smaller than that of pure water, and 
proportional to the solute concentration. This is in agreement with the previous results for very dilute aqueous nonpolar solute mixtures [3] and 
aqueous solutions of alcohols in wide concentration range [4]. Difference between heat capacities of pure water and water-solute mixtures 
gradually decreases with temperature, completely converging at critical temperature. 

Self-diffusion constants of water are in fairly good agreement with experimental data almost up to the boiling temperature. Diffusion 
coefficients of the given aqueous nonpolar solute mixtures decrease with solute concentration and show the following temperature-mass 
dependence βµ/TD ∝ . Self-diffusion coefficients of water molecules in the mixture are smaller than that of pure water. Degree to which D of 

water in the mixture is smaller than in the pure water appears to be proportional to the solute concentration. 
Solvation of nonpolar groups in water is accompanied by specific changes in structure and transport properties which appear to be 

proportional to particles mass and size, and are very different from the changes in water structure induced by solvation of polar and ionic groups. 
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INTRODUCTION 

This paper discusses the use of a relatively new theory 
known as intrinsic quantum thermodynamics (IQT) [1-4] to 
predict the reaction kinetics at atomistic levels of chemically 
reactive systems in the non-equilibrium realm. IQT has 
emerged over the last three decades as the theory that not only 
unifies two of the three theories of physical reality, namely, 
quantum mechanics (QM) and thermodynamics, but as well 
provides a physical basis for both the entropy and entropy 
production. The IQT framework is able to describe the 
evolution in state of a system undergoing a dissipative process 
based on the principle of steepest entropy ascent or locally 
maximal entropy generation [5]. The dynamical postulate of 
this theory was formulated originally to predict the evolution 
dynamics of closed, isolated systems composed of a single 
particle, an assembly of indistinguishable particles, or a field 
[6] or a set of distinguishable particles, fields, or some 
combination of these [7]. More recently some preliminary 
attempts have been made to extend the IQT equation of motion 
so as to model a larger class of systems, namely, those 
involving heat [8-10] and/or mass interactions [10].  

The work presented in this paper demonstrates for the first 
time the use of the IQT framework to model the evolution in 
state of a chemically reactive system as its state relaxes to 
stable equilibrium. This framework brings a number of benefits 
to the field of reaction kinetics. Among these is the ability to 
predict a unique, non-equilibrium (kinetic), thermodynamic 
path, i.e., unique cloud of trajectories, which the state of the 
system follows in relaxing to stable equilibrium. As a 
consequence, the reaction rate kinetics at every instant of time 
is known as are the chemical affinities, the reaction 
coordinates, the direction of reaction, the activation energies, 
the entropy, the entropy production, etc. All is accomplished 
without any a priori limiting assumption of stable equilibrium 
via a specific choice of temperature nor of pseudo-equilibrium 

between reactant and activated complex. This is fundamentally 
different from all conventional methods (e.g., Transition State 
Theory [11,12], Trajectory Calculations [13], Quantum 
Scattering Theory [14, 15], etc.), which envision the reaction as 
a process driven only by collisions (i.e., the laws of mechanics, 
whether classical or quantum). In contrast, IQT envisions the 
same problem driven by both the laws of mechanics and 
thermodynamics. It is, thus, able to provide detailed 
information about the so-called state-to-state reaction channels 
and is not only able to predict the thermal reaction rate constant 
but its instantaneous details as well. As a consequence, this rate 
constant is transformed into a variable rate of the reaction 
process.  

To illustrate the IQT approach, the  
HFHHF +⇔+ 2  (1) 

reaction mechanism, which for decades has been under 
intensive investigation both theoretically and experimentally 
[16,17], is used to benchmark the IQT results and illustrate the 
IQT reaction kinetics in the non-equilibrium realm. 

 
IQT MODEL 

The application of the general IQT framework for 
chemically reactive systems at small scales developed by 
Beretta and von Spakovsky [18] to the chemical kinetics of 
these systems is consistent with the idea put forward by Ziegler 
[19] concerning the thermodynamic consistency of the standard 
model of chemical kinetics. In modeling the non-equilibrium 
time evolution of state of these systems, both the system energy 
and particle number eigenvalue problems as well as the non-
linear IQT equation of motion must be solved. The former 
establish the so-called energy and particle number 
eigenstructure of the system, i.e., the landscape of quantum 
eigenstates available for the system, while the latter determines 
the unique non-equilibrium thermodynamic path taken by the 

ABSTRACT 
This paper presents an application of a fundamentally new approach called Intrinsic Quantum Thermodynamic (IQT) to the 
prediction of the kinetics of chemically reactive systems at small scales. The IQT framework satisfies the laws of quantum 
mechanics as well as thermodynamics and provides an alternative, comprehensive, and reasonable means for modeling non-
equilibrium processes even far from equilibrium. It does so without the need for any of the a priori limiting assumptions 
common to most conventional methods in the literature such as that of stable equilibrium via a specific choice of temperature 
or of pseudo-equilibrium between reactants and activated complex. The IQT framework assumes time evolution along the 
steepest entropy ascent path in state space and is, in fact, able to predict a unique non-equilibrium path, which the system takes 
in relaxing from a state of non-equilibrium to that of stable equilibrium, and in so doing, dynamically provides a plausible 
complete picture of the changes occurring in key thermodynamic properties (e.g., the instantaneous species concentrations, 
entropy and entropy generation, reaction coordinate, chemical affinities, reaction rate, etc.) throughout the reaction process. In 
this paper, the IQT framework is applied to a chemically reactive system governed by the reaction mechanism 
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system, showing how the density operator ρ , which represents 
the thermodynamic state of the system at every instant of time, 
evolves from a given initial non-equilibrium state to the 
corresponding stable chemical equilibrium state. For this 
framework, the thermodynamic system is defined as an isolated 
system consisting of r different reacting species contained in a 
tank.  

In the present paper, only the principal IQT model equations 
are presented. For complete details of the model, the reader is 
referred to [18]. To begin with, the system energy and particle 
occupation number eigenvalue problems, which must be solved 
to establish the landscape of quantum eigenstates available for 
the system, are the following:  

sssqsqsq L,...,qC,...,sEH
sss

11 === ξξ  (2)  

where H is the system-level Hamiltonian, 
ssqE the system-level 

energy eigenvalue, 
ssqξ the system-level eigenvector, C the 

number of subspaces of compatible compositions, and Ls the 
dimension of subspace s. The dimension of the overall Hilbert 
space H.  of the system is ∑ == C

s sLL 1 . A Hilbert as opposed to 
Fock space is assumed since the framework presented is based 
on the assumption that, consistent with the earlier assumption 
of an isolated system, the number of atoms is fixed (i.e., is 
conserved) and always known [18]. The corresponding system-
level particle occupation number eigenvalue problem is 
expressed as  

ii
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where Ai is the ith species, 
iAN the Ai-particles number operator, 

ii jAN the Ai-particles-in-the-ji
th-internal-level occupation num-

ber operator, and s
i

sq
ijα  the Ai-particles-in-the-ji

th-internal-level 
eigenvalue for the th

sq combination in the sth compatible 
composition. Mi is the number of eigenvectors of the one-Ai-
particle internal Hamiltonian operator associated with the 
internal degrees of freedom (i.e., vibrational, rotational, etc. 
energy levels).   

Defining the Hilbert space and the set of eigenvectors that 
span that space requires that the initial amounts nia for each 
species Ai in the reacting mixture be related to the set of 
compatible amounts via the proportionality relations [20], 
namely,  

0
1

≥⋅+=+= ∑
=

siia
l

lsiliais nnn εν
τ

εν  (5) 

where isn  is the eigenvalue of the amount of the Ai species for 
the subspace s, ilν  the stoichiometric coefficient for species Ai 
in reaction mechanism “l”, iν  the set of stoichiometric 
coefficients for species Ai in each of the τ reaction mechanisms, 

lsε the eigenvalue of the reaction coordinate operator of 
reaction “l” that corresponds to the sth compatible composition, 
and sε  the set of reaction coordinate eigenvalues identifying 
the sth compatible composition. This set of inequality equations 
determines the number of compatible solutions (i.e., subspaces 
s).  Note that the isn are related to the s

i

sq
ijα via 
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ijisn α  for every ss L,...,q 1=   (6) 

Equations (2) and (3) are not solved directly due to their 
complexity but instead related to a set of one-particle 

eigenvalue problems, which can be solved. For details of how 
this is done, the reader is referred to [18]. The result is that, the 
one-particle Ai energy eigenvalues and eigenvectors for the 
internal degrees of freedom are made to correspond to the 
system-level ones via the following relations:  
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and for the translational degrees of freedom via the following: 
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where the ( )
ss snsjs

tr
s k,...,k,...,kq 1= , each 

ss sjsj K,...,k 1= , and 
ssjK corresponds to some practical truncation of what is an 

infinite dimensional problem. In addition, T-1 in Eq. (9)  
signifies an inverse unitary transformation from the center-of-
mass coordinate frame in which the one-particle translational 
eigenvalue problems are solved. The system-level energy 
eigenvalues and eigenvectors are now found from those for the 
various degrees of freedom via 
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The system-level Hamiltonian is next constructed according 
to the following expression: 
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where the projector 
ssq

PH  is given by 

ssssq sqsqP ξξ=H  (14) 

In a like manner, the particle number operator for each species 
is written as 
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The preceding quantities provide the basis for determining 
the set of occupation probabilities 

ssqy , which correspond to 
the density operator ρ at any given instant of time and in turn 
are used to calculate the expectation values of properties or 
observables of interest. Thus, 

 ( )
ssssqs sqsqsq Py ξρξρ == HTr  (16) 

and the expectation energy of the system is given by 
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The expectation value for the number of particles of species Ai 
is found from 
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while that for the reaction coordinate is given by 
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or on a rate basis by 
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Now, the IQT equation of motion governing the reaction 
kinetics for the system considered here is the following: 

[ ] { }ρ∆
τ

ρρ ,M
k

,Hi
dt
d

B2
1

+−=


 (21) 

where the first term on the right governs the linear Hamiltonian 
dynamics of the state evolution and the second, the so-called 
dissipation term, the nonlinear non-Hamiltonian steepest-
entropy-ascent  dynamics. In this equation, τ is the internal-
relaxation time for the dissipation, { } the anti-commutator 
operator, kB Boltzmann’s constant, and MMM −=∆  the 
deviation from the mean of the non-equilibrium Massieu 
operator defined as 

HHSM θ−=  (22) 
where S and H are the entropy and Hamiltonian operators, 
respectively, and θH is a constant-energy, nonequilibrium 
temperature given in terms of the variance of the entropy and 
Hamiltoinan operators by 

( ) HSHHH ∆∆∆∆ρθ =  (23) 
The entropy operator S is expressed by one of two equivalent 
forms, namely, 

( ) ρρ lnln BkPkS bob −=+−=  (24) 
with oP  and B, respectively, the projection operators onto the 
range and the kernel of ρ . 

ONE-PARTICLE ENERGY EIGENVALUES 

It is assumed that the reacting mixture considered here 
behaves as a Gibbs-Dalton mixture of ideal gases. For that 
reason, the energy eigenvalues for translation, vibration, and 
rotation for the species involved are given by a set of closed-
form relations. For translation,  
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where tr
kε   is the one-particle translational energy eigenvalue; h 

Plank's constant; m the mass of the particle;  nx, ny and nz are 
the quantum numbers in the x, y and z directions, respectively; 
and Lx, Ly, and Lz the dimensions for the system volume in the 
x, y, and z directions, respectively.  

For vibration, the expression is 
( ) 2

2
1 ωε += vvvib

v  (26) 
where ν is the vibrational quantum number which takes values 
of ν=0,1,2, …, ω  is the vibrational frequency, and   Plank's 
modified constant. A wide range of wavenumbers from which 
ω  can be calculated are reported in the literature [21, 22]. In 
the present paper, the wavenumber values used are 4401 cm-1 
for H2 and 4000 cm-1 for FH.  

Finally, for rotation, the following expression is used: 
( )

2

2

2
1
r

JJrot
J

µ
ε

+
=  (27) 

where J  is the rotational quantum number that takes values of 
J=0,1,2, …, µ is the reduced mass, and r the distance between 
two atoms.  

 
NUMERICAL APPROACH 

For purposes of this paper and the preliminary comparisons 
given below, the system considered here initially consists of 1 

particle of F and 1 of H2 and is governed by the reaction 
mechanism of Eq. (1). The degrees of freedom for each of the 
molecules and atoms in the IQT model are given in Table 1.  

To apply the IQT equation of motion to this IQT model, the 
density operator for an initial non-equilibrium state is required. 
Such a state far from equilibrium is found by first finding the 
density operator or matrix peρ  for a partially canonical state   

Table 1. Quantum numbers considered for each of the molecules and 
atoms in the IQT model. 

Species Translational 
quantum nos. 

Vibrational 
quantum nos. 

Rotational 
quantum nos. 

F k=1,...,5   
H2 k=1,...,5 ν =0 J =0,1 
FH k=1,...,5 ν =0,1,2,3 J =0,1,...,7 
H k=1,...,5   

and then perturbing it. To determine peρ , the following set of 
equations for the occupation probabilities pe

jy  must be solved:  
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subject to the constraints 
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The jE  in these equations are the system-level energy 
eigenvalues and the ( )

ijn
 

the system-level particle number 
eigenvalues for the ith species. The values for the jδ  for each 
reactant species are set to either 0 or 1. As long as at least one 
of the jδ  has a value of 0, Eq. (28) describes the occupation 
probabilities for the density operator or matrix of a partially 
canonical state. 

To find the initial non-equilibrium density operator or 
matrix, peρ is perturbed as follows: 
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where λ is an arbitrary perturbation parameter constrained by 0 
< λ < 1 and the se

jy  are the occupation probabilities for the 
stable equilibrium density matrix given by 
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Here T is the stable equilibrium temperature. 
Once the initial density operator or matrix is found, Eq. (21) 

is solved for the evolution in state of the system. This equation 
has been solved here using a forth order Runge–Kutta explicit 
scheme with the relative tolerance error set to 1e-5. 
 
RESULTS AND DISCUSSION 

Predicting the value of the entropy and the entropy 
generation at each instant of time are direct outcomes of the 
IQT framework since the 1st and 2nd laws of thermodynamics 
are explicitly built into the equation of motion. Figures 1 and 2 
show how both the entropy and the rate of entropy generation 
of the system evolve in time. A state of stable equilibrium is 
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reached when the entropy plateaus out. In addition, the peak in 
the rate of entropy generation occurs quite early in the process 
and then quickly decreases as stable equilibrium is approached.  

 
Figure 1. The instantaneous entropy of the reaction processing system.  

 
Figure 2. The instantaneous entropy generation during the reaction 
process. 

 
Figure 3. The expectation values of the particle number operator for 
each species. 

 
A key feature of the IQT framework is that it is able to 

dynamically predict the concentration of reactive species as the 
reaction evolves in time. Figure 3 shows how the reactive 
species are depleted and created throughout the entire reaction 
process. Indeed the availability of these instantaneous values 
for the species concentrations indicates that the reaction rate 
constant ( )Tk , which in the literature is usually referred to as 
the thermal rate constant1, may in fact not be a constant but 
rather a parameter changing in time. In Figure 3, the identical 
amounts for the reactants F and H2 as well as for the products 
H and FH is a direct consequence of the proportionality 
relations, Eq. (5), and the initial amounts chosen for the 
reactants and products.  

For the bimolecular reaction mechanism of Eq. (1), the net 
reaction rate as a function of time t is given by 

                                                           
1 In fact, this reaction rate constant is that for the forward reaction found at the 
start of the reaction when the backward reaction rate is negligible [22]. 

( ) ( ) ( )trtrtr bf −=  (34) 
( ) ( ) ( )[ ] ( )[ ] ( ) ( )[ ] ( )[ ]tHtFHT,tktHtFT,tktr bf −= 2  (35) 

where rf and rb are the forward and backward reaction rates, kf 
and kb the forward and backward reaction rate “constants”, and 
[A(t)] the concentrations of the various species. The reaction 
orders for the species F, H2, FH, and H coincide here with the 
stoichiometric coefficients for each species for this reaction 
mechanism although it is noted that this is not generally the 
case [23]. Based on the initial amounts of species chosen and 
the proportionality relations, it follows that the net reaction rate 
r for this reaction mechanism coincides with the expectation 
value of the rate of the reaction coordinate E  given by Eq. 
(20). Numerically, it can also be found by calculating the slope 
of the expectation value of the particle number operator of 
either one of the product species using a second order accurate 
finite difference scheme. Once known, Eq. (35) along with the 
zero rate condition at stable equilibrium and the assumption 
that the detailed balance condition holds also for the time-
dependent rate constants, i.e.,  
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can be used to determine ( )Ttk f ,  and ( )T,tkb  at every instant 
of time along the entire kinetic path determined by the equation 
of motion.  

Figure 4 shows these instantaneous values as well as the 
equilibrium constant ( )TK  given by the ratio of fk  to bk for 
the case of a system expectation energy which corresponds at 
stable equilibrium to a temperature of 298 K. The instantaneous 
values for the corresponding net, forward, and backward 
reaction rates are seen in Figure 5. Clearly, as expected, the 
forward reaction dominates at the beginning of the reaction 
with the reverse reaction growing in importance as stable 
equilibrium is approached. Note that the time scale seen in 
these two figures and the previous ones is based on a value of τ 
in the equation of motion which has been fitted to the value of 
kf at 298 K reported in Heidner et al. [24] and shown in Table 
2. This table also includes the values of kf from Heidner et al. 
[24] for a number of other stable equilibrium temperatures as 
well as values for kf from a number of other researchers. 

 
Figure 4. The forward and reverse reaction rate constants as well as 
the equilibrium constant as a function of time for a system expectation 
energy, which at stable equilibrium corresponds to a temperature of 
298 K. 
 

For a value of τ based on the value for kf in Table 2 from 
Heidner et al. [24] corresponding to a stable equilibrium 
temperature of 700 K, a similar evolution of the reaction rate 
constants and reaction rates is given in Figures 6 and 7. The 
trends are the same as in Figures 4 and 5 with the forward 
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reaction dominating initially and the backward reaction 
growing in importance as stable equilibrium is approached. 
However, the reaction rate magnitudes are clearly much greater 
and the difference between the forward and backward reaction 
rate constants is significantly larger.  

 
Figure 5. The forward, reverse and net reaction rates for a system 
expectation energy, which at stable equilibrium corresponds to a 
temperature of 298 K. 

Table 2. Values of the forward reaction rate constant reported in the 
literature for the reaction mechanism of Eq. (1) [16]. 

kf(T)/10-11 (cm3/molecule-sec) 
T (K) WHa SBAb HBGMc RHPBd WTMe 

298 2.33 2.48 2.93 2.81 2.26 
350 2.89 3.14 3.94 3.35  
400   4.88 3.80  
450   5.76   
500   6.57   
600   8.01  5.68 
700   9.23   

aWurzberg and Houston [25]; bStevens, Brune, and Anderson [26]; cHeidner, 
Bott, Gardner, and Melzer [24]; dRosenman, Hochman-Kowal, Persky, and 
Baer [27]; eWang, Thompson and Miller [16] 

 
Figure 6. The forward and reverse reaction rate constants and the 
equilibrium constant as a function of time for a system expectation 
energy, which at stable equilibrium corresponds to a temperature of 
700 K. 

 
Although all the previous figures are referred to some stable 

equilibrium temperature, the use of such a temperature in the 
IQT simulations for the reaction kinetics of the reacting system 
is not required. In fact, it is a result and not an input to the 
model. Instead, it is the non-equilibrium temperature Hθ
defined by Eq. (23), which plays a role in the IQT simulations. 
As seen in Figure 8, this temperature evolves towards that at 
stable equilibrium for three different expectation energies, i.e., 
those corresponding to 298 K (blue curve), 500 K (red curve), 
and 700 K (green curve) at stable equilibrium. 

 
Figure 7. The forward, reverse and net reaction rates for a system 
expectation energy, which at stable equilibrium corresponds to a 
temperature of 700 K. 

 
Figure 8. Time evolution of Hθ  for system expectation energies 
corresponding to 298 K, 500 K, and 700 K at stable equilibrium. 

SOME FURTHER RESULTS 

A fundamental difference between the results for the 
reaction rate constant obtained by theories based on quantum 
mechanics to those based on classical mechanics is the 
divergence from linear behaviour at low temperatures as 
illustrated in Figure 9. For the system considered here and 
within the IQT framework, Figure 10 shows the behaviour of 
the forward reaction rate constant as a function of stable 
equilibrium temperature. Clearly, the deviation from linear 
behaviour at low temperatures seen in this figure provides 
confirmation that the predictions being made with IQT follow 
what would be expected from a quantum mechanically based 
model. Of course, additional validation of the IQT predictions 
is needed. In principle, it would be interesting to see if it is pos-
sible to identify a fixed, physically meaningful functional ( )ρτ  
such that (1) ( )T,tk f  and ( )T,tkb  as computed above from the 
assumption of the detailed balance result are effectively 
independent of time and (2) the reaction rates match the data of  

 
Figure 9. Depiction of the temperature dependence of the forward 
reaction rate constant with and without quantum mechanical effects 
taken into account. 
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Figure 10. Temperature dependence of the forward reaction rate 
constant for various stable equilibrium temperatures. 

Table 2 without the need for adjusting any parameter. This 
validation has not yet been done. Instead the values used for τ 
are those as mentioned earlier, which simply fit the values in 
column four of Table 2. Figure 15 is a plot of these values as a 
function of stable equilibrium temperature. The authors are 
presently working on a functional for τ, and Figure 11 provides 
a basis for understanding at least some part of the behaviour, 
which such a functional must reflect. Knowing the expected 
behaviour of τ should help in identifying a unique functional 
( )ρτ  capable of capturing the dynamics of the reaction without 

the use of adjustable parameters.   

 
Figure 11. Relaxation time constant for the various stable equilibrium 
temperatures found in Table 2. 

 
CONCLUSIONS 

The IQT framework provides a comprehensive and reason- 
able approach for predicting the chemical kinetics of small 
scale reactive systems that could become a valid alternative to 
conventional approaches. Because IQT unifies quantum 
mechanics and thermodynamics into a single theory with a 
single internally consistent kinematics and dynamics, the laws 
of both are automatically satisfied when modeling reactive or 
non-reactive systems at the atomistic level. The consequence is 
that unlike conventional methods that use hybrid approaches to 
try to predict details of the kinetics of a change in state, IQT 
holds the promise to provide a full set of thermodynamically 
consistent, time-dependent features of the chemical kinetics of 
an atomistic-scale, chemically reactive system.  

Finally, the preliminary data presented in this paper 
demonstrates that the predictions of IQT appear consistent with 
what the best conventional methods in the literature are able to 
predict. For very few particle systems and by considering a 
small set of energy levels the computational burden is not large 
at all.   
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EXTENDED ABSTRACT 
 

Kaolinite is a common 1:1 type clay mineral, consisted of layers which are built up from one tetrahedral silica sheet and one octahedral 
aluminium hydroxide sheet. The layers are held together by hydrogen bonds forming a distinct space between the layers and this causes the 
cleavage and softness of the mineral. The equilibrium basal spacing of kaolinite is around 0.72 nm. Depending upon the application, kaolinite is 
often modified from its natural state by physical or chemical treatments to enhance the properties of the material. Kaolinite can intercalate various 
molecules in their interlayer space. Strong polar molecules can expand the basal spacing by disturbing the intermolecular hydrogen bonds 
between the layers. The obtained mechanically stable complexes have well defined basal spacings. The separation of kaolinite layers by reactive 
guest molecules (e.g. dimethyl sulfoxide, urea, formamide, potassium acetate) has been studied both experimentally and theoretically. In this 
work, molecular simulations and X-ray diffraction experiments were used to investigate the properties of kaolinite/urea and kaolinite/potassium 
acetate complexes. Urea has the earliest practical application in synthesis of organocomplexes of kaolinite, and potassium acetate is the substance 
by which one of the largest basal spacings can be achieved in direct kaolinite intercalation. Molecular simulations are suitable tools to study the 
adsorption and intercalation of molecules in clays. In our simulations the kaolinite model was constructed according to its experimental crystal 
structure [1] using a recently published thermodynamically consistent force field (INTERFACE [2]) to describe its intramolecular and 
intermolecular interactions. The INTERFACE force field operates as an extension of common harmonic force fields (AMBER, CHARMM, 
GROMACS, OPLS, etc.) by employing the same functional form and combination rules to enable accurate simulations of inorganic-organic (as 
well as inorganic-biomolecular) interfaces. According to the literature [2], the INTERFACE force field performs well in comparison to 
experimental data and alternative force fields. The validity of the force field parameters has been tested for several materials, such as layered 
silicates and fcc metals. For the guest molecules standard force fields (CHARMM for urea and potassium acetate, and SPCE for water) were 
applied. The simulations were performed using the GROMACS [3] program suit. The basal spacings were determined by series of NpT (fixed 
number of molecules, constant pressure and temperature) Molecular Dynamics (MD) simulations.  

In control experiments, high-grade Zettlitz kaolin was used and a dry manual or a mechanical grinding technique was employed for 
intercalation. The basal spacings were determined by X-ray diffraction analysis based on the well-defined 001 reflections. 

We investigated the hypothetical loading vs. basal spacing diagrams obtained from the simulations for the kaolinite/guest molecule 
complexes: the results are in agreement with the expectations, the basal spacing increases with the content of the guest molecules. Stable regions 
were identified, where the calculated distance is almost constant in function of the intercalated molecule content. The Gibbs free energy for the 
simulated systems with kaolinite was also calculated, where possible, to locate more precisely the loading in the stable structures. The simulated 
basal spacing data for the kaolinite/urea and kaolinite/potassium acetate complexes are in good agreement with our experimental X-ray 
diffraction results and other experimental data available in the literature. From the two types of stable kaolinite/potassium acetate intercalate 
complexes identified in this study, the one with larger basal spacing is formed with incorporating water into the interlayer space (only this 
complex can be produced by the basic synthesis procedure in air atmosphere).  

The structure of interlayer molecules of the complexes was characterized by density profiles and molecular orientation distributions of the 
guest molecules obtained from simulation data. Our examinations validated the supposed (single- or double- layered) arrangements of guest 
molecules and revealed the character of the hydrogen bonds between the guest molecules and the layer surfaces. 
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EXTENDED ABSTRACT 
 

Miedema et al. [1] modified the OmpF ion channel by point mutation and changed the amino acids lining the pore so that a p-n junction was 
formed inside the channel. They showed with electrophysiological experiments that this channel shows rectification; the current at positive 
voltage is much smaller than at negative voltage. The goal of this work is to build models for the rectifying ion channel and study them with 
computer simulation methods thus trying to reproduce the phenomenon and to explain the mechanism behind it. In modelling, we used two 
limiting approaches. In one approach, we used an all-atom model based on the known crystal structure of the OmpF porin and on well-
established classical force fields and studied this model with the GROMACS molecular dynamics simulation package [2]. In this approach, we 
found selectivity, but we did not find rectification. Therefore, we also used a reduced model, in which we approached the problem from the other 
end; only the important degrees of freedom are built into this model. We model the ions and the charged protein side chains explicitly, while 
water, the rest of the protein, and the membrane is averaged into a dielectric background. We have studied this model with the Nernst-Planck 
transport equation coupled to the Local Equilibrium Monte Carlo method (NP+LEMC) [3]. In this model, we found clear rectification behavior. 
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ABSTRACT
It is well-known that, nano-mechanics should take into account not only physical phenomena occuring within the bulk but, first
of all, the physical phenomena appropriate for a surface of two materials contact. The huge volume density of internal surfaces as
well countours lines located within the nanomaterial results in our interest in, apart from classical form of mass, momentum and
entropy transport, those modes of transportation where a carrier of physical property follows a free path having of a dimension
greater than nanostructure characteristic dimension. The mode of transport dominated by mechanical, thermal and electrical slip
of carried bounding off walls (a surface of separation) is called usually in physics ”a ballistic mode”. In the paper the appropriate
Newtonian surface vis impressa responsible for the ballistic mode of transport is defined, classified and explained. We postulate
that generally surface vis impressa can be additivelly splited onto friction and mobility forces.

MOVING SHELL-LIKE CONTACT

We assume that the fluid-solid contact layer (denoted as
M+M−) can be treated as thin domain moving in a space with
a geometrical, migration velocity w. This shell-like domain di-
vides the continuum into a continuum A - that is a fluid under
consideration, and a continuum B which can be a free surface,
solid body or second fluid, as in Fig. 1. If both A and B are flu-
ids then it is the fluid-solid contact layer represents the moving
interfacial region, where physical properties change in a radical
manner. For instance in a thin transition layer between liquid
and vapor, the change of density is so noticeable, that it looks
like a jump throughout the layer thickness. Therefore, we as-
sume that in the layer we observe so-called ,,apparent” mate-
rial properties, quite different than in bulk continuum A and B.
Thus we define an excess of layer density ρs [kg m−2], the layer
particle velocity vs [m s−1], an excess of layer momentum den-
sity ρsvs, and a surface excess of momentum flux ps, [1; 6; 7;
20].

In general, this layer moves with the geometrical velocity w
that differs from material velocity vA in A, velocity vB in B,
and velocity vs inM+M−. In particular case, the velocity w
denotes the rate of changing a phase transition surface within
the fluid being at rest. Usually, the component wn normal to
moving middle surfaceM, differs from normal components of
vA, vB and vs. It practically means that there is also a mass
transport across the layer. Indeed, the geometrical velocity field
is not a priori known, and can be determined from a special evo-
lution equation, [1; 19]. If w = vs then the moving layer is ma-
terial, if w = vsIs +wnn the surface is semi-coherent (Fig. 1).
Navier and Stokes have assumed, that the surface layer den-
sity is equal to zero. Apparently, we want to determine the slip
velocity vs from an independent balance of the layer momen-
tum. In special cases however, it simplifies to the well-known
Cauchy balance of the boundary traction forces. For immiscible
liquids being in contact, the tangential components vsIs can be
approximately described to be 1

2 (vA + vB) Is. Quite similarly,

Figure 1. Outline of the fluid-soild contact layer

only in a special case is ρs = 1
2 (ρA + ρB)h, where h is a finite

thickness of the layer1.
We introduce a new concept of an ,,excess of momentum

flux” within the fluid-solid contact layer, which is described by
a surface symmetrical diade ps. It governs the momentum trans-
port within the layer, and therefore it has a tangential and nor-
mal components. We postulate the surface momentum flux in a
following form:

ps (ξ) = pαβaα ⊗ aβ + pnαn⊗ aα
+pαnaα ⊗ n + pnnn⊗ n , (1)

where ξα, α = 1,2 are a local surface curvilinear coordinates

1We are based on a general surface kinematics elaborated by [20]. The gen-
eral form of the surface balances of mass, momentum, angular momentum, en-
ergy, entropy, etc. is given by [16; 9; 21].
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on M, and aα, n (α = 1,2) are the base vectors on the mid-
dle surface of the layerM. Since the physical properties of the
layer are unknown a priori, they depend on the resulting appar-
ent properties in both continua A and B. For example, elastic
recoverable properties of ps depend on an actual shape of the
surfaceM. Many authors postulate, that due to strong induced
elasticity of the fluid layer, it changes from the elastic fluid (only
recoverable spherical deformations) into an elastic fluid with re-
coverable shape deformations [7]. Similarly, owing to induced
strong anisotropy, the internal viscosity of the fluid layer can be
described by four apparent viscosity coefficients, [3; 11].

Let us now recall a few mathematical relations required for
establishing of balance of the layer mass and momentum. At
first the Weatherburn surface fundamental diades can be intro-
duced, [17]:

Is = I− n⊗ n = gradsxs = aαβaα ⊗ aβ , (2)

IIs = −gradsn = bαβaα ⊗ aβ , (3)

which are called the first and second fundamental form of the
surfaceM. As far as the surface gradient acts also on the coor-
dinate dependent base aα, n, then the surface gradient of veloc-
ity is calculated to be:

gradsvs = (vαaα + vnn)⊗∇βaβ

=
(
vα|β − vnbαβ

)
aα ⊗ aβ

+(vαbαβ + vn,β)n⊗ aβ , (4)

and the surface divergence of velocity vector is based on the
contraction C1,2:

divsvs =C1,2gradsvs=(vα|β−vnbαβ)aαβ

= vα|α − vnbαα = divs
(
vs‖

)
− vnIb. (5)

where the invariants of the second fundamental form of the cur-
vature diade are: Ib = trIIs = bαα = b11 + b22 =

(
1
r1

+ 1
r2

)
,

IIb = detIIs = det (bαβ) and C1,2 denotes contraction of first
and second base. In analogy to the three-dimensional case, the
rate of surface deformation is defined as a symmetric part of the
surface gradient of velocity:

ds =
1

2

(
gradsvs + gradTs vs

)
=

[
1

2

(
vα|β + vβ|α

)
− vnbαβ

]
aα ⊗ aβ

+
1

2
(vαbαβ + vn,β)

(
n⊗ aβ + aβ ⊗ n

)
. (6)

The first invariant of ds is in analogy to 3D:

Ids = trds =C1,2ds=vα|α−vnIb . (7)

Similarly, the surface gradient of the flux of momentum is:

gradsps = ps ⊗ (∇γaγ) = pαβ |γaα ⊗ aβ ⊗ aγ

+pαβbαγn⊗ aβ ⊗ aγ + pαβbβγaα ⊗ n⊗ aγ

+pnα|γ (n⊗ aα ⊗ aγ + aα ⊗ n⊗ aγ)

+
(
2pnαbαγ + pnn|γ

)
n⊗ n⊗ aγ

−pnαbεγ (aε ⊗ aα ⊗ aγ + aα ⊗ aε ⊗ aγ)
−pnnbεγ (aε ⊗ n⊗ aγ + n⊗ aε ⊗ aγ) , (8)

and its divergence:

divsps =C2,3gradsps
=

(
pαβ |β − pnβbαβ − Ibpαn

)
aα

+
(
pαβbαβ + pnα|α − Ibpnn

)
n. (9)

where C2,3 means scalar multiplication second & third vector of
base (operation of contraction C2,3).

MOMENTUM BALANCES WITHIN A CONTACT THIN
LAYER

The local form of the momentum balance can be finally writ-
ten as2 [2]:

∂t (ρv) + div (ρv⊗ v + p) = ρb for A∪B , (10)

∂t (ρsvs) + divs
(
ρsvs ⊗ vs‖

)
−wnIbρsvs + divsps

+∂n (psn) + [pAnA + pBnB + fSA + fSB ] = ρsbs
+ṁA (vA − vs) + ṁB (vB − vs) on M. (11)

Repeating now the reasoning of d’Alembert and Euler, we can
define a surface d’Alembert-Euler acceleration vector to be:

as =
ds
dt

vs = ∂tvs + (gradsvs)vs‖ . (12)

Employing the surface identity, instead of divergence of the
convective flux of surface momentum we obtain:

ρsas = ∂t (ρsvs) + divs
(
ρsvs ⊗ vs‖

)
(13)

The fluid-solid contact layer in generalized form is descri-
bied now by the layer balances of mass and momentum. These
are two additional nonlinear differential equations for two addi-
tional fields of unknowns, i.e. the surface mass density ρs and
the layer slip velocity vs. These equations are both geometri-
cally and physically nonlinear, and should be solved using any
discretization method (FEM, FVM), under assumption that the
surface M possesses an independent from the bulk space dis-
cretization. In the case whenM− is a fixed solid surface, the
geometrical velocity w = 0, and then discretization mesh could
be fixed in the marching time of numerical solution. Apparently,
if w 6= 0, then a moving, self deforming mesh should be re-
solved together with surface mass and surface momentum equa-
tions, and the appropriate set of equations for bulk. There are

2An example how to define pBfor the deformable wall is given in the paper
by dell’Isola et al. [8], eq.(40)
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different cases of using the Navier-Stokes layer balances in the
literature. For instance, when A and B are ideal, non-viscous
Euler fluids, and the surface density is equal to zero ρs = 0, and
the layer momentum flux is omitted ps = 0, then the surface
mass and momentum equations reduce to the generalized form
of the Rankine-Hugoniot jump conditions:

{
ṁA = ṁB

ṁAvA + pAnA = ṁBvB + pBnB
, (14)

where pA, pB are thermodynamic pressure in the Euler fluids
A and B, respectively. If, additionally w = 0, and there is
an additional contribution to the surface diade ps = γIs, then
the layer momentum balance leads to the generalized Young-
Laplace equation:

divs (γIs) + pAnA + pBnB

=

[
γ

(
1

r1
+

1

r2

)
+ pA − pB

]
n = 0 . (15)

If an interfacial density is omitted i.e. ρs = 0, the difference be-
tween the external friction forces fSA and fSB simply vanishes
then, and a single layer friction force exists:

fAB = fSA + fSB = ν (vA − vB) , (16)

where ν is an external viscosity coefficient. It is an exact form
of an external friction force proposed by Navier (vB = 0) and
Stokes (vB = vwall). Assuming, that the continuum A is an in-
compressible viscous fluid: pA = pI− 2µd, and the continuum
B is a rigid, fixed solid body: pB = 0, vB = 0, we obtain the
Navier slip boundary condition:

fAB + pAnA = νvA + (pI− 2µd)n = 0 on M , (17)

where vs = vA|M is identified with the slip velocity.
Let note that the layer flux of momentum is responsible for re-
coverable and viscous transport: ps = ps(c) + ps(ν). The first
most important part of the elastic recoverable diade p(c)

s , that is
known as the capillarity diade, can be described by the surface
tension γ. This quantity was introduced to the process of math-
ematical modeling by Young, Laplace and Poisson. The second
contribution comes from the recoverable stresses called the sur-
face bending C1, C2, introduced by Gibbs. There is also a layer
,,normal pressure” $, introduced by Stokes. These altogether
lead to the following definition of the capillarity diade:

ps
(c) = $n⊗ n + γIs +CIIs, ∂n (psn) = $n , (18)

where 2C = C1 +C2, and divsps(c) = γIbn +C
(
I2b − 2IIb

)
n.

A quite general form of the capillarity diade has been proposed
recently [1] as:

ps
(c) = γ0 − IIsγ1 + n⊗ Isdivs (γ1 − IIsγ2) , (19)

where the surface capillary measures can be defined to be spher-
ical:

γ0 = γIs, γ1 = CIIs, γ2 =KIIIs . (20)

These capillary measures are expressed in terms of the first, sec-
ond and third fundamental surface forms, and γ, C, K are the
surface tension, bending and torque, respectively.

The viscous properties of the Navier-Stokes layer depend on
the so-called ,,apparent viscosity” which, in general, possesses a
transversal anisotropy, [11]. One can define the viscous surface
stresses by using the surface diade of the rate of deformation
and a normal change vn,n:

ps
(ν) = λ′ (trds) Is + λ′′vn,nn⊗ n

+2µ′IsdsIs + 2µ′′ (ds − IsdsIs) . (21)

This diade does not undergo the classical 3D de Saint-Venant
condition, saying that the viscous stresses must be traceless. For
a special case when λ′′ = µ′′ = 0, this constitutive relation was
proposed by B.M.J. Boussinesq (1913), [4; 19]:

ps
(ν) = (λ′ − µ′) (trds) Is + 2µ′IsdsIs . (22)

The formula for surface viscosity coefficients λ′, µ′ needs ex-
tended investigations.

SURFACE FRICTION VIS IMPRESSA CLASSIFICA-
TION

Let us consider now a more consistent velocity slip boundary
conditions that should be consistent with the Newton postulate
stating, that a friction phenomenon depends on three compo-
nents: the pressure dependent part, the relative velocity part,
and the square velocity dependent part. Let the Newton postu-
late be true for a fluid in the bulk as well as for the thin layer
on a boundary surface realizing a contact with a solid surface.
Then taking into account, we have more consistent definition of
the surface friction force:

ffAB = fSS′N
v− vwall
|v− vwall|

+ ν (v− vwall)

+fκ (v− vwall)
2 v− vwall
|v− vwall|

. (23)

where fSS′ , ν, fκ are cohesive, external friction and kinematic
friction coefficients and N = n · (pA − pB)n is contact normal
force. Some consistencies of this condition can be simply
recognized if we compare the internal and external coefficients
that appear in the model. This consistency can even be extended
on reversible properties of the model i.e. the internal (Euler)
and the external (Stokes) pressures p and $, respectively. In
the Table1 the comparison of these properties is shown .

The better consistency of the above model results from the
fact that it needs three coefficients of internal friction (kvis, µ1,
µ2) and three coefficients of external friction (fSS′ , ν, fk), re-
spectively. Therefore, we can define a ratio between the internal
and external friction by a dimensionless coefficient λvis, and
two lengths of velocity slip: l1ν and l2ν (see: table 1). Having
a measure of internal properties of friction, one can connect the
external properties of friction at the fluid-solid contact layer by
appropriate closures written for λvis , l1ν and l2ν , respectively.
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Table 1. Comparison of a concise model of internal and external friction, according to Newton’s postulate. The model (†) of a viscous bulk pressure
has been proposed by Natanson [15].

Internal (bulk) External (boundary) Characteristic ratio

Elastic pressure p [Nm−2] $ [Nm−2] λpress = p/$

frictional pressure pvis = kvisJ
† [Pa] fSS′ λvis = kvis/fSS′N

linear slip velocity µ1 [Nsm−2] ν [Nsm−3] l1ν = µ1/ν

square slip velocity µ2 [Ns2m−2] fk [Ns2m−3] l2ν = µ2/fk

SURFACE MOBILITY VIS IMPRESSA CLASSIFICA-
TION

Here, we must note that the previous literature statements of
the phenomena of surface mobility, called transpiration, should
be taken into account to the proper definition of surface fric-
tion. Yet another mobility force, other than the difference of
pressure or temperature, was discovered by Graham in 1849.
He found a new kind of transpiration called ,,atomisis”[18; 14].
This phenomena is nowadays called ,,diffusional transpiration”
or ,,diffusionphoresis”. It is quite different kind of flow than the
classical transpiration flow induced by difference of the normal
surface pressures, i.e. ,,pressure transpiration”. The diffusion
transpiration deals with a flow of gas mixture by a long capil-
lary pipe, where there is another interaction of every mixture
component with a surface. It leads to the mixture separation.
In this case the most important is a coefficient of diffusion mo-
bility cvN . Another type of induced motion is due to the differ-
ence of an electric potential φ on a surface. This phenomenon is
called ,,electrophoresis” and is governed by an electro-mobility
coefficient3 cvφ. Other mobility mechanism is connected with
the phase transition change, [2] and the surface gradient of the
phase order parameter x.

Let us note that these all types of mobility, i.e., pressure, ther-
mal, diffusional, phase, and electrical define only an external
mobility force in the fluid-solid contact layer. This force, par-
tially given by Reynolds [18] and Maxwell [14], can be gener-
alized to:

fmAB = −cv$grads$− cvθgradsθ
−cvNgradsN − cvφgradsφ− cvxgradsx , (24)

where cvθ - the thermo-mobility coefficient, cvN - the
concentration-mobility coefficient, cvφ - electro-mobility coef-
ficient, cv$ - the pressure-mobility coefficient, cvx - the phase
mobility coefficient.

In a special case, when gas is at rest, we can observe a motion
of the particle induced by different surface vis impressa. This
kind of motion is called in the literature the ,,phoretic motion”
[5]. In general, any nano-particle immersed in the fluid may
undergo simultaneously five types of motions which are shown
in Table 24.

3Electrophoresis was discovered by von Smoluchowski in 1916 [22]. See
also: H.J. Keh, J.L. Anderson, Boundary effects on electrophoretic motion of
colloidal sphere, J. Fluid Mech. 153,417-439(1985)

4These phenomena must be distinguished from the motion-less phenomena
like: ,,temperature jump”, ,,concentration jump”, ,,potential jump” related with
the external heat conductivity, external mass diffusivity, and external electric

Table 2. Five kinds of motions connected with the surface mobility of
a particle immersed in a fluid at rest. Here: cvθ - the thermo-mobility
coefficient, cvN - the concentration-mobility coefficient, cvφ - electro-
mobility coefficient, cv$ - the pressure-mobility coefficient, cvx - the
phase mobility coefficient.

Phenomena Corresponding velocity Driving potential

thermophoresis vwall = cvθgradsθ temperature θ

diffusionphoresis vwall = cvNgradsN concentration N

electrophoresis vwall = cvφgradsφ electric potential φ

pressurephoresis vwall = cv$grads$ pressure $

phasephoresis vwall = cvxgradsx order parameter x

COMBINED SURFACE FRICTION AND MOBILITY

Let postulate surface vis impressa to be:

fAB = ν (v− vwall − cvθgradsθ) . (25)

The thermo-mobility coefficient cvθ should be formulated,
according to Maxwell’s slip formula [14], as a coefficient that
is not dependent on the property of the solid surface:

cvθ =
3

4

µ

ρθ
. (26)

Equation (25) is called the ,,Maxwell slip boundary layer”. Let
us note that in this equation very particular role plays the gradi-
ent of temperature θ. It is a completely external surface effect
which is not connected with any form of stress tensor. It means
that the motion of the gas close to a solid surface, in general is
governed by two kinds of forces. The first is a mechanical one,
which is connected with the external viscosity, and the second
one is a temperature gradient which drives of gas particle close
to the surface from colder to hotter part. Therefore the coeffi-
cient of thermal mobility cvθ is independent from mechanical
layer properties and should be experimentally verified5.

Finally, let us recall Maxwell solution for a flow of a gas in
a long capillary tube having inner radius a, which occurs under

conductivity coefficients, respectively. Recently the phenomenon of jump con-
centration of salt in a gel mixture has been discovered by [12].

5There are numerous modern papers that mention about the proper exper-
iments. The impressive electrokinetic properties predicted for a carbon nano-
tube channels have not yet been measured in careful experiments, [10].
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two kind of driving forces. These forces are a bulk pressure
transpiration due to difference of pressure at the ends of the
tube, and the surface thermal transpiration due to difference of
temperature at the same ends of the tube. Since the gas is flow-
ing from higher to lower pressure and, simultaneously, from the
colder to the hotter end, then these effects can be summarized.
In a particular case, where the driving forces are opposite and
equal themselves, there is no net outflow of gas from the cap-
illary. Then an enhancement of mass flux due to the Maxwell
slip is6:

QMaxwell

QPoiseuille
=

(
1 + 4

ls
a

)
− 8

π
cvθ

µ

ρa4
dθ

dz

(
dp

dz

)−1
. (27)

This enhancement is essential only if the inner radius a is small
in comparison with the slip length ls and thermal mobility cvθ
is small. Thermal contribution to the slip is important when the
gas is rarefied. Both driving forces (per unit of length of the
pipe): dp and dθ, can be in opposition. In a particular case there
is no flow in the pipe Q = 0. Then we have7:

dp

dθ
= 6

µ2

ρθ

1

a2 + 4lsa
. (28)

For given temperature difference dθ = 100 K, under the pres-
sure of 40 mm of mercury, and assuming ls = 0.00016 cm, this
formula leads to the resulting pressure at the hot end which ex-
ceed that at the cold end by about 1.2 millionth of the atmo-
sphere. Modern numerical techniques allowed us to reconstruct
this experiment by means of Finite Volume Method. Obtained
results are however slightly different - see Fig. 2, b) for which
ṁ = 0.

CONCLUSION

In the paper the applications of the extended solid-fluid
contact equations, including the different surface mobility
mechanisms are presented in order to explain the enhanced
flow in micro-channels.
Boundary force is a sum of friction and mobility force: f∂V =
v (v− vwall) + (−cs,ωgrads$− cs,θgradsθ− cs,cgradsc)
where cs,ω - pressure transpiration; cs,θ - thermal transpiration;
cs,c - concentration transpiration.
Generalization of the fluid-solid contact boundary slip layer,
formulated in the present paper, supplements the original
Navier-Stokes model by additional surface quantities like the
surface mass and the surface momentum flux. In the present
case the slip velocity vs is determined from the solution of the
complete balance of momentum (11) written within the layer.
Since the stress tensors pA, pB are determined in the bulk and
cannot be arbitrarily changed at the boundary, such an approach
leads to the separation for those constitutive relations which

6Another objective for analytical study lies in exploring the underlying
physics of the so called Knudsen paradox. Explanations of this paradox can-
not be given by model of Navier slip layer, and needs more advanced method
of modeling, [1; 13]. Let recall, that the Knudsen paradox relates to the pres-
ence of a minimum of mass flow rate in a function of the Knudsen number.
Thus, the exploration of Knudsen paradox and its full understanding also re-
quire a considerations on the limit of continuum approaches. It is fact, that
the Knudsen-Gaede flow should be a fundamental benchmark for nano-flows of
rarefied gases like the Pouiselle or Couette flow at macro-scale.

7See: ([14],Appendix,eq.(81))

Figure 2. The calculated mass flow rate and relevant velocity profiles
in the Maxwell capillary tube for given constant temperature difference
dθ = 100 K, and for different dp : a) 0 Pa, b) 1.1 Pa and c) 10 Pa. The
case a) describes pure thermal transpiration (no pressure driven flow),
where slip velocity vs = 0.0077m/s drives the bulk flow of a gas.

can be imposed to fulfill the surface balance of momentum.
There is still an open place for the modeling of the surface
momentum diade ps and the surface friction force fAB , where
indeed a second gradient of surface velocity can be postulated.
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cielle, dans le mince couche de transition separant un liq-
uide d’une autre fluide contigu. Ann. Chim. Phys., 29:349
– 357, 1913.

[5] H. Brenner. Navier-stokes revisited. Physica, A349:60 –

585



132, 2005.
[6] P. Cermelli, E. Fried, and M.E. Gurtin. Transport relations

for surface integrals arising in the formulation of balance
laws for evolving fluid interfaces. J. Fluid Mech., 544:339
– 351, 2005.

[7] F. dell’Isola and W. Kosiński. Deduction of thermo-
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